/* * ASIX AX88179/178A USB 3.0/2.0 to Gigabit Ethernet Devices * * Copyright (C) 2011-2013 ASIX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #include #include #define AX88179_PHY_ID 0x03 #define AX_EEPROM_LEN 0x100 #define AX88179_EEPROM_MAGIC 0x17900b95 #define AX_MCAST_FLTSIZE 8 #define AX_MAX_MCAST 64 #define AX_INT_PPLS_LINK ((u32)BIT(16)) #define AX_RXHDR_L4_TYPE_MASK 0x1c #define AX_RXHDR_L4_TYPE_UDP 4 #define AX_RXHDR_L4_TYPE_TCP 16 #define AX_RXHDR_L3CSUM_ERR 2 #define AX_RXHDR_L4CSUM_ERR 1 #define AX_RXHDR_CRC_ERR ((u32)BIT(29)) #define AX_RXHDR_DROP_ERR ((u32)BIT(31)) #define AX_ACCESS_MAC 0x01 #define AX_ACCESS_PHY 0x02 #define AX_ACCESS_EEPROM 0x04 #define AX_ACCESS_EFUS 0x05 #define AX_PAUSE_WATERLVL_HIGH 0x54 #define AX_PAUSE_WATERLVL_LOW 0x55 #define PHYSICAL_LINK_STATUS 0x02 #define AX_USB_SS 0x04 #define AX_USB_HS 0x02 #define GENERAL_STATUS 0x03 /* Check AX88179 version. UA1:Bit2 = 0, UA2:Bit2 = 1 */ #define AX_SECLD 0x04 #define AX_SROM_ADDR 0x07 #define AX_SROM_CMD 0x0a #define EEP_RD 0x04 #define EEP_BUSY 0x10 #define AX_SROM_DATA_LOW 0x08 #define AX_SROM_DATA_HIGH 0x09 #define AX_RX_CTL 0x0b #define AX_RX_CTL_DROPCRCERR 0x0100 #define AX_RX_CTL_IPE 0x0200 #define AX_RX_CTL_START 0x0080 #define AX_RX_CTL_AP 0x0020 #define AX_RX_CTL_AM 0x0010 #define AX_RX_CTL_AB 0x0008 #define AX_RX_CTL_AMALL 0x0002 #define AX_RX_CTL_PRO 0x0001 #define AX_RX_CTL_STOP 0x0000 #define AX_NODE_ID 0x10 #define AX_MULFLTARY 0x16 #define AX_MEDIUM_STATUS_MODE 0x22 #define AX_MEDIUM_GIGAMODE 0x01 #define AX_MEDIUM_FULL_DUPLEX 0x02 #define AX_MEDIUM_EN_125MHZ 0x08 #define AX_MEDIUM_RXFLOW_CTRLEN 0x10 #define AX_MEDIUM_TXFLOW_CTRLEN 0x20 #define AX_MEDIUM_RECEIVE_EN 0x100 #define AX_MEDIUM_PS 0x200 #define AX_MEDIUM_JUMBO_EN 0x8040 #define AX_MONITOR_MOD 0x24 #define AX_MONITOR_MODE_RWLC 0x02 #define AX_MONITOR_MODE_RWMP 0x04 #define AX_MONITOR_MODE_PMEPOL 0x20 #define AX_MONITOR_MODE_PMETYPE 0x40 #define AX_GPIO_CTRL 0x25 #define AX_GPIO_CTRL_GPIO3EN 0x80 #define AX_GPIO_CTRL_GPIO2EN 0x40 #define AX_GPIO_CTRL_GPIO1EN 0x20 #define AX_PHYPWR_RSTCTL 0x26 #define AX_PHYPWR_RSTCTL_BZ 0x0010 #define AX_PHYPWR_RSTCTL_IPRL 0x0020 #define AX_PHYPWR_RSTCTL_AT 0x1000 #define AX_RX_BULKIN_QCTRL 0x2e #define AX_CLK_SELECT 0x33 #define AX_CLK_SELECT_BCS 0x01 #define AX_CLK_SELECT_ACS 0x02 #define AX_CLK_SELECT_ULR 0x08 #define AX_RXCOE_CTL 0x34 #define AX_RXCOE_IP 0x01 #define AX_RXCOE_TCP 0x02 #define AX_RXCOE_UDP 0x04 #define AX_RXCOE_TCPV6 0x20 #define AX_RXCOE_UDPV6 0x40 #define AX_TXCOE_CTL 0x35 #define AX_TXCOE_IP 0x01 #define AX_TXCOE_TCP 0x02 #define AX_TXCOE_UDP 0x04 #define AX_TXCOE_TCPV6 0x20 #define AX_TXCOE_UDPV6 0x40 #define AX_LEDCTRL 0x73 #define GMII_PHY_PHYSR 0x11 #define GMII_PHY_PHYSR_SMASK 0xc000 #define GMII_PHY_PHYSR_GIGA 0x8000 #define GMII_PHY_PHYSR_100 0x4000 #define GMII_PHY_PHYSR_FULL 0x2000 #define GMII_PHY_PHYSR_LINK 0x400 #define GMII_LED_ACT 0x1a #define GMII_LED_ACTIVE_MASK 0xff8f #define GMII_LED0_ACTIVE BIT(4) #define GMII_LED1_ACTIVE BIT(5) #define GMII_LED2_ACTIVE BIT(6) #define GMII_LED_LINK 0x1c #define GMII_LED_LINK_MASK 0xf888 #define GMII_LED0_LINK_10 BIT(0) #define GMII_LED0_LINK_100 BIT(1) #define GMII_LED0_LINK_1000 BIT(2) #define GMII_LED1_LINK_10 BIT(4) #define GMII_LED1_LINK_100 BIT(5) #define GMII_LED1_LINK_1000 BIT(6) #define GMII_LED2_LINK_10 BIT(8) #define GMII_LED2_LINK_100 BIT(9) #define GMII_LED2_LINK_1000 BIT(10) #define LED0_ACTIVE BIT(0) #define LED0_LINK_10 BIT(1) #define LED0_LINK_100 BIT(2) #define LED0_LINK_1000 BIT(3) #define LED0_FD BIT(4) #define LED0_USB3_MASK 0x001f #define LED1_ACTIVE BIT(5) #define LED1_LINK_10 BIT(6) #define LED1_LINK_100 BIT(7) #define LED1_LINK_1000 BIT(8) #define LED1_FD BIT(9) #define LED1_USB3_MASK 0x03e0 #define LED2_ACTIVE BIT(10) #define LED2_LINK_1000 BIT(13) #define LED2_LINK_100 BIT(12) #define LED2_LINK_10 BIT(11) #define LED2_FD BIT(14) #define LED_VALID BIT(15) #define LED2_USB3_MASK 0x7c00 #define GMII_PHYPAGE 0x1e #define GMII_PHY_PAGE_SELECT 0x1f #define GMII_PHY_PGSEL_EXT 0x0007 #define GMII_PHY_PGSEL_PAGE0 0x0000 #define GMII_PHY_PGSEL_PAGE3 0x0003 #define GMII_PHY_PGSEL_PAGE5 0x0005 struct ax88179_data { u8 eee_enabled; u8 eee_active; u16 rxctl; u16 reserved; }; struct ax88179_int_data { __le32 intdata1; __le32 intdata2; }; static const struct { unsigned char ctrl, timer_l, timer_h, size, ifg; } AX88179_BULKIN_SIZE[] = { {7, 0x4f, 0, 0x12, 0xff}, {7, 0x20, 3, 0x16, 0xff}, {7, 0xae, 7, 0x18, 0xff}, {7, 0xcc, 0x4c, 0x18, 8}, }; static int __ax88179_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data, int in_pm) { int ret; int (*fn)(struct usbnet *, u8, u8, u16, u16, void *, u16); BUG_ON(!dev); if (!in_pm) fn = usbnet_read_cmd; else fn = usbnet_read_cmd_nopm; ret = fn(dev, cmd, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, data, size); if (unlikely(ret < 0)) netdev_warn(dev->net, "Failed to read reg index 0x%04x: %d\n", index, ret); return ret; } static int __ax88179_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data, int in_pm) { int ret; int (*fn)(struct usbnet *, u8, u8, u16, u16, const void *, u16); BUG_ON(!dev); if (!in_pm) fn = usbnet_write_cmd; else fn = usbnet_write_cmd_nopm; ret = fn(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, data, size); if (unlikely(ret < 0)) netdev_warn(dev->net, "Failed to write reg index 