/* * SPI driver for NVIDIA's Tegra114 SPI Controller. * * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SPI_COMMAND1 0x000 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0) #define SPI_PACKED (1 << 5) #define SPI_TX_EN (1 << 11) #define SPI_RX_EN (1 << 12) #define SPI_BOTH_EN_BYTE (1 << 13) #define SPI_BOTH_EN_BIT (1 << 14) #define SPI_LSBYTE_FE (1 << 15) #define SPI_LSBIT_FE (1 << 16) #define SPI_BIDIROE (1 << 17) #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18) #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18) #define SPI_IDLE_SDA_PULL_LOW (2 << 18) #define SPI_IDLE_SDA_PULL_HIGH (3 << 18) #define SPI_IDLE_SDA_MASK (3 << 18) #define SPI_CS_SS_VAL (1 << 20) #define SPI_CS_SW_HW (1 << 21) /* SPI_CS_POL_INACTIVE bits are default high */ /* n from 0 to 3 */ #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n))) #define SPI_CS_POL_INACTIVE_MASK (0xF << 22) #define SPI_CS_SEL_0 (0 << 26) #define SPI_CS_SEL_1 (1 << 26) #define SPI_CS_SEL_2 (2 << 26) #define SPI_CS_SEL_3 (3 << 26) #define SPI_CS_SEL_MASK (3 << 26) #define SPI_CS_SEL(x) (((x) & 0x3) << 26) #define SPI_CONTROL_MODE_0 (0 << 28) #define SPI_CONTROL_MODE_1 (1 << 28) #define SPI_CONTROL_MODE_2 (2 << 28) #define SPI_CONTROL_MODE_3 (3 << 28) #define SPI_CONTROL_MODE_MASK (3 << 28) #define SPI_MODE_SEL(x) (((x) & 0x3) << 28) #define SPI_M_S (1 << 30) #define SPI_PIO (1 << 31) #define SPI_COMMAND2 0x004 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6) #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0) #define SPI_CS_TIMING1 0x008 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold)) #define SPI_CS_SETUP_HOLD(reg, cs, val) \ ((((val) & 0xFFu) << ((cs) * 8)) | \ ((reg) & ~(0xFFu << ((cs) * 8)))) #define SPI_CS_TIMING2 0x00C #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0) #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5) #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8) #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13) #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16) #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21) #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24) #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29) #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \ (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \ ((reg) & ~(1 << ((cs) * 8 + 5)))) #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \ (reg = (((val) & 0xF) << ((cs) * 8)) | \ ((reg) & ~(0xF << ((cs) * 8)))) #define SPI_TRANS_STATUS 0x010 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF) #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF) #define SPI_RDY (1 << 30) #define SPI_FIFO_STATUS 0x014 #define SPI_RX_FIFO_EMPTY (1 << 0) #define SPI_RX_FIFO_FULL (1 << 1) #define SPI_TX_FIFO_EMPTY (1 << 2) #define SPI_TX_FIFO_FULL (1 << 3) #define SPI_RX_FIFO_UNF (1 << 4) #define SPI_RX_FIFO_OVF (1 << 5) #define SPI_TX_FIFO_UNF (1 << 6) #define SPI_TX_FIFO_OVF (1 << 7) #define SPI_ERR (1 << 8) #define SPI_TX_FIFO_FLUSH (1 << 14) #define SPI_RX_FIFO_FLUSH (1 << 15) #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F) #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F) #define SPI_FRAME_END (1 << 30) #define SPI_CS_INACTIVE (1 << 31) #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \ SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF) #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY) #define SPI_TX_DATA 0x018 #define SPI_RX_DATA 0x01C #define SPI_DMA_CTL 0x020 #define SPI_TX_TRIG_1 (0 << 15) #define SPI_TX_TRIG_4 (1 << 15) #define SPI_TX_TRIG_8 (2 << 15) #define SPI_TX_TRIG_16 (3 << 15) #define SPI_TX_TRIG_MASK (3 << 15) #define