/* * HiSilicon SPI Nor Flash Controller Driver * * Copyright (c) 2015-2016 HiSilicon Technologies Co., Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include /* Hardware register offsets and field definitions */ #define FMC_CFG 0x00 #define FMC_CFG_OP_MODE_MASK BIT_MASK(0) #define FMC_CFG_OP_MODE_BOOT 0 #define FMC_CFG_OP_MODE_NORMAL 1 #define FMC_CFG_FLASH_SEL(type) (((type) & 0x3) << 1) #define FMC_CFG_FLASH_SEL_MASK 0x6 #define FMC_ECC_TYPE(type) (((type) & 0x7) << 5) #define FMC_ECC_TYPE_MASK GENMASK(7, 5) #define SPI_NOR_ADDR_MODE_MASK BIT_MASK(10) #define SPI_NOR_ADDR_MODE_3BYTES (0x0 << 10) #define SPI_NOR_ADDR_MODE_4BYTES (0x1 << 10) #define FMC_GLOBAL_CFG 0x04 #define FMC_GLOBAL_CFG_WP_ENABLE BIT(6) #define FMC_SPI_TIMING_CFG 0x08 #define TIMING_CFG_TCSH(nr) (((nr) & 0xf) << 8) #define TIMING_CFG_TCSS(nr) (((nr) & 0xf) << 4) #define TIMING_CFG_TSHSL(nr) ((nr) & 0xf) #define CS_HOLD_TIME 0x6 #define CS_SETUP_TIME 0x6 #define CS_DESELECT_TIME 0xf #define FMC_INT 0x18 #define FMC_INT_OP_DONE BIT(0) #define FMC_INT_CLR 0x20 #define FMC_CMD 0x24 #define FMC_CMD_CMD1(cmd) ((cmd) & 0xff) #define FMC_ADDRL 0x2c #define FMC_OP_CFG 0x30 #define OP_CFG_FM_CS(cs) ((cs) << 11) #define OP_CFG_MEM_IF_TYPE(type) (((type) & 0x7) << 7) #define OP_CFG_ADDR_NUM(addr) (((addr) & 0x7) << 4) #define OP_CFG_DUMMY_NUM(dummy) ((dummy) & 0xf) #define FMC_DATA_NUM 0x38 #define FMC_DATA_NUM_CNT(cnt) ((cnt) & GENMASK(13, 0)) #define FMC_OP 0x3c #define FMC_OP_DUMMY_EN BIT(8) #define FMC_OP_CMD1_EN BIT(7) #define FMC_OP_ADDR_EN BIT(6) #define FMC_OP_WRITE_DATA_EN BIT(5) #define FMC_OP_READ_DATA_EN BIT(2) #define FMC_OP_READ_STATUS_EN BIT(1) #define FMC_OP_REG_OP_START BIT(0) #define FMC_DMA_LEN 0x40 #define FMC_DMA_LEN_SET(len) ((len) & GENMASK(27, 0)) #define FMC_DMA_SADDR_D0 0x4c #define HIFMC_DMA_MAX_LEN (4096) #define HIFMC_DMA_MASK (HIFMC_DMA_MAX_LEN - 1) #define FMC_OP_DMA 0x68 #define OP_CTRL_RD_OPCODE(code) (((code) & 0xff) << 16) #define OP_CTRL_WR_OPCODE(code) (((code) & 0xff) << 8) #define OP_CTRL_RW_OP(op) ((op) << 1) #define OP_CTRL_DMA_OP_READY BIT(0) #define FMC_OP_READ 0x0 #define FMC_OP_WRITE 0x1 #define FMC_WAIT_TIMEOUT 1000000 enum hifmc_iftype { IF_TYPE_STD, IF_TYPE_DUAL, IF_TYPE_DIO, IF_TYPE_QUAD, IF_TYPE_QIO, }; struct hifmc_priv { u32 chipselect; u32 clkrate; struct hifmc_host *host; }; #define HIFMC_MAX_CHIP_NUM 2 struct hifmc_host { struct device *dev; struct mutex lock; void __iomem *regbase; void __iomem *iobase; struct clk *clk; void *buffer; dma_addr_t dma_buffer; struct spi_nor *nor[HIFMC_MAX_CHIP_NUM]; u32 num_chip; }; static inline int wait_op_finish(struct hifmc_host *host) { u32 reg; return readl_poll_timeout(host->regbase + FMC_INT, reg, (reg & FMC_INT_OP_DONE), 0, FMC_WAIT_TIMEOUT); } static int get_if_type(enum read_mode flash_read) { enum hifmc_iftype if_type; switch (flash_read) { case SPI_NOR_DUAL: if_type = IF_TYPE_DUAL; break; case SPI_NOR_QUAD: if_type = IF_TYPE_QUAD; break; case SPI_NOR_NORMAL: case SPI_NOR_FAST: default: if_type = IF_TYPE_STD; break; } return if_type; } static void hisi_spi_nor_init(struct hifmc_host *host) { u32 reg; reg = TIMING_CFG_TCSH(CS_HOLD_TIME) | TIMING_CFG_TCSS(CS_SETUP_TIME) | TIMING_CFG_TSHSL(CS_DESELECT_TIME); writel(reg, host->regbase + FMC_SPI_TIMING_CFG); } static int hisi_spi_nor_prep(struct spi_nor *nor, enum spi_nor_ops ops) { struct hifmc_priv *priv = nor->priv; struct hifmc_host *host = priv->host; int ret; mutex_lock(&host->lock); ret = clk_set_rate(host->clk, priv->clkrate); if (ret) goto out; ret = clk_prepare_enable(host->clk); if (ret) goto out; return 0; out: mutex_unlock(&host->lock); return ret; } static