0x%04x: %d\n", index, ret); return ret; } static void ax88179_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { u16 buf; if (2 == size) { buf = *((u16 *)data); cpu_to_le16s(&buf); usbnet_write_cmd_async(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, &buf, size); } else { usbnet_write_cmd_async(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, data, size); } } static int ax88179_read_cmd_nopm(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { int ret; if (2 == size) { u16 buf; ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 1); le16_to_cpus(&buf); *((u16 *)data) = buf; } else if (4 == size) { u32 buf; ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 1); le32_to_cpus(&buf); *((u32 *)data) = buf; } else { ret = __ax88179_read_cmd(dev, cmd, value, index, size, data, 1); } return ret; } static int ax88179_write_cmd_nopm(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { int ret; if (2 == size) { u16 buf; buf = *((u16 *)data); cpu_to_le16s(&buf); ret = __ax88179_write_cmd(dev, cmd, value, index, size, &buf, 1); } else { ret = __ax88179_write_cmd(dev, cmd, value, index, size, data, 1); } return ret; } static int ax88179_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { int ret; if (2 == size) { u16 buf = 0; ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 0); le16_to_cpus(&buf); *((u16 *)data) = buf; } else if (4 == size) { u32 buf = 0; ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 0); le32_to_cpus(&buf); *((u32 *)data) = buf; } else { ret = __ax88179_read_cmd(dev, cmd, value, index, size, data, 0); } return ret; } static int ax88179_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { int ret; if (2 == size) { u16 buf; buf = *((u16 *)data); cpu_to_le16s(&buf); ret = __ax88179_write_cmd(dev, cmd, value, index, size, &buf, 0); } else { ret = __ax88179_write_cmd(dev, cmd, value, index, size, data, 0); } return ret; } static void ax88179_status(struct usbnet *dev, struct urb *urb) { struct ax88179_int_data *event; u32 link; if (urb->actual_length < 8) return; event = urb->transfer_buffer; le32_to_cpus((void *)&event->intdata1); link = (((__force u32)event->intdata1) & AX_INT_PPLS_LINK) >> 16; if (netif_carrier_ok(dev->net) != link) { usbnet_link_change(dev, link, 1); netdev_info(dev->net, "ax88179 - Link status is: %d\n", link); } } static int ax88179_mdio_read(struct net_device *netdev, int phy_id, int loc) { struct usbnet *dev = netdev_priv(netdev); u16 res; ax88179_read_cmd(dev, AX_ACCESS_PHY, phy_id, (__u16)loc, 2, &res); return res; } static void ax88179_mdio_write(struct net_device *netdev, int phy_id, int loc, int val) { struct usbnet *dev = netdev_priv(netdev); u16 res = (u16) val; ax88179_write_cmd(dev, AX_ACCESS_PHY, phy_id, (__u16)loc, 2, &res); } static inline int ax88179_phy_mmd_indirect(struct usbnet *dev, u16 prtad, u16 devad) { u16 tmp16; int ret; tmp16 = devad; ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, MII_MMD_CTRL, 2, &tmp16); tmp16 = prtad; ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, MII_MMD_DATA, 2, &tmp16); tmp16 = devad | MII_MMD_CTRL_NOINCR; ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, MII_MMD_CTRL, 2, &tmp16); return ret; } static int ax88179_phy_read_mmd_indirect(struct usbnet *dev, u16 prtad, u16 devad) { int ret; u16 tmp16; ax88179_phy_mmd_indirect(dev, prtad, devad); ret = ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, MII_MMD_DATA, 2, &tmp16); if (ret < 0) return ret; return tmp16; } static int ax88179_phy_write_mmd_indirect(struct usbnet *dev, u16 prtad, u16 devad, u16 data) { int ret; ax88179_phy_mmd_indirect(dev, prtad, devad); ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, MII_MMD_DATA, 2, &data); if (ret < 0) return ret; return 0; } static int ax88179_suspend(struct usb_interface *intf, pm_message_t message) { struct usbnet *dev = usb_get_intfdata(intf); u16 tmp16; u8 tmp8; usbnet_suspend(intf, message); /* Disable RX path */ ax88179_read_cmd_nopm(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, &tmp16); tmp16 &= ~AX_MEDIUM_RECEIVE_EN; ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, &tmp16); /* Force bulk-in zero length */ ax88179_read_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16); tmp16 |= AX_PHYPWR_RSTCTL_BZ | AX_PHYPWR_RSTCTL_IPRL; ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16); /* change clock */ tmp8 = 0; ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8); /* Configure RX control register => stop operation */ tmp16 = AX_RX_CTL_STOP; ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &tmp16); return 0; } /* This function is used to enable the autodetach function. */ /* This function is determined by offset 0x43 of EEPROM */ static int ax88179_auto_detach(struct usbnet *dev, int in_pm) { u16 tmp16; u8 tmp8; int (*fnr)(struct usbnet *, u8, u16, u16, u16, void *); int (*fnw)(struct usbnet *, u8, u16, u16, u16, void *); if (!in_pm) { fnr = ax88179_read_cmd; fnw = ax88179_write_cmd; } else { fnr = ax88179_read_cmd_nopm; fnw = ax88179_write_cmd_nopm; } if (fnr(dev, AX_ACCESS_EEPROM, 0x43, 1, 2, &tmp16) < 0) return 0; if ((tmp16 == 0xFFFF) || (!