SPI_RX_TRIG_1 (0 << 19) #define SPI_RX_TRIG_4 (1 << 19) #define SPI_RX_TRIG_8 (2 << 19) #define SPI_RX_TRIG_16 (3 << 19) #define SPI_RX_TRIG_MASK (3 << 19) #define SPI_IE_TX (1 << 28) #define SPI_IE_RX (1 << 29) #define SPI_CONT (1 << 30) #define SPI_DMA (1 << 31) #define SPI_DMA_EN SPI_DMA #define SPI_DMA_BLK 0x024 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0) #define SPI_TX_FIFO 0x108 #define SPI_RX_FIFO 0x188 #define MAX_CHIP_SELECT 4 #define SPI_FIFO_DEPTH 64 #define DATA_DIR_TX (1 << 0) #define DATA_DIR_RX (1 << 1) #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) #define DEFAULT_SPI_DMA_BUF_LEN (16*1024) #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40) #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0) #define MAX_HOLD_CYCLES 16 #define SPI_DEFAULT_SPEED 25000000 struct tegra_spi_data { struct device *dev; struct spi_master *master; spinlock_t lock; struct clk *clk; struct reset_control *rst; void __iomem *base; phys_addr_t phys; unsigned irq; u32 cur_speed; struct spi_device *cur_spi; struct spi_device *cs_control; unsigned cur_pos; unsigned words_per_32bit; unsigned bytes_per_word; unsigned curr_dma_words; unsigned cur_direction; unsigned cur_rx_pos; unsigned cur_tx_pos; unsigned dma_buf_size; unsigned max_buf_size; bool is_curr_dma_xfer; struct completion rx_dma_complete; struct completion tx_dma_complete; u32 tx_status; u32 rx_status; u32 status_reg; bool is_packed; u32 command1_reg; u32 dma_control_reg; u32 def_command1_reg; struct completion xfer_completion; struct spi_transfer *curr_xfer; struct dma_chan *rx_dma_chan; u32 *rx_dma_buf; dma_addr_t rx_dma_phys; struct dma_async_tx_descriptor *rx_dma_desc; struct dma_chan *tx_dma_chan; u32 *tx_dma_buf; dma_addr_t tx_dma_phys; struct dma_async_tx_descriptor *tx_dma_desc; }; static int tegra_spi_runtime_suspend(struct device *dev); static int tegra_spi_runtime_resume(struct device *dev); static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi, unsigned long reg) { return readl(tspi->base + reg); } static inline void tegra_spi_writel(struct tegra_spi_data *tspi, u32 val, unsigned long reg) { writel(val, tspi->base + reg); /* Read back register to make sure that register writes completed */ if (reg != SPI_TX_FIFO) readl(tspi->base + SPI_COMMAND1); } static void tegra_spi_clear_status(struct tegra_spi_data *tspi) { u32 val; /* Write 1 to clear status register */ val = tegra_spi_readl(tspi, SPI_TRANS_STATUS); tegra_spi_writel(tspi, val, SPI_TRANS_STATUS); /* Clear fifo status error if any */ val = tegra_spi_readl(tspi, SPI_FIFO_STATUS); if (val & SPI_ERR) tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR, SPI_FIFO_STATUS); } static unsigned tegra_spi_calculate_curr_xfer_param( struct spi_device *spi, struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned remain_len = t->len - tspi->cur_pos; unsigned max_word; unsigned bits_per_word = t->bits_per_word; unsigned max_len; unsigned total_fifo_words; tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8); if (bits_per_word == 8 || bits_per_word == 16) { tspi->is_packed = 1; tspi->words_per_32bit = 32/bits_per_word; } else { tspi->is_packed = 0; tspi->words_per_32bit = 1; } if (tspi->is_packed) { max_len = min(remain_len, tspi->max_buf_size); tspi->curr_dma_words = max_len/tspi->bytes_per_word; total_fifo_words = (max_len + 3) / 4; } else { max_word = (remain_len - 1) / tspi->bytes_per_word + 1; max_word = min(max_word, tspi->max_buf_size/4); tspi->curr_dma_words = max_word; total_fifo_words = max_word; } return total_fifo_words; } static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned nbytes; unsigned tx_empty_count; u32 