void hisi_spi_nor_unprep(struct spi_nor *nor, enum spi_nor_ops ops) { struct hifmc_priv *priv = nor->priv; struct hifmc_host *host = priv->host; clk_disable_unprepare(host->clk); mutex_unlock(&host->lock); } static int hisi_spi_nor_op_reg(struct spi_nor *nor, u8 opcode, int len, u8 optype) { struct hifmc_priv *priv = nor->priv; struct hifmc_host *host = priv->host; u32 reg; reg = FMC_CMD_CMD1(opcode); writel(reg, host->regbase + FMC_CMD); reg = FMC_DATA_NUM_CNT(len); writel(reg, host->regbase + FMC_DATA_NUM); reg = OP_CFG_FM_CS(priv->chipselect); writel(reg, host->regbase + FMC_OP_CFG); writel(0xff, host->regbase + FMC_INT_CLR); reg = FMC_OP_CMD1_EN | FMC_OP_REG_OP_START | optype; writel(reg, host->regbase + FMC_OP); return wait_op_finish(host); } static int hisi_spi_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { struct hifmc_priv *priv = nor->priv; struct hifmc_host *host = priv->host; int ret; ret = hisi_spi_nor_op_reg(nor, opcode, len, FMC_OP_READ_DATA_EN); if (ret) return ret; memcpy_fromio(buf, host->iobase, len); return 0; } static int hisi_spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { struct hifmc_priv *priv = nor->priv; struct hifmc_host *host = priv->host; if (len) memcpy_toio(host->iobase, buf, len); return hisi_spi_nor_op_reg(nor, opcode, len, FMC_OP_WRITE_DATA_EN); } static int hisi_spi_nor_dma_transfer(struct spi_nor *nor, loff_t start_off, dma_addr_t dma_buf, size_t len, u8 op_type) { struct hifmc_priv *priv = nor->priv; struct hifmc_host *host = priv->host; u8 if_type = 0; u32 reg; reg = readl(host->regbase + FMC_CFG); reg &= ~(FMC_CFG_OP_MODE_MASK | SPI_NOR_ADDR_MODE_MASK); reg |= FMC_CFG_OP_MODE_NORMAL; reg |= (nor->addr_width == 4) ? SPI_NOR_ADDR_MODE_4BYTES : SPI_NOR_ADDR_MODE_3BYTES; writel(reg, host->regbase + FMC_CFG); writel(start_off, host->regbase + FMC_ADDRL); writel(dma_buf, host->regbase + FMC_DMA_SADDR_D0); writel(FMC_DMA_LEN_SET(len), host->regbase + FMC_DMA_LEN); reg = OP_CFG_FM_CS(priv->chipselect); if_type = get_if_type(nor->flash_read); reg |= OP_CFG_MEM_IF_TYPE(if_type); if (op_type == FMC_OP_READ) reg |= OP_CFG_DUMMY_NUM(nor->read_dummy >> 3); writel(reg, host->regbase + FMC_OP_CFG); writel(0xff, host->regbase + FMC_INT_CLR); reg = OP_CTRL_RW_OP(op_type) | OP_CTRL_DMA_OP_READY; reg |= (op_type == FMC_OP_READ) ? OP_CTRL_RD_OPCODE(nor->read_opcode) : OP_CTRL_WR_OPCODE(nor->program_opcode); writel(reg, host->regbase + FMC_OP_DMA); return wait_op_finish(host); } static ssize_t hisi_spi_nor_read(struct spi_nor *nor, loff_t from, size_t len, u_char *read_buf) { struct hifmc_priv *priv = nor->priv; struct hifmc_host *host = priv->host; size_t offset; int ret; for (offset = 0; offset < len; offset += HIFMC_DMA_MAX_LEN) { size_t trans = min_t(size_t, HIFMC_DMA_MAX_LEN, len - offset); ret = hisi_spi_nor_dma_transfer(nor, from + offset, host->dma_buffer, trans, FMC_OP_READ); if (ret) { dev_warn(nor->dev, "DMA read timeout\n"); return ret; } memcpy(read_buf + offset, host->buffer, trans); } return len; } static ssize_t hisi_spi_nor_write(struct spi_nor *nor, loff_t to, size_t len, const u_char *write_buf) { struct hifmc_priv *priv = nor->priv; struct hifmc_host *host = priv->host; size_t offset; int ret; for (offset = 0; offset < len; offset += HIFMC_DMA_MAX_LEN) { size_t trans = min_t(size_t, HIFMC_DMA_MAX_LEN, len - offset); memcpy(host->buffer, write_buf + offset, trans); ret = hisi_spi_nor_dma_transfer(nor, to + offset, host->dma_buffer, trans, FMC_OP_WRITE); if (ret) { dev_warn(nor->dev, "DMA write timeout\n"); return ret; } } return len; } /** * Get spi flash device information and register it as a mtd device. */ static int hisi_spi_nor_register(struct device_node *np, struct hifmc_host *host) { struct device *dev = host->dev; struct spi_nor *nor; struct hifmc_priv *priv; struct mtd_info *mtd; int ret; nor = devm_kzalloc(dev, sizeof(*nor), GFP_KERNEL); if (!nor) return -ENOMEM; nor->dev = dev; spi_nor_set_flash_node(nor, np); priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; ret = of_property_read_u32(np, "reg", &priv->chipselect); if (ret) { dev_err(dev, "There's no reg property for %s\n", np->full_name); return ret; } ret = of_property_read_u32(np, "spi-max-frequency", &priv->clkrate); if (ret) { dev_err(dev, "There's no spi-max-frequency property for %s\n", np->full_name); return ret; } priv->host = host; nor->priv = priv; nor->prepare = hisi_spi_nor_prep; nor->unprepare = hisi_spi_nor_unprep; nor->read_reg = hisi_spi_nor_read_reg; nor->write_reg = hisi_spi_nor_write_reg; nor->read = hisi_spi_nor_read; nor->write = hisi_spi_nor_write; nor->erase = NULL; ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD); if (ret) return ret; mtd = &nor->mtd; mtd->name = np->name; ret = mtd_device_register(mtd, NULL, 0); if (ret) return ret; host->nor[host->num_chip] = nor; host->num_chip++; return 0; } static void hisi_spi_nor_unregister_all(struct hifmc_host *host) { int i; for (i = 0; i < host->num_chip; i++) mtd_device_unregister(&host->nor[i]->mtd); } static int hisi_spi_nor_register_all(struct hifmc_host *host) { struct device *dev = host->dev; struct device_node *np; int ret; for_each_available_child_of_node(dev->of_node, np) { ret = hisi_spi_nor_register(np, host); if (ret) { of_node_put(np); goto fail; } if (host->num_chip == HIFMC_MAX_CHIP_NUM) { dev_warn(dev, "Flash device number exceeds the maximum chipselect number\n"); break; } } return 0; fail: hisi_spi_nor_unregister_all(host); return ret; } static int hisi_spi_nor_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct resource *res; struct hifmc_host *host; int ret; host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) return -ENOMEM; platform_set_drvdata(pdev, host); host->dev = dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "control"); host->regbase = devm_ioremap_resource(dev, res); if (IS_ERR(host->regbase)) return PTR_ERR(host->regbase); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory"); host->iobase = devm_ioremap_resource(dev, res); if (IS_ERR(host->iobase)) return PTR_ERR(host->iobase); host->clk = devm_clk_get(dev, NULL); if (IS_ERR(host->clk)) return PTR_ERR(host->clk); ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) { dev_warn(dev, "Unable to set dma mask\n"); return ret; } host->buffer = dmam_alloc_coherent(dev, HIFMC_DMA_MAX_LEN, &host->dma_buffer, GFP_KERNEL); if (!host->buffer) return -ENOMEM; mutex_init(&host->lock); clk_prepare_enable(host->clk); hisi_spi_nor_init(host); ret = hisi_spi_nor_register_all(host); if (ret) mutex_destroy(&host->lock); clk_disable_unprepare(host->clk); return ret; } static int hisi_spi_nor_remove(struct platform_device *pdev) { struct hifmc_host *host = platform_get_drvdata(pdev); hisi_spi_nor_unregister_all(host); mutex_destroy(&host->lock); return 0; } static const struct of_device_id hisi_spi_nor_dt_ids[] = { { .compatible = "hisilicon,fmc-spi-nor"}, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, hisi_spi_nor_dt_ids); static struct platform_driver hisi_spi_nor_driver = { .driver = { .name = "hisi-sfc", .of_match_table = hisi_spi_nor_dt_ids, }, .probe = hisi_spi_nor_probe, .remove = hisi_spi_nor_remove, }; module_platform_driver(hisi_spi_nor_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("HiSilicon SPI Nor Flash Controller Driver");