(tmp16 & 0x0100))) return 0; /* Enable Auto Detach bit */ tmp8 = 0; fnr(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8); tmp8 |= AX_CLK_SELECT_ULR; fnw(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8); fnr(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16); tmp16 |= AX_PHYPWR_RSTCTL_AT; fnw(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16); return 0; } static int ax88179_resume(struct usb_interface *intf) { struct usbnet *dev = usb_get_intfdata(intf); u16 tmp16; u8 tmp8; usbnet_link_change(dev, 0, 0); /* Power up ethernet PHY */ tmp16 = 0; ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16); udelay(1000); tmp16 = AX_PHYPWR_RSTCTL_IPRL; ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16); msleep(200); /* Ethernet PHY Auto Detach*/ ax88179_auto_detach(dev, 1); /* Enable clock */ ax88179_read_cmd_nopm(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8); tmp8 |= AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS; ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8); msleep(100); /* Configure RX control register => start operation */ tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_IPE | AX_RX_CTL_START | AX_RX_CTL_AP | AX_RX_CTL_AMALL | AX_RX_CTL_AB; ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &tmp16); return usbnet_resume(intf); } static void ax88179_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); u8 opt; if (ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 1, 1, &opt) < 0) { wolinfo->supported = 0; wolinfo->wolopts = 0; return; } wolinfo->supported = WAKE_PHY | WAKE_MAGIC; wolinfo->wolopts = 0; if (opt & AX_MONITOR_MODE_RWLC) wolinfo->wolopts |= WAKE_PHY; if (opt & AX_MONITOR_MODE_RWMP) wolinfo->wolopts |= WAKE_MAGIC; } static int ax88179_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); u8 opt = 0; if (wolinfo->wolopts & ~(WAKE_PHY | WAKE_MAGIC)) return -EINVAL; if (wolinfo->wolopts & WAKE_PHY) opt |= AX_MONITOR_MODE_RWLC; if (wolinfo->wolopts & WAKE_MAGIC) opt |= AX_MONITOR_MODE_RWMP; if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 1, 1, &opt) < 0) return -EINVAL; return 0; } static int ax88179_get_eeprom_len(struct net_device *net) { return AX_EEPROM_LEN; } static int ax88179_get_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, u8 *data) { struct usbnet *dev = netdev_priv(net); u16 *eeprom_buff; int first_word, last_word; int i, ret; if (eeprom->len == 0) return -EINVAL; eeprom->magic = AX88179_EEPROM_MAGIC; first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; /* ax88179/178A returns 2 bytes from eeprom on read */ for (i = first_word; i <= last_word; i++) { ret = __ax88179_read_cmd(dev, AX_ACCESS_EEPROM, i, 1, 2, &eeprom_buff[i - first_word], 0); if (ret < 0) { kfree(eeprom_buff); return -EIO; } } memcpy(data, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); kfree(eeprom_buff); return 0; } static int ax88179_get_settings(struct net_device *net, struct ethtool_cmd *cmd) { struct usbnet *dev = netdev_priv(net); return mii_ethtool_gset(&dev->mii, cmd); } static int ax88179_set_settings(struct net_device *net, struct ethtool_cmd *cmd) { struct usbnet *dev = netdev_priv(net); return mii_ethtool_sset(&dev->mii, cmd); } static int ax88179_ethtool_get_eee(struct usbnet *dev, struct ethtool_eee *data) { int val; /* Get Supported EEE */ val = ax88179_phy_read_mmd_indirect(dev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS); if (val < 0) return val; data->supported = mmd_eee_cap_to_ethtool_sup_t(val); /* Get advertisement EEE */ val = ax88179_phy_read_mmd_indirect(dev, MDIO_AN_EEE_ADV, MDIO_MMD_AN); if (val < 0) return val; data->advertised = mmd_eee_adv_to_ethtool_adv_t(val); /* Get LP advertisement EEE */ val = ax88179_phy_read_mmd_indirect(dev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN); if (val < 0) return val; data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); return 0; } static int ax88179_ethtool_set_eee(struct usbnet *dev, struct ethtool_eee *data) { u16 tmp16 = ethtool_adv_to_mmd_eee_adv_t(data->advertised); return ax88179_phy_write_mmd_indirect(dev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, tmp16); } static int ax88179_chk_eee(struct usbnet *dev) { struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET }; struct ax88179_data *priv = (struct ax88179_data *)dev->data; mii_ethtool_gset(&dev->mii, &ecmd); if (ecmd.duplex & DUPLEX_FULL) { int eee_lp, eee_cap, eee_adv; u32 lp, cap, adv, supported = 0; eee_cap = ax88179_phy_read_mmd_indirect(dev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS); if (eee_cap < 0) { priv->eee_active = 0; return false; } cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap); if (!cap) { priv->eee_active = 0; return false; } eee_lp = ax88179_phy_read_mmd_indirect(dev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN); if (eee_lp < 0) { priv->eee_active = 0; return false; } eee_adv = ax88179_phy_read_mmd_indirect(dev, MDIO_AN_EEE_ADV, MDIO_MMD_AN); if (eee_adv < 0) { priv->eee_active = 0; return false; } adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv); lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp); supported = (ecmd.speed == SPEED_1000) ? SUPPORTED_1000baseT_Full : SUPPORTED_100baseT_Full; if (!