fifo_status; unsigned max_n_32bit; unsigned i, count; unsigned int written_words; unsigned fifo_words_left; u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status); if (tspi->is_packed) { fifo_words_left = tx_empty_count * tspi->words_per_32bit; written_words = min(fifo_words_left, tspi->curr_dma_words); nbytes = written_words * tspi->bytes_per_word; max_n_32bit = DIV_ROUND_UP(nbytes, 4); for (count = 0; count < max_n_32bit; count++) { u32 x = 0; for (i = 0; (i < 4) && nbytes; i++, nbytes--) x |= (u32)(*tx_buf++) << (i * 8); tegra_spi_writel(tspi, x, SPI_TX_FIFO); } tspi->cur_tx_pos += written_words * tspi->bytes_per_word; } else { unsigned int write_bytes; max_n_32bit = min(tspi->curr_dma_words, tx_empty_count); written_words = max_n_32bit; nbytes = written_words * tspi->bytes_per_word; if (nbytes > t->len - tspi->cur_pos) nbytes = t->len - tspi->cur_pos; write_bytes = nbytes; for (count = 0; count < max_n_32bit; count++) { u32 x = 0; for (i = 0; nbytes && (i < tspi->bytes_per_word); i++, nbytes--) x |= (u32)(*tx_buf++) << (i * 8); tegra_spi_writel(tspi, x, SPI_TX_FIFO); } tspi->cur_tx_pos += write_bytes; } return written_words; } static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned rx_full_count; u32 fifo_status; unsigned i, count; unsigned int read_words = 0; unsigned len; u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos; fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status); if (tspi->is_packed) { len = tspi->curr_dma_words * tspi->bytes_per_word; for (count = 0; count < rx_full_count; count++) { u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO); for (i = 0; len && (i < 4); i++, len--) *rx_buf++ = (x >> i*8) & 0xFF; } read_words += tspi->curr_dma_words; tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; } else { u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; u8 bytes_per_word = tspi->bytes_per_word; unsigned int read_bytes; len = rx_full_count * bytes_per_word; if (len > t->len - tspi->cur_pos) len = t->len - tspi->cur_pos; read_bytes = len; for (count = 0; count < rx_full_count; count++) { u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask; for (i = 0; len && (i < bytes_per_word); i++, len--) *rx_buf++ = (x >> (i*8)) & 0xFF; } read_words += rx_full_count; tspi->cur_rx_pos += read_bytes; } return read_words; } static void tegra_spi_copy_client_txbuf_to_spi_txbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { /* Make the dma buffer to read by cpu */ dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys, tspi->dma_buf_size, DMA_TO_DEVICE); if (tspi->is_packed) { unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len); tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word; } else { unsigned int i; unsigned int count; u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; unsigned int write_bytes; if (consume > t->len - tspi->cur_pos) consume = t->len - tspi->cur_pos; write_bytes = consume; for (count = 0; count < tspi->curr_dma_words; count++) { u32 x = 0; for (i = 0; consume && (i < tspi->bytes_per_word); i++, consume--) x |= (u32)(*tx_buf++) << (i * 8); tspi->tx_dma_buf[count] = x; } tspi->cur_tx_pos += write_bytes; } /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys, tspi->dma_buf_size, DMA_TO_DEVICE); } static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { /* Make the dma buffer to read by cpu */ dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); if (tspi->is_packed) { unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len); tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; } else { unsigned int i; unsigned int count; unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos; u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; unsigned