/* * Copyright (c) 2015, Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "mlx5_core.h" #include "fs_core.h" #include "fs_cmd.h" #define INIT_TREE_NODE_ARRAY_SIZE(...) (sizeof((struct init_tree_node[]){__VA_ARGS__}) /\ sizeof(struct init_tree_node)) #define ADD_PRIO(num_prios_val, min_level_val, num_levels_val, caps_val,\ ...) {.type = FS_TYPE_PRIO,\ .min_ft_level = min_level_val,\ .num_levels = num_levels_val,\ .num_leaf_prios = num_prios_val,\ .caps = caps_val,\ .children = (struct init_tree_node[]) {__VA_ARGS__},\ .ar_size = INIT_TREE_NODE_ARRAY_SIZE(__VA_ARGS__) \ } #define ADD_MULTIPLE_PRIO(num_prios_val, num_levels_val, ...)\ ADD_PRIO(num_prios_val, 0, num_levels_val, {},\ __VA_ARGS__)\ #define ADD_NS(...) {.type = FS_TYPE_NAMESPACE,\ .children = (struct init_tree_node[]) {__VA_ARGS__},\ .ar_size = INIT_TREE_NODE_ARRAY_SIZE(__VA_ARGS__) \ } #define INIT_CAPS_ARRAY_SIZE(...) (sizeof((long[]){__VA_ARGS__}) /\ sizeof(long)) #define FS_CAP(cap) (__mlx5_bit_off(flow_table_nic_cap, cap)) #define FS_REQUIRED_CAPS(...) {.arr_sz = INIT_CAPS_ARRAY_SIZE(__VA_ARGS__), \ .caps = (long[]) {__VA_ARGS__} } #define FS_CHAINING_CAPS FS_REQUIRED_CAPS(FS_CAP(flow_table_properties_nic_receive.flow_modify_en), \ FS_CAP(flow_table_properties_nic_receive.modify_root), \ FS_CAP(flow_table_properties_nic_receive.identified_miss_table_mode), \ FS_CAP(flow_table_properties_nic_receive.flow_table_modify)) #define LEFTOVERS_NUM_LEVELS 1 #define LEFTOVERS_NUM_PRIOS 1 #define BY_PASS_PRIO_NUM_LEVELS 1 #define BY_PASS_MIN_LEVEL (ETHTOOL_MIN_LEVEL + MLX5_BY_PASS_NUM_PRIOS +\ LEFTOVERS_NUM_PRIOS) #define ETHTOOL_PRIO_NUM_LEVELS 1 #define ETHTOOL_NUM_PRIOS 11 #define ETHTOOL_MIN_LEVEL (KERNEL_MIN_LEVEL + ETHTOOL_NUM_PRIOS) /* Vlan, mac, ttc, aRFS */ #define KERNEL_NIC_PRIO_NUM_LEVELS 4 #define KERNEL_NIC_NUM_PRIOS 1 /* One more level for tc */ #define KERNEL_MIN_LEVEL (KERNEL_NIC_PRIO_NUM_LEVELS + 1) #define ANCHOR_NUM_LEVELS 1 #define ANCHOR_NUM_PRIOS 1 #define ANCHOR_MIN_LEVEL (BY_PASS_MIN_LEVEL + 1) #define OFFLOADS_MAX_FT 1 #define OFFLOADS_NUM_PRIOS 1 #define OFFLOADS_MIN_LEVEL (ANCHOR_MIN_LEVEL + 1) #define LAG_PRIO_NUM_LEVELS 1 #define LAG_NUM_PRIOS 1 #define LAG_MIN_LEVEL (OFFLOADS_MIN_LEVEL + 1) struct node_caps { size_t arr_sz; long *caps; }; static struct init_tree_node { enum fs_node_type type; struct init_tree_node *children; int ar_size; struct node_caps caps; int min_ft_level; int num_leaf_prios; int prio; int num_levels; } root_fs = { .type = FS_TYPE_NAMESPACE, .ar_size = 7, .children = (struct init_tree_node[]) { ADD_PRIO(0, BY_PASS_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(ADD_MULTIPLE_PRIO(MLX5_BY_PASS_NUM_PRIOS, BY_PASS_PRIO_NUM_LEVELS))), ADD_PRIO(0, LAG_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(ADD_MULTIPLE_PRIO(LAG_NUM_PRIOS, LAG_PRIO_NUM_LEVELS))), ADD_PRIO(0, OFFLOADS_MIN_LEVEL, 0, {}, ADD_NS(ADD_MULTIPLE_PRIO(OFFLOADS_NUM_PRIOS, OFFLOADS_MAX_FT))), ADD_PRIO(0, ETHTOOL_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(ADD_MULTIPLE_PRIO(ETHTOOL_NUM_PRIOS, ETHTOOL_PRIO_NUM_LEVELS))), ADD_PRIO(0, KERNEL_MIN_LEVEL, 0, {}, ADD_NS(ADD_MULTIPLE_PRIO(1, 1), ADD_MULTIPLE_PRIO(KERNEL_NIC_NUM_PRIOS, KERNEL_NIC_PRIO_NUM_LEVELS))), ADD_PRIO(0, BY_PASS_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(ADD_MULTIPLE_PRIO(LEFTOVERS_NUM_PRIOS, LEFTOVERS_NUM_LEVELS))), ADD_PRIO(0, ANCHOR_MIN_LEVEL, 0, {}, ADD_NS(ADD_MULTIPLE_PRIO(ANCHOR_NUM_PRIOS, ANCHOR_NUM_LEVELS))), } }; enum fs_i_mutex_lock_class { FS_MUTEX_GRANDPARENT, FS_MUTEX_PARENT, FS_MUTEX_CHILD }; static void del_rule(struct fs_node *node); static void del_flow_table(struct fs_node *node); static void del_flow_group(struct fs_node *node); static void del_fte(struct fs_node *node); static void cleanup_root_ns(struct mlx5_flow_root_namespace *root_ns); static void tree_init_node(struct fs_node *node, unsigned int refcount, void (*remove_func)(struct fs_node *)) { atomic_set(&node->refcount, refcount); INIT_LIST_HEAD(&node->list); INIT_LIST_HEAD(&node->children); mutex_init(&node->lock); node->remove_func = remove_func; } static void tree_add_node(struct fs_node *node, struct fs_node *parent) { if (parent) atomic_inc(&parent->refcount); node->parent = parent; /* Parent is the root */ if (!parent) node->root = node; else node->root = parent->root; } static void tree_get_node(struct fs_node *node) { atomic_inc(&node->refcount); } static void nested_lock_ref_node(struct fs_node *node, enum fs_i_mutex_lock_class class) { if (node) { mutex_lock_nested(&node->lock, class); atomic_inc(&node->refcount); } } static void lock_ref_node(struct fs_node *node) { if (node) { mutex_lock(&node->lock); atomic_inc(&node->refcount); } } static void unlock_ref_node(struct fs_node *node) { if (node) { atomic_dec(&node->refcount); mutex_unlock(&node->lock); } } static void tree_put_node(struct fs_node *node) { struct fs_node *parent_node = node->parent; lock_ref_node(parent_node); if (atomic_dec_and_test(&node->refcount)) { if (parent_node) list_del_init(&node->list); if (node->remove_func) node->remove_func(node); kfree(node); node = NULL; } unlock_ref_node(parent_node); if (!node && parent_node) tree_put_node(parent_node); } static int tree_remove_node(struct fs_node *node) { if (atomic_read(&node->refcount) > 1) { atomic_dec(&node->refcount); return -EEXIST; } tree_put_node(node); return 0; } static struct fs_prio *find_prio(struct mlx5_flow_namespace *ns, unsigned int prio) { struct fs_prio *iter_prio; fs_for_each_prio(iter_prio, ns) { if (iter_prio->prio == prio) return iter_prio; } return NULL; } static bool masked_memcmp(void *mask, void *val1, void *val2, size_t size) { unsigned int i; for (i = 0; i < size; i++, mask++, val1++, val2++) if ((*((u8 *)val1) & (*(u8 *)mask)) != ((*(u8 *)val2) & (*(u8 *)mask))) return false; return true; } static bool compare_match_value(struct mlx5_flow_group_mask *mask, void *fte_param1, void *fte_param2) { if (mask->match_criteria_enable & 1 << MLX5_CREATE_FLOW_GROUP_IN_MATCH_CRITERIA_ENABLE_OUTER_HEADERS) { void *fte_match1 = MLX5_ADDR_OF(fte_match_param, fte_param1, outer_headers); void *fte_match2 = MLX5_ADDR_OF(fte_match_param, fte_param2, outer_headers); void *fte_mask = MLX5_ADDR_OF(fte_match_param, mask->match_criteria, outer_headers); if (!masked_memcmp(fte_mask, fte_match1, fte_match2, MLX5_ST_SZ_BYTES(fte_match_set_lyr_2_4))) return false; } if (mask->match_criteria_enable & 1 << MLX5_CREATE_FLOW_GROUP_IN_MATCH_CRITERIA_ENABLE_MISC_PARAMETERS) { void *fte_match1 = MLX5_ADDR_OF(fte_match_param, fte_param1, misc_parameters); void *fte_match2 = MLX5_ADDR_OF(fte_match_param, fte_param2, misc_parameters); void *fte_mask = MLX5_ADDR_OF(fte_match_param, mask->match_criteria, misc_parameters); if (!masked_memcmp(fte_mask, fte_match1, fte_match2, MLX5_ST_SZ_BYTES(fte_match_set_misc))) return false; } if (mask->match_criteria_enable & 1 << MLX5_CREATE_FLOW_GROUP_IN_MATCH_CRITERIA_ENABLE_INNER_HEADERS) { void *fte_match1 = MLX5_ADDR_OF(fte_match_param, fte_param1, inner_headers); void *fte_match2 = MLX5_ADDR_OF(fte_match_param, fte_param2, inner_headers); void *fte_mask = MLX5_ADDR_OF(fte_match_param, mask->match_criteria, inner_headers); if (!masked_memcmp(fte_mask, fte_match1, fte_match2, MLX5_ST_SZ_BYTES(fte_match_set_lyr_2_4))) return false; } return true; } static bool compare_match_criteria(u8 match_criteria_enable1, u8 match_criteria_enable2, void *mask1, void *mask2) { return match_criteria_enable1 == match_criteria_enable2 && !memcmp(mask1, mask2, MLX5_ST_SZ_BYTES(fte_match_param)); } static struct mlx5_flow_root_namespace *find_root(struct fs_node *node) { struct fs_node *root; struct mlx5_flow_namespace *ns; root = node->root; if (WARN_ON(root->type != FS_TYPE_NAMESPACE)) { pr_warn("mlx5: flow steering node is not in tree or garbaged\n"); return NULL; } ns = container_of(root, struct mlx5_flow_namespace, node); return container_of(ns, struct mlx5_flow_root_namespace, ns); } static inline struct mlx5_core_dev *get_dev(struct fs_node *node) { struct mlx5_flow_root_namespace *root = find_root(node); if (root) return root->dev; return NULL; } static void del_flow_table(struct fs_node *node) { struct mlx5_flow_table *ft; struct mlx5_core_dev *dev; struct fs_prio *prio; int err; fs_get_obj(ft, node); dev = get_dev(&ft->node); err = mlx5_cmd_destroy_flow_table(dev, ft); if (err) mlx5_core_warn(dev, "flow steering can't destroy ft\n"); fs_get_obj(prio, ft->node.parent); prio->num_ft--; } static void del_rule(struct fs_node *node) { struct mlx5_flow_rule *rule; struct mlx5_flow_table *ft; struct mlx5_flow_group *fg; struct fs_fte *fte; u32 *match_value; int modify_mask; struct mlx5_core_dev *dev = get_dev(node); int match_len = MLX5_ST_SZ_BYTES(fte_match_param); int err; match_value = mlx5_vzalloc(match_len); if (!match_value) { mlx5_core_warn(dev, "failed to allocate inbox\n"); return; } fs_get_obj(rule, node); fs_get_obj(fte, rule->node.parent); fs_get_obj(fg, fte->node.parent); memcpy(match_value, fte->val, sizeof(fte->val)); fs_get_obj(ft, fg->node.parent); list_del(&rule->node.list); if (rule->sw_action == MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_PRIO) { mutex_lock(&rule->dest_attr.ft->lock); list_del(&rule->next_ft); mutex_unlock(&rule->dest_attr.ft->lock); } if ((fte->action & MLX5_FLOW_CONTEXT_ACTION_FWD_DEST) && --fte->dests_size) { modify_mask = BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_DESTINATION_LIST); err = mlx5_cmd_update_fte(dev, ft, fg->id, modify_mask, fte); if (err) mlx5_core_warn(dev, "%s can't del rule fg id=%d fte_index=%d\n", __func__, fg->id, fte->index); } kvfree(match_value); } static void del_fte(struct fs_node *node) { struct mlx5_flow_table *ft; struct mlx5_flow_group *fg; struct mlx5_core_dev *dev; struct fs_fte *fte; int err; fs_get_obj(fte, node); fs_get_obj(fg, fte->node.parent); fs_get_obj(ft, fg->node.parent); dev = get_dev(&ft->node); err = mlx5_cmd_delete_fte(dev, ft, fte->index); if (err) mlx5_core_warn(dev, "flow steering can't delete fte in index %d of flow group id %d\n", fte->index, fg->id); fte->status = 0; fg->num_ftes--; } static void del_flow_group(struct fs_node *node) { struct mlx5_flow_group *fg; struct mlx5_flow_table *ft; struct mlx5_core_dev *dev; fs_get_obj(fg, node); fs_get_obj(ft, fg->node.parent); dev = get_dev(&ft->node); if (ft->autogroup.active) ft->autogroup.num_groups--; if (mlx5_cmd_destroy_flow_group(dev, ft, fg->id)) mlx5_core_warn(dev, "flow steering can't destroy fg %d of ft %d\n", fg->id, ft->id); } static struct fs_fte *alloc_fte(u8 action, u32 flow_tag, u32 *match_value, unsigned int index) { struct fs_fte *fte; fte = kzalloc(sizeof(*fte), GFP_KERNEL); if (!fte) return ERR_PTR(-ENOMEM); memcpy(fte->val, match_value, sizeof(fte->val)); fte->node.type = FS_TYPE_FLOW_ENTRY; fte->flow_tag = flow_tag; fte->index = index; fte->action = action; return fte; } static struct mlx5_flow_group *alloc_flow_group(u32 *create_fg_in) { struct mlx5_flow_group *fg; void *match_criteria = MLX5_ADDR_OF(create_flow_group_in, create_fg_in, match_criteria); u8 match_criteria_enable = MLX5_GET(create_flow_group_in, create_fg_in, match_criteria_enable); fg = kzalloc(sizeof(*fg), GFP_KERNEL); if (!fg) return