(lp & adv & supported)) { priv->eee_active = 0; return false; } priv->eee_active = 1; return true; } priv->eee_active = 0; return false; } static void ax88179_disable_eee(struct usbnet *dev) { u16 tmp16; tmp16 = GMII_PHY_PGSEL_PAGE3; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_PHY_PAGE_SELECT, 2, &tmp16); tmp16 = 0x3246; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, MII_PHYADDR, 2, &tmp16); tmp16 = GMII_PHY_PGSEL_PAGE0; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_PHY_PAGE_SELECT, 2, &tmp16); } static void ax88179_enable_eee(struct usbnet *dev) { u16 tmp16; tmp16 = GMII_PHY_PGSEL_PAGE3; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_PHY_PAGE_SELECT, 2, &tmp16); tmp16 = 0x3247; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, MII_PHYADDR, 2, &tmp16); tmp16 = GMII_PHY_PGSEL_PAGE5; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_PHY_PAGE_SELECT, 2, &tmp16); tmp16 = 0x0680; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, MII_BMSR, 2, &tmp16); tmp16 = GMII_PHY_PGSEL_PAGE0; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_PHY_PAGE_SELECT, 2, &tmp16); } static int ax88179_get_eee(struct net_device *net, struct ethtool_eee *edata) { struct usbnet *dev = netdev_priv(net); struct ax88179_data *priv = (struct ax88179_data *)dev->data; edata->eee_enabled = priv->eee_enabled; edata->eee_active = priv->eee_active; return ax88179_ethtool_get_eee(dev, edata); } static int ax88179_set_eee(struct net_device *net, struct ethtool_eee *edata) { struct usbnet *dev = netdev_priv(net); struct ax88179_data *priv = (struct ax88179_data *)dev->data; int ret = -EOPNOTSUPP; priv->eee_enabled = edata->eee_enabled; if (!priv->eee_enabled) { ax88179_disable_eee(dev); } else { priv->eee_enabled = ax88179_chk_eee(dev); if (!priv->eee_enabled) return -EOPNOTSUPP; ax88179_enable_eee(dev); } ret = ax88179_ethtool_set_eee(dev, edata); if (ret) return ret; mii_nway_restart(&dev->mii); usbnet_link_change(dev, 0, 0); return ret; } static int ax88179_ioctl(struct net_device *net, struct ifreq *rq, int cmd) { struct usbnet *dev = netdev_priv(net); return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL); } static const struct ethtool_ops ax88179_ethtool_ops = { .get_link = ethtool_op_get_link, .get_msglevel = usbnet_get_msglevel, .set_msglevel = usbnet_set_msglevel, .get_wol = ax88179_get_wol, .set_wol = ax88179_set_wol, .get_eeprom_len = ax88179_get_eeprom_len, .get_eeprom = ax88179_get_eeprom, .get_settings = ax88179_get_settings, .set_settings = ax88179_set_settings, .get_eee = ax88179_get_eee, .set_eee = ax88179_set_eee, .nway_reset = usbnet_nway_reset, }; static void ax88179_set_multicast(struct net_device *net) { struct usbnet *dev = netdev_priv(net); struct ax88179_data *data = (struct ax88179_data *)dev->data; u8 *m_filter = ((u8 *)dev->data) + 12; data->rxctl = (AX_RX_CTL_START | AX_RX_CTL_AB | AX_RX_CTL_IPE); if (net->flags & IFF_PROMISC) { data->rxctl |= AX_RX_CTL_PRO; } else if (net->flags & IFF_ALLMULTI || netdev_mc_count(net) > AX_MAX_MCAST) { data->rxctl |= AX_RX_CTL_AMALL; } else if (netdev_mc_empty(net)) { /* just broadcast and directed */ } else { /* We use the 20 byte dev->data for our 8 byte filter buffer * to avoid allocating memory that is tricky to free later */ u32 crc_bits; struct netdev_hw_addr *ha; memset(m_filter, 0, AX_MCAST_FLTSIZE); netdev_for_each_mc_addr(ha, net) { crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26; *(m_filter + (crc_bits >> 3)) |= (1 << (crc_bits & 7)); } ax88179_write_cmd_async(dev, AX_ACCESS_MAC, AX_MULFLTARY, AX_MCAST_FLTSIZE, AX_MCAST_FLTSIZE, m_filter); data->rxctl |= AX_RX_CTL_AM; } ax88179_write_cmd_async(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &data->rxctl); } static int ax88179_set_features(struct net_device *net, netdev_features_t features) { u8 tmp; struct usbnet *dev = netdev_priv(net); netdev_features_t changed = net->features ^ features; if (changed & NETIF_F_IP_CSUM) { ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp); tmp ^= AX_TXCOE_TCP | AX_TXCOE_UDP; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp); } if (changed & NETIF_F_IPV6_CSUM) { ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp); tmp ^= AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp); } if (changed & NETIF_F_RXCSUM) { ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, &tmp); tmp ^= AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP | AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, &tmp); } return 0; } static int ax88179_change_mtu(struct net_device *net, int new_mtu) { struct usbnet *dev = netdev_priv(net); u16 tmp16; if (new_mtu <= 0 || new_mtu > 4088) return -EINVAL; net->mtu = new_mtu; dev->hard_mtu = net->mtu + net->hard_header_len; if (net->mtu > 1500) { ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, &tmp16); tmp16 |= AX_MEDIUM_JUMBO_EN; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, &tmp16); } else { ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, &tmp16); tmp16 &= ~AX_MEDIUM_JUMBO_EN; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, &tmp16); } /* max qlen depend on hard_mtu and rx_urb_size */ usbnet_update_max_qlen(dev); return 0; } static int ax88179_set_mac_addr(struct net_device *net, void *p) { struct usbnet *dev = netdev_priv(net); struct sockaddr *addr = p; int ret; if (netif_running(net)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(net->dev_addr, addr->sa_data, ETH_ALEN); /* Set the MAC address */ ret = ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN, ETH_ALEN, net->dev_addr); if (ret < 0) return ret; return 0; } static const struct net_device_ops ax88179_netdev_ops = { .ndo_open = usbnet_open, .ndo_stop = usbnet_stop, .ndo_start_xmit = usbnet_start_xmit, .ndo_tx_timeout = usbnet_tx_timeout, .ndo_change_mtu = ax88179_change_mtu, .ndo_set_mac_address = ax88179_set_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = ax88179_ioctl, .ndo_set_rx_mode = ax88179_set_multicast, .ndo_set_features = ax88179_set_features, }; static int ax88179_check_eeprom(struct usbnet *dev) { u8 i, buf, eeprom[20]; u16 csum, delay = HZ / 10; unsigned long jtimeout; /* Read EEPROM content */ for (i = 0; i < 6; i++) { buf = i; if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_ADDR, 1, 1, &buf) < 0) return -EINVAL; buf = EEP_RD; if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD, 1, 1, &buf) < 0) return -EINVAL; jtimeout = jiffies + delay; do { ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD, 1, 1, &buf); if (time_after(jiffies, jtimeout)) return -EINVAL; } while (buf & EEP_BUSY); __ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_LOW, 2, 2, &eeprom[i * 2], 0); if ((i == 0) && (eeprom[0] == 0xFF)) return -EINVAL; } csum = eeprom[6] + eeprom[7] + eeprom[8] + eeprom[9]; csum = (csum >> 8) + (csum & 0xff); if ((csum + eeprom[10]) != 0xff) return -EINVAL; return 0; } static int ax88179_check_efuse(struct usbnet *dev, u16 *ledmode) { u8 i; u8 efuse[64]; u16 csum = 0; if (ax88179_read_cmd(dev, AX_ACCESS_EFUS, 0, 64, 64, efuse) < 0) return -EINVAL; if (*efuse == 0xFF) return -EINVAL; for (i = 0; i < 64; i++) csum = csum + efuse[i]; while (csum > 255) csum = (csum & 0x00FF) + ((csum >> 8) & 0x00FF); if (csum != 0xFF) return -EINVAL; *ledmode = (efuse[51] << 8) | efuse[52]; return 0; } static int ax88179_convert_old_led(struct usbnet *dev, u16 *ledvalue) { u16 led; /* Loaded the old eFuse LED Mode */ if (ax88179_read_cmd(dev, AX_ACCESS_EEPROM, 0x3C, 1, 2, &led) < 0) return -EINVAL; led >>= 8; switch (led) { case 0xFF: led = LED0_ACTIVE | LED1_LINK_10 | LED1_LINK_100 | LED1_LINK_1000 | LED2_ACTIVE | LED2_LINK_10 | LED2_LINK_100 | LED2_LINK_1000 | LED_VALID; break; case 0xFE: led = LED0_ACTIVE | LED1_LINK_1000 | LED2_LINK_100 | LED_VALID; break; case 0xFD: led = LED0_ACTIVE | LED1_LINK_1000 | LED2_LINK_100 | LED2_LINK_10 | LED_VALID; break; case 0xFC: led = LED0_ACTIVE | LED1_ACTIVE | LED1_LINK_1000 | LED2_ACTIVE | LED2_LINK_100 | LED2_LINK_10 | LED_VALID; break; default: led = LED0_ACTIVE | LED1_LINK_10 | LED1_LINK_100 | LED1_LINK_1000 | LED2_ACTIVE | LED2_LINK_10 | LED2_LINK_100 | LED2_LINK_1000 | LED_VALID; break; } *ledvalue = led; return 0; } static int ax88179_led_setting(struct usbnet *dev) { u8 ledfd, value = 0; u16 tmp, ledact, ledlink, ledvalue = 0, delay = HZ / 10; unsigned long jtimeout; /* Check AX88179 version. UA1 or UA2*/ ax88179_read_cmd(dev, AX_ACCESS_MAC, GENERAL_STATUS, 1, 1, &value); if (!(value & AX_SECLD)) { /* UA1 */ value = AX_GPIO_CTRL_GPIO3EN | AX_GPIO_CTRL_GPIO2EN | AX_GPIO_CTRL_GPIO1EN; if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_GPIO_CTRL, 1, 1, &value) < 0) return -EINVAL; } /* Check EEPROM */ if (!ax88179_check_eeprom(dev)) { value = 0x42; if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_ADDR, 1, 1, &value) < 0) return -EINVAL; value = EEP_RD; if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD, 1, 1, &value) < 0) return -EINVAL; jtimeout = jiffies + delay; do { ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD, 1, 1, &value); if (time_after(jiffies, jtimeout)) return -EINVAL; } while (value & EEP_BUSY); ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_HIGH, 1, 1, &value); ledvalue = (value << 8); ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_LOW, 1, 1, &value); ledvalue |= value; /* load internal ROM for defaule setting */ if ((ledvalue == 0xFFFF) || ((ledvalue & LED_VALID) == 0)) ax88179_convert_old_led(dev, &ledvalue); } else if (!ax88179_check_efuse(dev, &ledvalue)) { if ((ledvalue == 0xFFFF) || ((ledvalue & LED_VALID) == 0)) ax88179_convert_old_led(dev, &ledvalue); } else { ax88179_convert_old_led(dev, &ledvalue); } tmp = GMII_PHY_PGSEL_EXT; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_PHY_PAGE_SELECT, 2, &tmp); tmp = 0x2c; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_PHYPAGE, 2, &tmp); ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_LED_ACT, 2, &ledact); ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_LED_LINK, 2, &ledlink); ledact &= GMII_LED_ACTIVE_MASK; ledlink &= GMII_LED_LINK_MASK; if (ledvalue & LED0_ACTIVE) ledact |= GMII_LED0_ACTIVE; if (ledvalue & LED1_ACTIVE) ledact |= GMII_LED1_ACTIVE; if (ledvalue & LED2_ACTIVE) ledact |= GMII_LED2_ACTIVE; if (ledvalue & LED0_LINK_10) ledlink |= GMII_LED0_LINK_10; if (ledvalue & LED1_LINK_10) ledlink |= GMII_LED1_LINK_10; if (ledvalue & LED2_LINK_10) ledlink |= GMII_LED2_LINK_10; if (ledvalue & LED0_LINK_100) ledlink |= GMII_LED0_LINK_100; if (ledvalue & LED1_LINK_100) ledlink |= GMII_LED1_LINK_100; if (ledvalue & LED2_LINK_100) ledlink |= GMII_LED2_LINK_100; if (ledvalue & LED0_LINK_1000) ledlink |= GMII_LED0_LINK_1000; if (ledvalue & LED1_LINK_1000) ledlink |= GMII_LED1_LINK_1000; if (ledvalue & LED2_LINK_1000) ledlink |= GMII_LED2_LINK_1000; tmp = ledact; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_LED_ACT, 2, &tmp); tmp = ledlink; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_LED_LINK, 2, &tmp); tmp = GMII_PHY_PGSEL_PAGE0; ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_PHY_PAGE_SELECT, 2, &tmp); /* LED full duplex setting */ ledfd = 0; if (ledvalue & LED0_FD) ledfd |= 0x01; else if ((ledvalue & LED0_USB3_MASK) == 0) ledfd |= 0x02; if (ledvalue & LED1_FD) ledfd |= 0x04; else if ((ledvalue & LED1_USB3_MASK) == 0) ledfd |= 0x08; if (ledvalue & LED2_FD) ledfd |= 0x10; else if ((ledvalue & LED2_USB3_MASK) == 0) ledfd |= 0x20; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_LEDCTRL, 1, 1, &ledfd); return 0; } static int ax88179_bind(struct usbnet *dev, struct usb_interface *intf) { u8 buf[5]; u16 *tmp16; u8 *tmp; struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data; struct ethtool_eee eee_data; usbnet_get_endpoints(dev, intf); tmp16 = (u16 *)buf; tmp = (u8 *)buf; memset(ax179_data, 0, sizeof(*ax179_data)); /* Power up ethernet PHY */ *tmp16 = 0; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16); *tmp16 = AX_PHYPWR_RSTCTL_IPRL; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16); msleep(200); *tmp = AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp); msleep(100); ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN, ETH_ALEN, dev->net->dev_addr); memcpy(dev->net->perm_addr, dev->net->dev_addr, ETH_ALEN); /* RX bulk configuration */ memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5); ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp); dev->rx_urb_size = 1024 * 20; *tmp = 0x34; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_LOW, 1, 1, tmp); *tmp = 0x52; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_HIGH, 1, 1, tmp); dev->net->netdev_ops = &ax88179_netdev_ops; dev->net->ethtool_ops = &ax88179_ethtool_ops; dev->net->needed_headroom = 8; /* Initialize MII structure */ dev->mii.dev = dev->net; dev->mii.mdio_read = ax88179_mdio_read; dev->mii.mdio_write = ax88179_mdio_write; dev->mii.phy_id_mask = 0xff; dev->mii.reg_num_mask = 0xff; dev->mii.phy_id = 0x03; dev->mii.supports_gmii = 1; dev->net->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; dev->net->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; /* Enable checksum offload */ *tmp = AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP | AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, tmp); *tmp = AX_TXCOE_IP | AX_TXCOE_TCP | AX_TXCOE_UDP | AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, tmp); /* Configure RX control register => start operation */ *tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_IPE | AX_RX_CTL_START | AX_RX_CTL_AP | AX_RX_CTL_AMALL | AX_RX_CTL_AB; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16); *tmp = AX_MONITOR_MODE_PMETYPE | AX_MONITOR_MODE_PMEPOL | AX_MONITOR_MODE_RWMP; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 1, 1, tmp); /* Configure default medium type => giga */ *tmp16 = AX_MEDIUM_RECEIVE_EN | AX_MEDIUM_TXFLOW_CTRLEN | AX_MEDIUM_RXFLOW_CTRLEN | AX_MEDIUM_FULL_DUPLEX | AX_MEDIUM_GIGAMODE; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, tmp16); ax88179_led_setting(dev); ax179_data->eee_enabled = 0; ax179_data->eee_active = 0; ax88179_disable_eee(dev); ax88179_ethtool_get_eee(dev, &eee_data); eee_data.advertised = 0; ax88179_ethtool_set_eee(dev, &eee_data); /* Restart autoneg */ mii_nway_restart(&dev->mii); usbnet_link_change(dev, 0, 0); return 0; } static void ax88179_unbind(struct usbnet *dev, struct usb_interface *intf) { u16 tmp16; /* Configure RX control register => stop operation */ tmp16 = AX_RX_CTL_STOP; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &tmp16); tmp16 = 0; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp16); /* Power down ethernet PHY */ tmp16 = 0; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16); } static void ax88179_rx_checksum(struct sk_buff *skb, u32 *pkt_hdr) { skb->ip_summed = CHECKSUM_NONE; /* checksum error bit is set */ if ((*pkt_hdr & AX_RXHDR_L3CSUM_ERR) || (*pkt_hdr & AX_RXHDR_L4CSUM_ERR)) return; /* It must be a TCP or UDP packet with a valid checksum */ if (((*pkt_hdr & AX_RXHDR_L4_TYPE_MASK) == AX_RXHDR_L4_TYPE_TCP) || ((*pkt_hdr & AX_RXHDR_L4_TYPE_MASK) == AX_RXHDR_L4_TYPE_UDP)) skb->ip_summed = CHECKSUM_UNNECESSARY; } static int ax88179_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { struct sk_buff *ax_skb; int pkt_cnt; u32 rx_hdr; u16 hdr_off; u32 *pkt_hdr; /* At the end of the SKB, there's a header telling us how many packets * are bundled into this buffer and where we can find an array of * per-packet metadata (which contains elements encoded into u16). */ /* SKB contents for current firmware: * * ... * * * ... * * * * where: * contains pkt_len bytes: * 2 bytes of IP alignment pseudo header * packet received * contains 4 bytes: * pkt_len and fields AX_RXHDR_* * 0-7 bytes to terminate at * 8 bytes boundary (64-bit). * 4 bytes to make rx_hdr terminate at * 8 bytes boundary (64-bit) * contains 4 bytes: * pkt_len=0 and AX_RXHDR_DROP_ERR * contains 4 bytes: * pkt_cnt and hdr_off (offset of * ) * * pkt_cnt is number of entrys in the per-packet metadata. * In current firmware there is 2 entrys per packet. * The first points to the packet and the * second is a dummy header. * This was done probably to align fields in 64-bit and * maintain compatibility with old firmware. * This code assumes that and are * optional. */ if (skb->len < 4) return 0; skb_trim(skb, skb->len - 4); memcpy(&rx_hdr, skb_tail_pointer(skb), 4); le32_to_cpus(&rx_hdr); pkt_cnt = (u16)rx_hdr; hdr_off = (u16)(rx_hdr >> 16); if (pkt_cnt == 0) return 0; /* Make