int read_bytes; if (consume > t->len - tspi->cur_pos) consume = t->len - tspi->cur_pos; read_bytes = consume; for (count = 0; count < tspi->curr_dma_words; count++) { u32 x = tspi->rx_dma_buf[count] & rx_mask; for (i = 0; consume && (i < tspi->bytes_per_word); i++, consume--) *rx_buf++ = (x >> (i*8)) & 0xFF; } tspi->cur_rx_pos += read_bytes; } /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); } static void tegra_spi_dma_complete(void *args) { struct completion *dma_complete = args; complete(dma_complete); } static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len) { reinit_completion(&tspi->tx_dma_complete); tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan, tspi->tx_dma_phys, len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tspi->tx_dma_desc) { dev_err(tspi->dev, "Not able to get desc for Tx\n"); return -EIO; } tspi->tx_dma_desc->callback = tegra_spi_dma_complete; tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete; dmaengine_submit(tspi->tx_dma_desc); dma_async_issue_pending(tspi->tx_dma_chan); return 0; } static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len) { reinit_completion(&tspi->rx_dma_complete); tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan, tspi->rx_dma_phys, len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tspi->rx_dma_desc) { dev_err(tspi->dev, "Not able to get desc for Rx\n"); return -EIO; } tspi->rx_dma_desc->callback = tegra_spi_dma_complete; tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete; dmaengine_submit(tspi->rx_dma_desc); dma_async_issue_pending(tspi->rx_dma_chan); return 0; } static int tegra_spi_start_dma_based_transfer( struct tegra_spi_data *tspi, struct spi_transfer *t) { u32 val; unsigned int len; int ret = 0; u32 status; /* Make sure that Rx and Tx fifo are empty */ status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) { dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n", (unsigned)status); return -EIO; } val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1); tegra_spi_writel(tspi, val, SPI_DMA_BLK); if (tspi->is_packed) len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word, 4) * 4; else len = tspi->curr_dma_words * 4; /* Set attention level based on length of transfer */ if (len & 0xF) val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1; else if (((len) >> 4) & 0x1) val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4; else val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8; if (tspi->cur_direction & DATA_DIR_TX) val |= SPI_IE_TX; if (tspi->cur_direction & DATA_DIR_RX) val |= SPI_IE_RX; tegra_spi_writel(tspi, val, SPI_DMA_CTL); tspi->dma_control_reg = val; if (tspi->cur_direction & DATA_DIR_TX) { tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t); ret = tegra_spi_start_tx_dma(tspi, len); if (ret < 0) { dev_err(tspi->dev, "Starting tx dma failed, err %d\n", ret); return ret; } } if (tspi->cur_direction & DATA_DIR_RX) { /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); ret = tegra_spi_start_rx_dma(tspi, len); if (ret < 0) { dev_err(tspi->dev, "Starting rx dma failed, err %d\n", ret); if (tspi->cur_direction & DATA_DIR_TX) dmaengine_terminate_all(tspi->tx_dma_chan); return ret; } } tspi->is_curr_dma_xfer = true; tspi->dma_control_reg = val; val |= SPI_DMA_EN; tegra_spi_writel(tspi, val, SPI_DMA_CTL); return ret; } static int tegra_spi_start_cpu_based_transfer( struct tegra_spi_data *tspi, struct spi_transfer *t) { u32 val; unsigned cur_words; if (tspi->cur_direction & DATA_DIR_TX) cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t); else cur_words = tspi->curr_dma_words; val = SPI_DMA_BLK_SET(cur_words - 1); tegra_spi_writel(tspi, val, SPI_DMA_BLK); val = 0; if (tspi->cur_direction & DATA_DIR_TX) val |= SPI_IE_TX; if (tspi->cur_direction & DATA_DIR_RX) val |= SPI_IE_RX; tegra_spi_writel(tspi, val, SPI_DMA_CTL); tspi->dma_control_reg = val; tspi->is_curr_dma_xfer = false; val |= SPI_DMA_EN; tegra_spi_writel(tspi, val, SPI_DMA_CTL); return 0; } static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi, bool dma_to_memory) { struct dma_chan *dma_chan; u32 *dma_buf; dma_addr_t dma_phys; int ret; struct dma_slave_config dma_sconfig; dma_chan = dma_request_slave_channel_reason(tspi->dev, dma_to_memory ? "rx" : "tx"); if (IS_ERR(dma_chan)) { ret = PTR_ERR(dma_chan); if (ret != -EPROBE_DEFER) dev_err(tspi->dev, "Dma channel is not available: %d\n", ret); return ret; } dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size, &dma_phys, GFP_KERNEL); if (!dma_buf) { dev_err(tspi->dev, " Not able to allocate the dma buffer\n"); dma_release_channel(dma_chan); return -ENOMEM; } if (dma_to_memory) { dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO; dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.src_maxburst = 0; } else { dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO; dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.dst_maxburst = 0; } ret = dmaengine_slave_config(dma_chan, &dma_sconfig); if (ret) goto scrub; if (dma_to_memory) { tspi->rx_dma_chan = dma_chan; tspi->rx_dma_buf = dma_buf; tspi->rx_dma_phys = dma_phys; } else { tspi->tx_dma_chan = dma_chan; tspi->tx_dma_buf = dma_buf; tspi->tx_dma_phys = dma_phys; } return 0; scrub: dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); dma_release_channel(dma_chan); return ret; } static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi, bool dma_to_memory) { u32 *dma_buf; dma_addr_t dma_phys; struct dma_chan *dma_chan; if (dma_to_memory) { dma_buf = tspi->rx_dma_buf; dma_chan = tspi->rx_dma_chan; dma_phys = tspi->rx_dma_phys; tspi->rx_dma_chan = NULL; tspi->rx_dma_buf = NULL; } else { dma_buf = tspi->tx_dma_buf; dma_chan = tspi->tx_dma_chan; dma_phys = tspi->tx_dma_phys; tspi->tx_dma_buf = NULL; tspi->tx_dma_chan = NULL; } if (!dma_chan) return; dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); dma_release_channel(dma_chan); } static u32 tegra_spi_setup_transfer_one(struct spi_device *spi, struct spi_transfer *t, bool is_first_of_msg) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); u32 speed = t->speed_hz; u8 bits_per_word = t->bits_per_word; u32 command1; int req_mode; if (speed != tspi->cur_speed) { clk_set_rate(tspi->clk, speed); tspi->cur_speed = speed; } tspi->cur_spi = spi; tspi->cur_pos = 0; tspi->cur_rx_pos = 0; tspi->cur_tx_pos = 0; tspi->curr_xfer = t; if (is_first_of_msg) { tegra_spi_clear_status(tspi); command1 = tspi->def_command1_reg; command1 |= SPI_BIT_LENGTH(bits_per_word - 1); command1 &= ~SPI_CONTROL_MODE_MASK; req_mode = spi->mode & 0x3; if (req_mode == SPI_MODE_0) command1 |= SPI_CONTROL_MODE_0; else if (req_mode == SPI_MODE_1) command1 |= SPI_CONTROL_MODE_1; else if (req_mode == SPI_MODE_2) command1 |= SPI_CONTROL_MODE_2; else if (req_mode == SPI_MODE_3) command1 |= SPI_CONTROL_MODE_3; if (tspi->cs_control) { if (tspi->cs_control != spi) tegra_spi_writel(tspi, command1, SPI_COMMAND1); tspi->cs_control = NULL; } else tegra_spi_writel(tspi, command1, SPI_COMMAND1); command1 |= SPI_CS_SW_HW; if (spi->mode & SPI_CS_HIGH) command1 |= SPI_CS_SS_VAL; else command1 &= ~SPI_CS_SS_VAL; tegra_spi_writel(tspi, 0, SPI_COMMAND2); } else { command1 = tspi->command1_reg; command1 &= ~SPI_BIT_LENGTH(~0); command1 |= SPI_BIT_LENGTH(bits_per_word - 1); } return