ERR_PTR(-ENOMEM); fg->mask.match_criteria_enable = match_criteria_enable; memcpy(&fg->mask.match_criteria, match_criteria, sizeof(fg->mask.match_criteria)); fg->node.type = FS_TYPE_FLOW_GROUP; fg->start_index = MLX5_GET(create_flow_group_in, create_fg_in, start_flow_index); fg->max_ftes = MLX5_GET(create_flow_group_in, create_fg_in, end_flow_index) - fg->start_index + 1; return fg; } static struct mlx5_flow_table *alloc_flow_table(int level, u16 vport, int max_fte, enum fs_flow_table_type table_type, enum fs_flow_table_op_mod op_mod) { struct mlx5_flow_table *ft; ft = kzalloc(sizeof(*ft), GFP_KERNEL); if (!ft) return NULL; ft->level = level; ft->node.type = FS_TYPE_FLOW_TABLE; ft->op_mod = op_mod; ft->type = table_type; ft->vport = vport; ft->max_fte = max_fte; INIT_LIST_HEAD(&ft->fwd_rules); mutex_init(&ft->lock); return ft; } /* If reverse is false, then we search for the first flow table in the * root sub-tree from start(closest from right), else we search for the * last flow table in the root sub-tree till start(closest from left). */ static struct mlx5_flow_table *find_closest_ft_recursive(struct fs_node *root, struct list_head *start, bool reverse) { #define list_advance_entry(pos, reverse) \ ((reverse) ? list_prev_entry(pos, list) : list_next_entry(pos, list)) #define list_for_each_advance_continue(pos, head, reverse) \ for (pos = list_advance_entry(pos, reverse); \ &pos->list != (head); \ pos = list_advance_entry(pos, reverse)) struct fs_node *iter = list_entry(start, struct fs_node, list); struct mlx5_flow_table *ft = NULL; if (!root) return NULL; list_for_each_advance_continue(iter, &root->children, reverse) { if (iter->type == FS_TYPE_FLOW_TABLE) { fs_get_obj(ft, iter); return ft; } ft = find_closest_ft_recursive(iter, &iter->children, reverse); if (ft) return ft; } return ft; } /* If reverse if false then return the first flow table in next priority of * prio in the tree, else return the last flow table in the previous priority * of prio in the tree. */ static struct mlx5_flow_table *find_closest_ft(struct fs_prio *prio, bool reverse) { struct mlx5_flow_table *ft = NULL; struct fs_node *curr_node; struct fs_node *parent; parent = prio->node.parent; curr_node = &prio->node; while (!ft && parent) { ft = find_closest_ft_recursive(parent, &curr_node->list, reverse); curr_node = parent; parent = curr_node->parent; } return ft; } /* Assuming all the tree is locked by mutex chain lock */ static struct mlx5_flow_table *find_next_chained_ft(struct fs_prio *prio) { return find_closest_ft(prio, false); } /* Assuming all the tree is locked by mutex chain lock */ static struct mlx5_flow_table *find_prev_chained_ft(struct fs_prio *prio) { return find_closest_ft(prio, true); } static int connect_fts_in_prio(struct mlx5_core_dev *dev, struct fs_prio *prio, struct mlx5_flow_table *ft) { struct mlx5_flow_table *iter; int i = 0; int err; fs_for_each_ft(iter, prio) { i++; err = mlx5_cmd_modify_flow_table(dev, iter, ft); if (err) { mlx5_core_warn(dev, "Failed to modify flow table %d\n", iter->id); /* The driver is out of sync with the FW */ if (i > 1) WARN_ON(true); return err; } } return 0; } /* Connect flow tables from previous priority of prio to ft */ static int connect_prev_fts(struct mlx5_core_dev *dev, struct mlx5_flow_table *ft, struct fs_prio *prio) { struct mlx5_flow_table *prev_ft; prev_ft = find_prev_chained_ft(prio); if (prev_ft) { struct fs_prio *prev_prio; fs_get_obj(prev_prio, prev_ft->node.parent); return connect_fts_in_prio(dev, prev_prio, ft); } return 0; } static int update_root_ft_create(struct mlx5_flow_table *ft, struct fs_prio *prio) { struct mlx5_flow_root_namespace *root = find_root(&prio->node); int min_level = INT_MAX; int err; if (root->root_ft) min_level = root->root_ft->level; if (ft->level >= min_level) return 0; err = mlx5_cmd_update_root_ft(root->dev, ft); if (err) mlx5_core_warn(root->dev, "Update root flow table of id=%u failed\n", ft->id); else root->root_ft = ft; return err; } int mlx5_modify_rule_destination(struct mlx5_flow_rule *rule, struct mlx5_flow_destination *dest) { struct mlx5_flow_table *ft; struct mlx5_flow_group *fg; struct fs_fte *fte; int modify_mask = BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_DESTINATION_LIST); int err = 0; fs_get_obj(fte, rule->node.parent); if (!(fte->action & MLX5_FLOW_CONTEXT_ACTION_FWD_DEST)) return -EINVAL; lock_ref_node(&fte->node); fs_get_obj(fg, fte->node.parent); fs_get_obj(ft, fg->node.parent); memcpy(&rule->dest_attr, dest, sizeof(*dest)); err = mlx5_cmd_update_fte(get_dev(&ft->node), ft, fg->id, modify_mask, fte); unlock_ref_node(&fte->node); return err; } /* Modify/set FWD rules that point on old_next_ft to point on new_next_ft */ static int connect_fwd_rules(struct mlx5_core_dev *dev, struct mlx5_flow_table *new_next_ft, struct mlx5_flow_table *old_next_ft) { struct mlx5_flow_destination dest; struct mlx5_flow_rule *iter; int err = 0; /* new_next_ft and old_next_ft could be NULL only * when we create/destroy the anchor flow table. */ if (!new_next_ft || !old_next_ft) return 0; dest.type = MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE; dest.ft = new_next_ft; mutex_lock(&old_next_ft->lock); list_splice_init(&old_next_ft->fwd_rules, &new_next_ft->fwd_rules); mutex_unlock(&old_next_ft->lock); list_for_each_entry(iter, &new_next_ft->fwd_rules, next_ft) { err = mlx5_modify_rule_destination(iter, &dest); if (err) pr_err("mlx5_core: failed to modify rule to point on flow table %d\n", new_next_ft->id); } return 0; } static int connect_flow_table(struct mlx5_core_dev *dev, struct mlx5_flow_table *ft, struct fs_prio *prio) { struct mlx5_flow_table *next_ft, *first_ft; int err = 0; /* Connect_prev_fts and update_root_ft_create are mutually exclusive */ first_ft = list_first_entry_or_null(&prio->node.children, struct mlx5_flow_table, node.list); if (!first_ft || first_ft->level > ft->level) { err = connect_prev_fts(dev, ft, prio); if (err) return err; next_ft = first_ft ? first_ft : find_next_chained_ft(prio); err = connect_fwd_rules(dev, ft, next_ft); if (err) return err; } if (MLX5_CAP_FLOWTABLE(dev, flow_table_properties_nic_receive.modify_root)) err = update_root_ft_create(ft, prio); return err; } static void list_add_flow_table(struct mlx5_flow_table *ft, struct fs_prio *prio) { struct list_head *prev = &prio->node.children; struct mlx5_flow_table *iter; fs_for_each_ft(iter, prio) { if (iter->level > ft->level) break; prev = &iter->node.list; } list_add(&ft->node.list, prev); } static struct mlx5_flow_table *__mlx5_create_flow_table(struct mlx5_flow_namespace *ns, enum fs_flow_table_op_mod op_mod, u16 vport, int prio, int max_fte, u32 level) { struct mlx5_flow_table *next_ft = NULL; struct mlx5_flow_table *ft; int err; int log_table_sz; struct mlx5_flow_root_namespace *root = find_root(&ns->node); struct fs_prio *fs_prio = NULL; if (!root) { pr_err("mlx5: flow steering failed to find root of namespace\n"); return ERR_PTR(-ENODEV); } mutex_lock(&root->chain_lock); fs_prio = find_prio(ns, prio); if (!fs_prio) { err = -EINVAL; goto unlock_root; } if (level >= fs_prio->num_levels) { err = -ENOSPC; goto unlock_root; } /* The level is related to the * priority level range. */ level += fs_prio->start_level; ft = alloc_flow_table(level, vport, max_fte ? roundup_pow_of_two(max_fte) : 0, root->table_type, op_mod); if (!ft) { err = -ENOMEM; goto unlock_root; } tree_init_node(&ft->node, 1, del_flow_table); log_table_sz = ft->max_fte ? ilog2(ft->max_fte) : 0; next_ft = find_next_chained_ft(fs_prio); err = mlx5_cmd_create_flow_table(root->dev, ft->vport, ft->op_mod, ft->type, ft->level, log_table_sz, next_ft, &ft->id); if (err) goto free_ft; err = connect_flow_table(root->dev, ft, fs_prio); if (err) goto destroy_ft; lock_ref_node(&fs_prio->node); tree_add_node(&ft->node, &fs_prio->node); list_add_flow_table(ft, fs_prio); fs_prio->num_ft++; unlock_ref_node(&fs_prio->node); mutex_unlock(&root->chain_lock); return ft; destroy_ft: mlx5_cmd_destroy_flow_table(root->dev, ft); free_ft: kfree(ft); unlock_root: mutex_unlock(&root->chain_lock); return ERR_PTR(err); } struct mlx5_flow_table *mlx5_create_flow_table(struct mlx5_flow_namespace *ns, int prio, int max_fte, u32 level) { return __mlx5_create_flow_table(ns, FS_FT_OP_MOD_NORMAL, 0, prio, max_fte, level); } struct mlx5_flow_table *mlx5_create_vport_flow_table(struct mlx5_flow_namespace *ns, int prio, int max_fte, u32 level, u16 vport) { return __mlx5_create_flow_table(ns, FS_FT_OP_MOD_NORMAL, vport, prio, max_fte, level); } struct mlx5_flow_table *mlx5_create_lag_demux_flow_table( struct mlx5_flow_namespace *ns, int prio, u32 level) { return __mlx5_create_flow_table(ns, FS_FT_OP_MOD_LAG_DEMUX, 0, prio, 0, level); } EXPORT_SYMBOL(mlx5_create_lag_demux_flow_table); struct mlx5_flow_table *mlx5_create_auto_grouped_flow_table(struct mlx5_flow_namespace *ns, int prio, int num_flow_table_entries, int max_num_groups, u32 level) { struct mlx5_flow_table *ft; if (max_num_groups > num_flow_table_entries) return ERR_PTR(-EINVAL); ft = mlx5_create_flow_table(ns, prio, num_flow_table_entries, level); if (IS_ERR(ft)) return ft; ft->autogroup.active = true; ft->autogroup.required_groups = max_num_groups; return ft; } EXPORT_SYMBOL(mlx5_create_auto_grouped_flow_table); /* Flow table should be locked */ static struct mlx5_flow_group *create_flow_group_common(struct mlx5_flow_table *ft, u32 *fg_in, struct list_head *prev_fg, bool is_auto_fg) { struct mlx5_flow_group *fg; struct mlx5_core_dev *dev = get_dev(&ft->node); int err; if (!dev) return ERR_PTR(-ENODEV); fg = alloc_flow_group(fg_in); if (IS_ERR(fg)) return fg; err = mlx5_cmd_create_flow_group(dev, ft, fg_in, &fg->id); if (err) { kfree(fg); return ERR_PTR(err); } if (ft->autogroup.active) ft->autogroup.num_groups++; /* Add node to tree */ tree_init_node(&fg->node, !is_auto_fg, del_flow_group); tree_add_node(&fg->node, &ft->node); /* Add node to group list */ list_add(&fg->node.list, prev_fg); return fg; } struct mlx5_flow_group *mlx5_create_flow_group(struct mlx5_flow_table *ft, u32 *fg_in) { struct mlx5_flow_group *fg; if (ft->autogroup.active) return ERR_PTR(-EPERM); lock_ref_node(&ft->node); fg = create_flow_group_common(ft, fg_in, ft->node.children.prev, false); unlock_ref_node(&ft->node); return fg; } static struct mlx5_flow_rule *alloc_rule(struct mlx5_flow_destination *dest) { struct mlx5_flow_rule *rule; rule = kzalloc(sizeof(*rule), GFP_KERNEL); if (!rule) return NULL; INIT_LIST_HEAD(&rule->next_ft); rule->node.type = FS_TYPE_FLOW_DEST; if (dest) memcpy(&rule->dest_attr, dest, sizeof(*dest)); return rule; } /* fte should not be deleted while calling this function */ static struct mlx5_flow_rule *add_rule_fte(struct fs_fte *fte, struct mlx5_flow_group *fg, struct mlx5_flow_destination *dest) { struct mlx5_flow_table *ft; struct mlx5_flow_rule *rule; int modify_mask = 0; int err; rule = alloc_rule(dest); if (!rule) return ERR_PTR(-ENOMEM); fs_get_obj(ft, fg->node.parent); /* Add dest to dests list- we need flow tables to be in the * end of the list for forward to next prio rules. */ tree_init_node(&rule->node, 1, del_rule); if (dest && dest->type != MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE) list_add(&rule->node.list, &fte->node.children); else list_add_tail(&rule->node.list, &fte->node.children); if (dest) { fte->dests_size++; modify_mask |= dest->type == MLX5_FLOW_DESTINATION_TYPE_COUNTER ? BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_FLOW_COUNTERS) : BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_DESTINATION_LIST); } if (fte->dests_size == 1 || !dest) err = mlx5_cmd_create_fte(get_dev(&ft->node), ft, fg->id, fte); else err = mlx5_cmd_update_fte(get_dev(&ft->node), ft, fg->id, modify_mask, fte); if (err) goto free_rule; fte->status |= FS_FTE_STATUS_EXISTING; return rule; free_rule: list_del(&rule->node.list); kfree(rule); if (dest) fte->dests_size--; return ERR_PTR(err); } /* Assumed fg is locked */ static unsigned int get_free_fte_index(struct mlx5_flow_group *fg, struct list_head **prev) { struct fs_fte *fte; unsigned int start = fg->start_index; if (prev) *prev = &fg->node.children; /* assumed list is sorted by index */ fs_for_each_fte(fte, fg) { if (fte->index != start) return start; start++; if (prev) *prev = &fte->node.list; } return start; } /* prev is output, prev->next = new_fte */ static struct fs_fte *create_fte(struct mlx5_flow_group *fg, u32 *match_value, u8 action, u32 flow_tag, struct list_head **prev) { struct fs_fte *fte; int index; index = get_free_fte_index(fg, prev); fte = alloc_fte(action, flow_tag, match_value, index); if (IS_ERR(fte)) return fte; return fte; } static struct mlx5_flow_group *create_autogroup(struct mlx5_flow_table *ft, u8 match_criteria_enable, u32 *match_criteria) { int inlen = MLX5_ST_SZ_BYTES(create_flow_group_in); struct list_head *prev = &ft->node.children; unsigned int candidate_index = 0; struct mlx5_flow_group *fg; void *match_criteria_addr; unsigned int group_size = 0; u32 *in; if (!ft->autogroup.active) return ERR_PTR(-ENOENT); in = mlx5_vzalloc(inlen); if (!in) return ERR_PTR(-ENOMEM); if (ft->autogroup.num_groups < ft->autogroup.required_groups) /* We save place for flow groups in addition to max types */ group_size = ft->max_fte / (ft->autogroup.required_groups + 1); /* ft->max_fte == ft->autogroup.max_types */ if (group_size == 0) group_size = 1; /* sorted by start_index */ fs_for_each_fg(fg, ft) { if (candidate_index + group_size > fg->start_index) candidate_index = fg->start_index + fg->max_ftes; else break; prev = &fg->node.list; } if (candidate_index + group_size > ft->max_fte) { fg = ERR_PTR(-ENOSPC); goto out; } MLX5_SET(create_flow_group_in, in, match_criteria_enable, match_criteria_enable); MLX5_SET(create_flow_group_in, in, start_flow_index, candidate_index); MLX5_SET(create_flow_group_in, in, end_flow_index, candidate_index + group_size - 1); match_criteria_addr = MLX5_ADDR_OF(create_flow_group_in, in, match_criteria); memcpy(match_criteria_addr, match_criteria, MLX5_ST_SZ_BYTES(fte_match_param)); fg = create_flow_group_common(ft, in, prev, true); out: kvfree(in); return fg; } static struct mlx5_flow_rule *find_flow_rule(struct fs_fte *fte, struct mlx5_flow_destination *dest) { struct mlx5_flow_rule *rule; list_for_each_entry(rule, &fte->node.children, node.list) { if (rule->dest_attr.type == dest->type) { if ((dest->type == MLX5_FLOW_DESTINATION_TYPE_VPORT && dest->vport_num == rule->dest_attr.vport_num) || (dest->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE && dest->ft == rule->dest_attr.ft) || (dest->type == MLX5_FLOW_DESTINATION_TYPE_TIR && dest->tir_num == rule->dest_attr.tir_num)) return rule; } } return NULL; } static struct mlx5_flow_rule *add_rule_fg(struct mlx5_flow_group *fg, u32 *match_value, u8 action, u32 flow_tag, struct mlx5_flow_destination *dest) { struct fs_fte *fte; struct mlx5_flow_rule *rule; struct mlx5_flow_table *ft; struct list_head *prev; nested_lock_ref_node(&fg->node, FS_MUTEX_PARENT); fs_for_each_fte(fte, fg) { nested_lock_ref_node(&fte->node, FS_MUTEX_CHILD); if (compare_match_value(&fg->mask, match_value, &fte->val) && action == fte->action && flow_tag == fte->flow_tag) { rule = find_flow_rule(fte, dest); if (rule) { atomic_inc(&rule->node.refcount); unlock_ref_node(&fte->node); unlock_ref_node(&fg->node); return rule; } rule = add_rule_fte(fte, fg, dest); if (IS_ERR(rule)) goto unlock_fte; else goto add_rule; } unlock_ref_node(&fte->node); } fs_get_obj(ft, fg->node.parent); if (fg->num_ftes >= fg->max_ftes) { rule = ERR_PTR(-ENOSPC); goto unlock_fg; } fte = create_fte(fg, match_value, action, flow_tag, &prev); if (IS_ERR(fte)) { rule = (void *)fte; goto unlock_fg; } tree_init_node(&fte->node, 0, del_fte); nested_lock_ref_node(&fte->node, FS_MUTEX_CHILD); rule = add_rule_fte(fte, fg, dest); if (IS_ERR(rule)) { kfree(fte); goto unlock_fg; } fg->num_ftes++; tree_add_node(&fte->node, &fg->node); list_add(&fte->node.list, prev); add_rule: tree_add_node(&rule->node, &fte->node); unlock_fte: unlock_ref_node(&fte->node); unlock_fg: unlock_ref_node(&fg->node); return rule; } struct mlx5_fc *mlx5_flow_rule_counter(struct mlx5_flow_rule *rule) { struct mlx5_flow_rule *dst; struct fs_fte *fte; fs_get_obj(fte, rule->node.parent); fs_for_each_dst(dst, fte) { if (dst->dest_attr.type == MLX5_FLOW_DESTINATION_TYPE_COUNTER) return dst->dest_attr.counter; } return NULL; } static bool counter_is_valid(struct mlx5_fc *counter, u32 action) { if (!(action & MLX5_FLOW_CONTEXT_ACTION_COUNT)) return !counter; if (!counter) return false; /* Hardware support counter for a drop action only */ return action == (MLX5_FLOW_CONTEXT_ACTION_DROP | MLX5_FLOW_CONTEXT_ACTION_COUNT); } static bool dest_is_valid(struct mlx5_flow_destination *dest, u32 action, struct mlx5_flow_table *ft) { if (dest && (dest->type == MLX5_FLOW_DESTINATION_TYPE_COUNTER)) return counter_is_valid(dest->counter, action); if (!