sure that the bounds of the metadata array are inside the SKB * (and in front of the counter at the end). */ if (pkt_cnt * 4 + hdr_off > skb->len) return 0; pkt_hdr = (u32 *)(skb->data + hdr_off); /* Packets must not overlap the metadata array */ skb_trim(skb, hdr_off); for (; pkt_cnt > 0; pkt_cnt--, pkt_hdr++) { u16 pkt_len_plus_padd; u16 pkt_len; le32_to_cpus(pkt_hdr); pkt_len = (*pkt_hdr >> 16) & 0x1fff; pkt_len_plus_padd = (pkt_len + 7) & 0xfff8; /* Skip dummy header used for alignment */ if (pkt_len == 0) continue; if (pkt_len_plus_padd > skb->len) return 0; /* Check CRC or runt packet */ if ((*pkt_hdr & (AX_RXHDR_CRC_ERR | AX_RXHDR_DROP_ERR)) || pkt_len < 2 + ETH_HLEN) { dev->net->stats.rx_errors++; skb_pull(skb, pkt_len_plus_padd); continue; } /* last packet */ if (pkt_len_plus_padd == skb->len) { skb_trim(skb, pkt_len); /* Skip IP alignment pseudo header */ skb_pull(skb, 2); skb->truesize = SKB_TRUESIZE(pkt_len_plus_padd); ax88179_rx_checksum(skb, pkt_hdr); return 1; } ax_skb = skb_clone(skb, GFP_ATOMIC); if (!ax_skb) return 0; skb_trim(ax_skb, pkt_len); /* Skip IP alignment pseudo header */ skb_pull(ax_skb, 2); skb->truesize = pkt_len_plus_padd + SKB_DATA_ALIGN(sizeof(struct sk_buff)); ax88179_rx_checksum(ax_skb, pkt_hdr); usbnet_skb_return(dev, ax_skb); skb_pull(skb, pkt_len_plus_padd); } return 0; } static struct sk_buff * ax88179_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) { u32 tx_hdr1, tx_hdr2; int frame_size = dev->maxpacket; int mss = skb_shinfo(skb)->gso_size; int headroom; tx_hdr1 = skb->len; tx_hdr2 = mss; if (((skb->len + 8) % frame_size) == 0) tx_hdr2 |= 0x80008000; /* Enable padding */ headroom = skb_headroom(skb) - 8; if ((skb_header_cloned(skb) || headroom < 0) && pskb_expand_head(skb, headroom < 0 ? 8 : 0, 0, GFP_ATOMIC)) { dev_kfree_skb_any(skb); return NULL; } skb_push(skb, 4); cpu_to_le32s(&tx_hdr2); skb_copy_to_linear_data(skb, &tx_hdr2, 4); skb_push(skb, 4); cpu_to_le32s(&tx_hdr1); skb_copy_to_linear_data(skb, &tx_hdr1, 4); return skb; } static int ax88179_link_reset(struct usbnet *dev) { struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data; u8 tmp[5], link_sts; u16 mode, tmp16, delay = HZ / 10; u32 tmp32 = 0x40000000; unsigned long jtimeout; jtimeout = jiffies + delay; while (tmp32 & 0x40000000) { mode = 0; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &mode); ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &ax179_data->rxctl); /*link up, check the usb device control TX FIFO full or empty*/ ax88179_read_cmd(dev, 0x81, 0x8c, 0, 4, &tmp32); if (time_after(jiffies, jtimeout)) return 0; } mode = AX_MEDIUM_RECEIVE_EN | AX_MEDIUM_TXFLOW_CTRLEN | AX_MEDIUM_RXFLOW_CTRLEN; ax88179_read_cmd(dev, AX_ACCESS_MAC, PHYSICAL_LINK_STATUS, 1, 1, &link_sts); ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_PHY_PHYSR, 2, &tmp16); if (!(tmp16 & GMII_PHY_PHYSR_LINK)) { return 0; } else if (GMII_PHY_PHYSR_GIGA == (tmp16 & GMII_PHY_PHYSR_SMASK)) { mode |= AX_MEDIUM_GIGAMODE | AX_MEDIUM_EN_125MHZ; if (dev->net->mtu > 1500) mode |= AX_MEDIUM_JUMBO_EN; if (link_sts & AX_USB_SS) memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5); else if (link_sts & AX_USB_HS) memcpy(tmp, &AX88179_BULKIN_SIZE[1], 5); else memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5); } else if (GMII_PHY_PHYSR_100 == (tmp16 & GMII_PHY_PHYSR_SMASK)) { mode |= AX_MEDIUM_PS; if (link_sts & (AX_USB_SS | AX_USB_HS)) memcpy(tmp, &AX88179_BULKIN_SIZE[2], 5); else memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5); } else { memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5); } /* RX bulk configuration */ ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp); dev->rx_urb_size = (1024 * (tmp[3] + 2)); if (tmp16 & GMII_PHY_PHYSR_FULL) mode |= AX_MEDIUM_FULL_DUPLEX; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, &mode); ax179_data->eee_enabled = ax88179_chk_eee(dev); netif_carrier_on(dev->net); return 0; } static int ax88179_reset(struct usbnet *dev) { u8 buf[5]; u16 *tmp16; u8 *tmp; struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data; struct ethtool_eee eee_data; tmp16 = (u16 *)buf; tmp = (u8 *)buf; /* Power up ethernet PHY */ *tmp16 = 0; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16); *tmp16 = AX_PHYPWR_RSTCTL_IPRL; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16); msleep(200); *tmp = AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp); msleep(100); /* Ethernet PHY Auto Detach*/ ax88179_auto_detach(dev, 0); ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN, ETH_ALEN, dev->net->dev_addr); memcpy(dev->net->perm_addr, dev->net->dev_addr, ETH_ALEN); /* RX bulk configuration */ memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5); ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp); dev->rx_urb_size = 1024 * 20; *tmp = 0x34; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_LOW, 1, 1, tmp); *tmp = 0x52; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_HIGH, 1, 1, tmp); dev->net->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; dev->net->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; /* Enable checksum offload */ *tmp = AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP | AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, tmp); *tmp = AX_TXCOE_IP | AX_TXCOE_TCP | AX_TXCOE_UDP | AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, tmp); /* Configure