command1; } static int tegra_spi_start_transfer_one(struct spi_device *spi, struct spi_transfer *t, u32 command1) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); unsigned total_fifo_words; int ret; total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t); if (tspi->is_packed) command1 |= SPI_PACKED; else command1 &= ~SPI_PACKED; command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN); tspi->cur_direction = 0; if (t->rx_buf) { command1 |= SPI_RX_EN; tspi->cur_direction |= DATA_DIR_RX; } if (t->tx_buf) { command1 |= SPI_TX_EN; tspi->cur_direction |= DATA_DIR_TX; } command1 |= SPI_CS_SEL(spi->chip_select); tegra_spi_writel(tspi, command1, SPI_COMMAND1); tspi->command1_reg = command1; dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n", tspi->def_command1_reg, (unsigned)command1); if (total_fifo_words > SPI_FIFO_DEPTH) ret = tegra_spi_start_dma_based_transfer(tspi, t); else ret = tegra_spi_start_cpu_based_transfer(tspi, t); return ret; } static int tegra_spi_setup(struct spi_device *spi) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); u32 val; unsigned long flags; int ret; dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n", spi->bits_per_word, spi->mode & SPI_CPOL ? "" : "~", spi->mode & SPI_CPHA ? "" : "~", spi->max_speed_hz); ret = pm_runtime_get_sync(tspi->dev); if (ret < 0) { pm_runtime_put_noidle(tspi->dev); dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret); return ret; } spin_lock_irqsave(&tspi->lock, flags); val = tspi->def_command1_reg; if (spi->mode & SPI_CS_HIGH) val &= ~SPI_CS_POL_INACTIVE(spi->chip_select); else val |= SPI_CS_POL_INACTIVE(spi->chip_select); tspi->def_command1_reg = val; tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); spin_unlock_irqrestore(&tspi->lock, flags); pm_runtime_put(tspi->dev); return 0; } static void tegra_spi_transfer_delay(int delay) { if (!delay) return; if (delay >= 1000) mdelay(delay / 1000); udelay(delay % 1000); } static int tegra_spi_transfer_one_message(struct spi_master *master, struct spi_message *msg) { bool is_first_msg = true; struct tegra_spi_data *tspi = spi_master_get_devdata(master); struct spi_transfer *xfer; struct spi_device *spi = msg->spi; int ret; bool skip = false; msg->status = 0; msg->actual_length = 0; list_for_each_entry(xfer, &msg->transfers, transfer_list) { u32 cmd1; reinit_completion(&tspi->xfer_completion); cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg); if (!xfer->len) { ret = 0; skip = true; goto complete_xfer; } ret = tegra_spi_start_transfer_one(spi, xfer, cmd1); if (ret < 0) { dev_err(tspi->dev, "spi can not start transfer, err %d\n", ret); goto complete_xfer; } is_first_msg = false; ret = wait_for_completion_timeout(&tspi->xfer_completion, SPI_DMA_TIMEOUT); if (WARN_ON(ret == 0)) { dev_err(tspi->dev, "spi trasfer timeout, err %d\n", ret); ret = -EIO; goto complete_xfer; } if (tspi->tx_status || tspi->rx_status) { dev_err(tspi->dev, "Error in Transfer\n"); ret = -EIO; goto complete_xfer; } msg->actual_length += xfer->len; complete_xfer: if (ret < 0 || skip) { tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); tegra_spi_transfer_delay(xfer->delay_usecs); goto exit; } else if (list_is_last(&xfer->transfer_list, &msg->transfers)) { if (xfer->cs_change) tspi->cs_control = spi; else { tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); tegra_spi_transfer_delay(xfer->delay_usecs); } } else if (xfer->cs_change) { tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); tegra_spi_transfer_delay(xfer->delay_usecs); } } ret = 0; exit: msg->status = ret; spi_finalize_current_message(master); return ret; } static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi) { struct