(action & MLX5_FLOW_CONTEXT_ACTION_FWD_DEST)) return true; if (!dest || ((dest->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE) && (dest->ft->level <= ft->level))) return false; return true; } static struct mlx5_flow_rule * _mlx5_add_flow_rule(struct mlx5_flow_table *ft, struct mlx5_flow_spec *spec, u32 action, u32 flow_tag, struct mlx5_flow_destination *dest) { struct mlx5_flow_group *g; struct mlx5_flow_rule *rule; if (!dest_is_valid(dest, action, ft)) return ERR_PTR(-EINVAL); nested_lock_ref_node(&ft->node, FS_MUTEX_GRANDPARENT); fs_for_each_fg(g, ft) if (compare_match_criteria(g->mask.match_criteria_enable, spec->match_criteria_enable, g->mask.match_criteria, spec->match_criteria)) { rule = add_rule_fg(g, spec->match_value, action, flow_tag, dest); if (!IS_ERR(rule) || PTR_ERR(rule) != -ENOSPC) goto unlock; } g = create_autogroup(ft, spec->match_criteria_enable, spec->match_criteria); if (IS_ERR(g)) { rule = (void *)g; goto unlock; } rule = add_rule_fg(g, spec->match_value, action, flow_tag, dest); if (IS_ERR(rule)) { /* Remove assumes refcount > 0 and autogroup creates a group * with a refcount = 0. */ unlock_ref_node(&ft->node); tree_get_node(&g->node); tree_remove_node(&g->node); return rule; } unlock: unlock_ref_node(&ft->node); return rule; } static bool fwd_next_prio_supported(struct mlx5_flow_table *ft) { return ((ft->type == FS_FT_NIC_RX) && (MLX5_CAP_FLOWTABLE(get_dev(&ft->node), nic_rx_multi_path_tirs))); } struct mlx5_flow_rule * mlx5_add_flow_rule(struct mlx5_flow_table *ft, struct mlx5_flow_spec *spec, u32 action, u32 flow_tag, struct mlx5_flow_destination *dest) { struct mlx5_flow_root_namespace *root = find_root(&ft->node); struct mlx5_flow_destination gen_dest; struct mlx5_flow_table *next_ft = NULL; struct mlx5_flow_rule *rule = NULL; u32 sw_action = action; struct fs_prio *prio; fs_get_obj(prio, ft->node.parent); if (action == MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_PRIO) { if (!fwd_next_prio_supported(ft)) return ERR_PTR(-EOPNOTSUPP); if (dest) return ERR_PTR(-EINVAL); mutex_lock(&root->chain_lock); next_ft = find_next_chained_ft(prio); if (next_ft) { gen_dest.type = MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE; gen_dest.ft = next_ft; dest = &gen_dest; action = MLX5_FLOW_CONTEXT_ACTION_FWD_DEST; } else { mutex_unlock(&root->chain_lock); return ERR_PTR(-EOPNOTSUPP); } } rule = _mlx5_add_flow_rule(ft, spec, action, flow_tag, dest); if (sw_action == MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_PRIO) { if (!IS_ERR_OR_NULL(rule) && (list_empty(&rule->next_ft))) { mutex_lock(&next_ft->lock); list_add(&rule->next_ft, &next_ft->fwd_rules); mutex_unlock(&next_ft->lock); rule->sw_action = MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_PRIO; } mutex_unlock(&root->chain_lock); } return rule; } EXPORT_SYMBOL(mlx5_add_flow_rule); void mlx5_del_flow_rule(struct mlx5_flow_rule *rule) { tree_remove_node(&rule->node); } EXPORT_SYMBOL(mlx5_del_flow_rule); /* Assuming prio->node.children(flow tables) is sorted by level */ static struct mlx5_flow_table *find_next_ft(struct mlx5_flow_table *ft) { struct fs_prio *prio; fs_get_obj(prio, ft->node.parent); if (!list_is_last(&ft->node.list, &prio->node.children)) return list_next_entry(ft, node.list); return find_next_chained_ft(prio); } static int update_root_ft_destroy(struct mlx5_flow_table *ft) { struct mlx5_flow_root_namespace *root = find_root(&ft->node); struct mlx5_flow_table *new_root_ft = NULL; if (root->root_ft != ft) return 0; new_root_ft = find_next_ft(ft); if (new_root_ft) { int err = mlx5_cmd_update_root_ft(root->dev, new_root_ft); if (err) { mlx5_core_warn(root->dev, "Update root flow table of id=%u failed\n", ft->id); return err; } } root->root_ft = new_root_ft; return 0; } /* Connect flow table from previous priority to * the next flow table. */ static int disconnect_flow_table(struct mlx5_flow_table *ft) { struct mlx5_core_dev *dev = get_dev(&ft->node); struct mlx5_flow_table *next_ft; struct fs_prio *prio; int err = 0; err = update_root_ft_destroy(ft); if (err) return err; fs_get_obj(prio, ft->node.parent); if (!(list_first_entry(&prio->node.children, struct mlx5_flow_table, node.list) == ft)) return 0; next_ft = find_next_ft(ft); err = connect_fwd_rules(dev, next_ft, ft); if (err) return err; err = connect_prev_fts(dev, next_ft, prio); if (err) mlx5_core_warn(dev, "Failed to disconnect flow table %d\n", ft->id); return err; } int mlx5_destroy_flow_table(struct mlx5_flow_table *ft) { struct mlx5_flow_root_namespace *root = find_root(&ft->node); int err = 0; mutex_lock(&root->chain_lock); err = disconnect_flow_table(ft); if (err) { mutex_unlock(&root->chain_lock); return err; } if (tree_remove_node(&ft->node)) mlx5_core_warn(get_dev(&ft->node), "Flow table %d wasn't destroyed, refcount > 1\n", ft->id); mutex_unlock(&root->chain_lock); return err; } EXPORT_SYMBOL(mlx5_destroy_flow_table); void mlx5_destroy_flow_group(struct mlx5_flow_group *fg) { if (tree_remove_node(&fg->node)) mlx5_core_warn(get_dev(&fg->node), "Flow group %d wasn't destroyed, refcount > 1\n", fg->id); } struct mlx5_flow_namespace *mlx5_get_flow_namespace(struct mlx5_core_dev *dev, enum mlx5_flow_namespace_type type) { struct mlx5_flow_steering *steering = dev->priv.steering; struct mlx5_flow_root_namespace *root_ns; int prio; struct fs_prio *fs_prio; struct mlx5_flow_namespace *ns; if (!steering) return NULL; switch (type) { case MLX5_FLOW_NAMESPACE_BYPASS: case MLX5_FLOW_NAMESPACE_LAG: case MLX5_FLOW_NAMESPACE_OFFLOADS: case MLX5_FLOW_NAMESPACE_ETHTOOL: case MLX5_FLOW_NAMESPACE_KERNEL: case MLX5_FLOW_NAMESPACE_LEFTOVERS: case MLX5_FLOW_NAMESPACE_ANCHOR: prio = type; break; case MLX5_FLOW_NAMESPACE_FDB: if (steering->fdb_root_ns) return &steering->fdb_root_ns->ns; else return NULL; case MLX5_FLOW_NAMESPACE_ESW_EGRESS: if (steering->esw_egress_root_ns) return &steering->esw_egress_root_ns->ns; else return NULL; case MLX5_FLOW_NAMESPACE_ESW_INGRESS: if (steering->esw_ingress_root_ns) return &steering->esw_ingress_root_ns->ns; else return NULL; case MLX5_FLOW_NAMESPACE_SNIFFER_RX: if (steering->sniffer_rx_root_ns) return &steering->sniffer_rx_root_ns->ns; else return NULL; case MLX5_FLOW_NAMESPACE_SNIFFER_TX: if (steering->sniffer_tx_root_ns) return &steering->sniffer_tx_root_ns->ns; else return NULL; default: return NULL; } root_ns = steering->root_ns; if (!root_ns) return NULL; fs_prio = find_prio(&root_ns->ns, prio); if (!fs_prio) return NULL; ns = list_first_entry(&fs_prio->node.children, typeof(*ns), node.list); return ns; } EXPORT_SYMBOL(mlx5_get_flow_namespace); static struct fs_prio *fs_create_prio(struct mlx5_flow_namespace *ns, unsigned int prio, int num_levels) { struct fs_prio *fs_prio; fs_prio = kzalloc(sizeof(*fs_prio), GFP_KERNEL); if (!fs_prio) return ERR_PTR(-ENOMEM); fs_prio->node.type = FS_TYPE_PRIO; tree_init_node(&fs_prio->node, 1, NULL); tree_add_node(&fs_prio->node, &ns->node); fs_prio->num_levels = num_levels; fs_prio->prio = prio; list_add_tail(&fs_prio->node.list, &ns->node.children); return fs_prio; } static struct mlx5_flow_namespace *fs_init_namespace(struct mlx5_flow_namespace *ns) { ns->node.type = FS_TYPE_NAMESPACE; return ns; } static struct mlx5_flow_namespace *fs_create_namespace(struct fs_prio *prio) { struct mlx5_flow_namespace *ns; ns = kzalloc(sizeof(*ns), GFP_KERNEL); if (!ns) return ERR_PTR(-ENOMEM); fs_init_namespace(ns); tree_init_node(&ns->node, 1, NULL); tree_add_node(&ns->node, &prio->node); list_add_tail(&ns->node.list, &prio->node.children); return ns; } static int create_leaf_prios(struct mlx5_flow_namespace *ns, int prio, struct init_tree_node *prio_metadata) { struct fs_prio *fs_prio; int i; for (i = 0; i < prio_metadata->num_leaf_prios; i++) { fs_prio = fs_create_prio(ns, prio++, prio_metadata->num_levels); if (IS_ERR(fs_prio)) return PTR_ERR(fs_prio); } return 0; } #define FLOW_TABLE_BIT_SZ 1 #define GET_FLOW_TABLE_CAP(dev, offset) \ ((be32_to_cpu(*((__be32 *)(dev->hca_caps_cur[MLX5_CAP_FLOW_TABLE]) + \ offset / 32)) >> \ (32 - FLOW_TABLE_BIT_SZ - (offset & 0x1f))) & FLOW_TABLE_BIT_SZ) static bool has_required_caps(struct mlx5_core_dev *dev, struct node_caps *caps) { int i; for (i = 0; i < caps->arr_sz; i++) { if (!GET_FLOW_TABLE_CAP(dev, caps->caps[i])) return false; } return true; } static int init_root_tree_recursive(struct mlx5_flow_steering *steering, struct init_tree_node *init_node, struct fs_node *fs_parent_node, struct init_tree_node *init_parent_node, int prio) { int max_ft_level = MLX5_CAP_FLOWTABLE(steering->dev, flow_table_properties_nic_receive. max_ft_level); struct mlx5_flow_namespace *fs_ns; struct fs_prio *fs_prio; struct fs_node *base; int i; int err; if (init_node->type == FS_TYPE_PRIO) { if ((init_node->min_ft_level > max_ft_level) || !has_required_caps(steering->dev, &init_node->caps)) return 0; fs_get_obj(fs_ns, fs_parent_node); if (init_node->num_leaf_prios) return create_leaf_prios(fs_ns, prio, init_node); fs_prio = fs_create_prio(fs_ns, prio, init_node->num_levels); if (IS_ERR(fs_prio)) return PTR_ERR(fs_prio); base = &fs_prio->node; } else if (init_node->type == FS_TYPE_NAMESPACE) { fs_get_obj(fs_prio, fs_parent_node); fs_ns = fs_create_namespace(fs_prio); if (IS_ERR(fs_ns)) return PTR_ERR(fs_ns); base = &fs_ns->node; } else { return -EINVAL; } prio = 0; for (i = 0; i < init_node->ar_size; i++) { err = init_root_tree_recursive(steering, &init_node->children[i], base, init_node, prio); if (err) return err; if (init_node->children[i].type == FS_TYPE_PRIO && init_node->children[i].num_leaf_prios) { prio += init_node->children[i].num_leaf_prios; } } return 0; } static int init_root_tree(struct mlx5_flow_steering *steering, struct init_tree_node *init_node, struct fs_node *fs_parent_node) { int i; struct mlx5_flow_namespace *fs_ns; int err; fs_get_obj(fs_ns, fs_parent_node); for (i = 0; i < init_node->ar_size; i++) { err = init_root_tree_recursive(steering, &init_node->children[i], &fs_ns->node, init_node, i); if (err) return err; } return 0; } static struct mlx5_flow_root_namespace *create_root_ns(struct mlx5_flow_steering *steering, enum fs_flow_table_type table_type) { struct mlx5_flow_root_namespace *root_ns; struct mlx5_flow_namespace *ns; /* Create the root namespace */ root_ns = mlx5_vzalloc(sizeof(*root_ns)); if (!root_ns) return NULL; root_ns->dev = steering->dev; root_ns->table_type = table_type; ns = &root_ns->ns; fs_init_namespace(ns); mutex_init(&root_ns->chain_lock); tree_init_node(&ns->node, 1, NULL); tree_add_node(&ns->node, NULL); return root_ns; } static void set_prio_attrs_in_prio(struct fs_prio *prio, int acc_level); static int set_prio_attrs_in_ns(struct mlx5_flow_namespace *ns, int acc_level) { struct fs_prio *prio; fs_for_each_prio(prio, ns) { /* This updates prio start_level and num_levels */ set_prio_attrs_in_prio(prio, acc_level); acc_level += prio->num_levels; } return acc_level; } static void set_prio_attrs_in_prio(struct fs_prio *prio, int acc_level) { struct mlx5_flow_namespace *ns; int acc_level_ns = acc_level; prio->start_level = acc_level; fs_for_each_ns(ns, prio) /* This