RX control register => start operation */ *tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_IPE | AX_RX_CTL_START | AX_RX_CTL_AP | AX_RX_CTL_AMALL | AX_RX_CTL_AB; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16); *tmp = AX_MONITOR_MODE_PMETYPE | AX_MONITOR_MODE_PMEPOL | AX_MONITOR_MODE_RWMP; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 1, 1, tmp); /* Configure default medium type => giga */ *tmp16 = AX_MEDIUM_RECEIVE_EN | AX_MEDIUM_TXFLOW_CTRLEN | AX_MEDIUM_RXFLOW_CTRLEN | AX_MEDIUM_FULL_DUPLEX | AX_MEDIUM_GIGAMODE; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, tmp16); ax88179_led_setting(dev); ax179_data->eee_enabled = 0; ax179_data->eee_active = 0; ax88179_disable_eee(dev); ax88179_ethtool_get_eee(dev, &eee_data); eee_data.advertised = 0; ax88179_ethtool_set_eee(dev, &eee_data); /* Restart autoneg */ mii_nway_restart(&dev->mii); usbnet_link_change(dev, 0, 0); return 0; } static int ax88179_stop(struct usbnet *dev) { u16 tmp16; ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, &tmp16); tmp16 &= ~AX_MEDIUM_RECEIVE_EN; ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, &tmp16); return 0; } static const struct driver_info ax88179_info = { .description = "ASIX AX88179 USB 3.0 Gigabit Ethernet", .bind = ax88179_bind, .unbind = ax88179_unbind, .status = ax88179_status, .link_reset = ax88179_link_reset, .reset = ax88179_reset, .stop = ax88179_stop, .flags = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_SEND_ZLP, .rx_fixup = ax88179_rx_fixup, .tx_fixup = ax88179_tx_fixup, }; static const struct driver_info ax88178a_info = { .description = "ASIX AX88178A USB 2.0 Gigabit Ethernet", .bind = ax88179_bind, .unbind = ax88179_unbind, .status = ax88179_status, .link_reset = ax88179_link_reset, .reset = ax88179_reset, .stop = ax88179_stop, .flags = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_SEND_ZLP, .rx_fixup = ax88179_rx_fixup, .tx_fixup = ax88179_tx_fixup, }; static const struct driver_info cypress_GX3_info = { .description = "Cypress GX3 SuperSpeed to Gigabit Ethernet Controller", .bind = ax88179_bind, .unbind = ax88179_unbind, .status = ax88179_status, .link_reset = ax88179_link_reset, .reset = ax88179_reset, .stop = ax88179_stop, .flags = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_SEND_ZLP, .rx_fixup = ax88179_rx_fixup, .tx_fixup = ax88179_tx_fixup, }; static const struct driver_info dlink_dub1312_info = { .description = "D-Link DUB-1312 USB 3.0 to Gigabit Ethernet Adapter", .bind = ax88179_bind, .unbind = ax88179_unbind, .status = ax88179_status, .link_reset = ax88179_link_reset, .reset = ax88179_reset, .stop = ax88179_stop, .flags = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_SEND_ZLP, .rx_fixup = ax88179_rx_fixup, .tx_fixup = ax88179_tx_fixup, }; static const struct driver_info sitecom_info = { .description = "Sitecom USB 3.0 to Gigabit Adapter", .bind = ax88179_bind, .unbind = ax88179_unbind, .status = ax88179_status, .link_reset = ax88179_link_reset, .reset = ax88179_reset, .stop = ax88179_stop, .flags = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_SEND_ZLP, .rx_fixup = ax88179_rx_fixup, .tx_fixup = ax88179_tx_fixup, }; static const struct driver_info samsung_info = { .description = "Samsung USB Ethernet Adapter", .bind = ax88179_bind, .unbind = ax88179_unbind, .status = ax88179_status, .link_reset = ax88179_link_reset, .reset = ax88179_reset, .stop = ax88179_stop, .flags = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_SEND_ZLP, .rx_fixup = ax88179_rx_fixup, .tx_fixup = ax88179_tx_fixup, }; static const struct driver_info lenovo_info = { .description = "Lenovo OneLinkDock Gigabit LAN", .bind = ax88179_bind, .unbind = ax88179_unbind, .status = ax88179_status, .link_reset = ax88179_link_reset, .reset = ax88179_reset, .stop = ax88179_stop, .flags = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_SEND_ZLP, .rx_fixup = ax88179_rx_fixup, .tx_fixup = ax88179_tx_fixup, }; static const struct usb_device_id products[] = { { /* ASIX AX88179 10/100/1000 */ USB_DEVICE(0x0b95, 0x1790), .driver_info = (unsigned long)&ax88179_info, }, { /* ASIX AX88178A 10/100/1000 */ USB_DEVICE(0x0b95, 0x178a), .driver_info = (unsigned long)&ax88178a_info, }, { /* Cypress GX3 SuperSpeed to Gigabit Ethernet Bridge Controller */ USB_DEVICE(0x04b4, 0x3610), .driver_info = (unsigned long)&cypress_GX3_info, }, { /* D-Link DUB-1312 USB 3.0 to Gigabit Ethernet Adapter */ USB_DEVICE(0x2001, 0x4a00), .driver_info = (unsigned long)&dlink_dub1312_info, }, { /* Sitecom USB 3.0 to Gigabit Adapter */ USB_DEVICE(0x0df6, 0x0072), .driver_info = (unsigned long)&sitecom_info, }, { /* Samsung USB Ethernet Adapter */ USB_DEVICE(0x04e8, 0xa100), .driver_info = (unsigned long)&samsung_info, }, { /* Lenovo OneLinkDock Gigabit LAN */ USB_DEVICE(0x17ef, 0x304b), .driver_info = (unsigned long)&lenovo_info, }, { }, }; MODULE_DEVICE_TABLE(usb, products); static struct usb_driver ax88179_178a_driver = { .name = "ax88179_178a", .id_table = products, .probe = usbnet_probe, .suspend = ax88179_suspend, .resume = ax88179_resume, .reset_resume = ax88179_resume, .disconnect = usbnet_disconnect, .supports_autosuspend = 1, .disable_hub_initiated_lpm = 1, }; module_usb_driver(ax88179_178a_driver); MODULE_DESCRIPTION("ASIX AX88179/178A based USB 3.0/2.0 Gigabit Ethernet Devices"); MODULE_LICENSE("GPL");