updates start_level and num_levels of ns's priority descendants */ acc_level_ns = set_prio_attrs_in_ns(ns, acc_level); if (!prio->num_levels) prio->num_levels = acc_level_ns - prio->start_level; WARN_ON(prio->num_levels < acc_level_ns - prio->start_level); } static void set_prio_attrs(struct mlx5_flow_root_namespace *root_ns) { struct mlx5_flow_namespace *ns = &root_ns->ns; struct fs_prio *prio; int start_level = 0; fs_for_each_prio(prio, ns) { set_prio_attrs_in_prio(prio, start_level); start_level += prio->num_levels; } } #define ANCHOR_PRIO 0 #define ANCHOR_SIZE 1 #define ANCHOR_LEVEL 0 static int create_anchor_flow_table(struct mlx5_flow_steering *steering) { struct mlx5_flow_namespace *ns = NULL; struct mlx5_flow_table *ft; ns = mlx5_get_flow_namespace(steering->dev, MLX5_FLOW_NAMESPACE_ANCHOR); if (WARN_ON(!ns)) return -EINVAL; ft = mlx5_create_flow_table(ns, ANCHOR_PRIO, ANCHOR_SIZE, ANCHOR_LEVEL); if (IS_ERR(ft)) { mlx5_core_err(steering->dev, "Failed to create last anchor flow table"); return PTR_ERR(ft); } return 0; } static int init_root_ns(struct mlx5_flow_steering *steering) { int err; steering->root_ns = create_root_ns(steering, FS_FT_NIC_RX); if (!steering->root_ns) return -ENOMEM; err = init_root_tree(steering, &root_fs, &steering->root_ns->ns.node); if (err) goto out_err; set_prio_attrs(steering->root_ns); err = create_anchor_flow_table(steering); if (err) goto out_err; return 0; out_err: cleanup_root_ns(steering->root_ns); steering->root_ns = NULL; return err; } static void clean_tree(struct fs_node *node) { if (node) { struct fs_node *iter; struct fs_node *temp; list_for_each_entry_safe(iter, temp, &node->children, list) clean_tree(iter); tree_remove_node(node); } } static void cleanup_root_ns(struct mlx5_flow_root_namespace *root_ns) { if (!root_ns) return; clean_tree(&root_ns->ns.node); } void mlx5_cleanup_fs(struct mlx5_core_dev *dev) { struct mlx5_flow_steering *steering = dev->priv.steering; if (MLX5_CAP_GEN(dev, port_type) != MLX5_CAP_PORT_TYPE_ETH) return; cleanup_root_ns(steering->root_ns); cleanup_root_ns(steering->esw_egress_root_ns); cleanup_root_ns(steering->esw_ingress_root_ns); cleanup_root_ns(steering->fdb_root_ns); cleanup_root_ns(steering->sniffer_rx_root_ns); cleanup_root_ns(steering->sniffer_tx_root_ns); mlx5_cleanup_fc_stats(dev); kfree(steering); } static int init_sniffer_tx_root_ns(struct mlx5_flow_steering *steering) { struct fs_prio *prio; steering->sniffer_tx_root_ns = create_root_ns(steering, FS_FT_SNIFFER_TX); if (!steering->sniffer_tx_root_ns) return -ENOMEM; /* Create single prio */ prio = fs_create_prio(&steering->sniffer_tx_root_ns->ns, 0, 1); if (IS_ERR(prio)) { cleanup_root_ns(steering->sniffer_tx_root_ns); return PTR_ERR(prio); } return 0; } static int init_sniffer_rx_root_ns(struct mlx5_flow_steering *steering) { struct fs_prio *prio; steering->sniffer_rx_root_ns = create_root_ns(steering, FS_FT_SNIFFER_RX); if (!steering->sniffer_rx_root_ns) return -ENOMEM; /* Create single prio */ prio = fs_create_prio(&steering->sniffer_rx_root_ns->ns, 0, 1); if (IS_ERR(prio)) { cleanup_root_ns(steering->sniffer_rx_root_ns); return PTR_ERR(prio); } return 0; } static int init_fdb_root_ns(struct mlx5_flow_steering *steering) { struct fs_prio *prio; steering->fdb_root_ns = create_root_ns(steering, FS_FT_FDB); if (!steering->fdb_root_ns) return -ENOMEM; prio = fs_create_prio(&steering->fdb_root_ns->ns, 0, 1); if (IS_ERR(prio)) goto out_err; prio = fs_create_prio(&steering->fdb_root_ns->ns, 1, 1); if (IS_ERR(prio)) goto out_err; set_prio_attrs(steering->fdb_root_ns); return 0; out_err: cleanup_root_ns(steering->fdb_root_ns); steering->fdb_root_ns = NULL; return PTR_ERR(prio); } static int init_ingress_acl_root_ns(struct mlx5_flow_steering *steering) { struct fs_prio *prio; steering->esw_egress_root_ns = create_root_ns(steering, FS_FT_ESW_EGRESS_ACL); if (!steering->esw_egress_root_ns) return -ENOMEM; /* create 1 prio*/ prio = fs_create_prio(&steering->esw_egress_root_ns->ns, 0, MLX5_TOTAL_VPORTS(steering->dev)); return PTR_ERR_OR_ZERO(prio); } static int init_egress_acl_root_ns(struct mlx5_flow_steering *steering) { struct fs_prio *prio; steering->esw_ingress_root_ns = create_root_ns(steering, FS_FT_ESW_INGRESS_ACL); if (!steering->esw_ingress_root_ns) return -ENOMEM; /* create 1 prio*/ prio = fs_create_prio(&steering->esw_ingress_root_ns->ns, 0, MLX5_TOTAL_VPORTS(steering->dev)); return PTR_ERR_OR_ZERO(prio); } int mlx5_init_fs(struct mlx5_core_dev *dev) { struct mlx5_flow_steering *steering; int err = 0; if (MLX5_CAP_GEN(dev, port_type) != MLX5_CAP_PORT_TYPE_ETH) return 0; err = mlx5_init_fc_stats(dev); if (err) return err; steering = kzalloc(sizeof(*steering), GFP_KERNEL); if (!steering) return -ENOMEM; steering->dev = dev; dev->priv.steering = steering; if (MLX5_CAP_GEN(dev, nic_flow_table) && MLX5_CAP_FLOWTABLE_NIC_RX(dev, ft_support)) { err = init_root_ns(steering); if (err) goto err; } if (MLX5_CAP_GEN(dev, eswitch_flow_table)) { if (MLX5_CAP_ESW_FLOWTABLE_FDB(dev, ft_support)) { err = init_fdb_root_ns(steering); if (err) goto err; } if (MLX5_CAP_ESW_EGRESS_ACL(dev, ft_support)) { err = init_egress_acl_root_ns(steering); if (err) goto err; } if (MLX5_CAP_ESW_INGRESS_ACL(dev, ft_support)) { err = init_ingress_acl_root_ns(steering); if (err) goto err; } } if (MLX5_CAP_FLOWTABLE_SNIFFER_RX(dev, ft_support)) { err = init_sniffer_rx_root_ns(steering); if (err) goto err; } if (MLX5_CAP_FLOWTABLE_SNIFFER_TX(dev, ft_support)) { err = init_sniffer_tx_root_ns(steering); if (err) goto err; } return 0; err: mlx5_cleanup_fs(dev); return err; }