spi_transfer *t = tspi->curr_xfer; unsigned long flags; spin_lock_irqsave(&tspi->lock, flags); if (tspi->tx_status || tspi->rx_status) { dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n", tspi->status_reg); dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n", tspi->command1_reg, tspi->dma_control_reg); reset_control_assert(tspi->rst); udelay(2); reset_control_deassert(tspi->rst); complete(&tspi->xfer_completion); goto exit; } if (tspi->cur_direction & DATA_DIR_RX) tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t); if (tspi->cur_direction & DATA_DIR_TX) tspi->cur_pos = tspi->cur_tx_pos; else tspi->cur_pos = tspi->cur_rx_pos; if (tspi->cur_pos == t->len) { complete(&tspi->xfer_completion); goto exit; } tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); tegra_spi_start_cpu_based_transfer(tspi, t); exit: spin_unlock_irqrestore(&tspi->lock, flags); return IRQ_HANDLED; } static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi) { struct spi_transfer *t = tspi->curr_xfer; long wait_status; int err = 0; unsigned total_fifo_words; unsigned long flags; /* Abort dmas if any error */ if (tspi->cur_direction & DATA_DIR_TX) { if (tspi->tx_status) { dmaengine_terminate_all(tspi->tx_dma_chan); err += 1; } else { wait_status = wait_for_completion_interruptible_timeout( &tspi->tx_dma_complete, SPI_DMA_TIMEOUT); if (wait_status <= 0) { dmaengine_terminate_all(tspi->tx_dma_chan); dev_err(tspi->dev, "TxDma Xfer failed\n"); err += 1; } } } if (tspi->cur_direction & DATA_DIR_RX) { if (tspi->rx_status) { dmaengine_terminate_all(tspi->rx_dma_chan); err += 2; } else { wait_status = wait_for_completion_interruptible_timeout( &tspi->rx_dma_complete, SPI_DMA_TIMEOUT); if (wait_status <= 0) { dmaengine_terminate_all(tspi->rx_dma_chan); dev_err(tspi->dev, "RxDma Xfer failed\n"); err += 2; } } } spin_lock_irqsave(&tspi->lock, flags); if (err) { dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n", tspi->status_reg); dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n", tspi->command1_reg, tspi->dma_control_reg); reset_control_assert(tspi->rst); udelay(2); reset_control_deassert(tspi->rst); complete(&tspi->xfer_completion); spin_unlock_irqrestore(&tspi->lock, flags); return IRQ_HANDLED; } if (tspi->cur_direction & DATA_DIR_RX) tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t); if (tspi->cur_direction & DATA_DIR_TX) tspi->cur_pos = tspi->cur_tx_pos; else tspi->cur_pos = tspi->cur_rx_pos; if (tspi->cur_pos == t->len) { complete(&tspi->xfer_completion); goto exit; } /* Continue transfer in current message */ total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); if (total_fifo_words > SPI_FIFO_DEPTH) err = tegra_spi_start_dma_based_transfer(tspi, t); else err = tegra_spi_start_cpu_based_transfer(tspi, t); exit: spin_unlock_irqrestore(&tspi->lock, flags); return IRQ_HANDLED; } static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data) { struct tegra_spi_data *tspi = context_data; if (!tspi->is_curr_dma_xfer) return handle_cpu_based_xfer(tspi); return handle_dma_based_xfer(tspi); } static irqreturn_t tegra_spi_isr(int irq, void *context_data) { struct tegra_spi_data *tspi = context_data; tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS); if (tspi->cur_direction & DATA_DIR_TX) tspi->tx_status = tspi->status_reg & (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF); if (tspi->cur_direction & DATA_DIR_RX) tspi->rx_status = tspi->status_reg & (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF); tegra_spi_clear_status(tspi); return IRQ_WAKE_THREAD; } static const struct of_device_id tegra_spi_of_match[] = { { .compatible = "nvidia,tegra114-spi", }, {} }; MODULE_DEVICE_TABLE(of, tegra_spi_of_match); static int tegra_spi_probe(struct platform_device *pdev) { struct spi_master *master; struct tegra_spi_data *tspi; struct resource *r; int ret, spi_irq; master = spi_alloc_master(&pdev->dev, sizeof(*tspi)); if (!master) { dev_err(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } platform_set_drvdata(pdev, master); tspi = spi_master_get_devdata(master); if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency", &master->max_speed_hz)) master->max_speed_hz = 25000000; /* 25MHz */ /* the spi->mode bits understood by this driver: */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; master->setup = tegra_spi_setup; master->transfer_one_message = tegra_spi_transfer_one_message; master->num_chipselect = MAX_CHIP_SELECT; master->auto_runtime_pm = true; tspi->master = master; tspi->dev = &pdev->dev; spin_lock_init(&tspi->lock); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); tspi->base = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(tspi->base)) { ret = PTR_ERR(tspi->base); goto exit_free_master; } tspi->phys = r->start; spi_irq = platform_get_irq(pdev, 0); if (spi_irq < 0) { ret = spi_irq; goto exit_free_master; } tspi->irq = spi_irq; tspi->clk = devm_clk_get(&pdev->dev, "spi"); if (IS_ERR(tspi->clk)) { dev_err(&pdev->dev, "can not get clock\n"); ret = PTR_ERR(tspi->clk); goto exit_free_master; } tspi->rst = devm_reset_control_get(&pdev->dev, "spi"); if (IS_ERR(tspi->rst)) { dev_err(&pdev->dev, "can not get reset\n"); ret = PTR_ERR(tspi->rst); goto exit_free_master; } tspi->max_buf_size = SPI_FIFO_DEPTH << 2; tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN; ret = tegra_spi_init_dma_param(tspi, true); if (ret < 0) goto exit_free_master; ret = tegra_spi_init_dma_param(tspi, false); if (ret < 0) goto exit_rx_dma_free; tspi->max_buf_size = tspi->dma_buf_size; init_completion(&tspi->tx_dma_complete); init_completion(&tspi->rx_dma_complete); init_completion(&tspi->xfer_completion); pm_runtime_enable(&pdev->dev); if (!pm_runtime_enabled(&pdev->dev)) { ret = tegra_spi_runtime_resume(&pdev->dev); if (ret) goto exit_pm_disable; } ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); goto exit_pm_disable; } reset_control_assert(tspi->rst); udelay(2); reset_control_deassert(tspi->rst); tspi->def_command1_reg = SPI_M_S; tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); pm_runtime_put(&pdev->dev); ret = request_threaded_irq(tspi->irq, tegra_spi_isr, tegra_spi_isr_thread, IRQF_ONESHOT, dev_name(&pdev->dev), tspi); if (ret < 0) { dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n", tspi->irq); goto exit_pm_disable; } master->dev.of_node = pdev->dev.of_node; ret = devm_spi_register_master(&pdev->dev, master); if (ret < 0) { dev_err(&pdev->dev, "can not register to master err %d\n", ret); goto exit_free_irq; } return ret; exit_free_irq: free_irq(spi_irq, tspi); exit_pm_disable: pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) tegra_spi_runtime_suspend(&pdev->dev); tegra_spi_deinit_dma_param(tspi, false); exit_rx_dma_free: tegra_spi_deinit_dma_param(tspi, true); exit_free_master: spi_master_put(master); return ret; } static int tegra_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); free_irq(tspi->irq, tspi); if (tspi->tx_dma_chan) tegra_spi_deinit_dma_param(tspi, false); if (tspi->rx_dma_chan) tegra_spi_deinit_dma_param(tspi, true); pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) tegra_spi_runtime_suspend(&pdev->dev); return 0; } #ifdef CONFIG_PM_SLEEP static int tegra_spi_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); return spi_master_suspend(master); } static int tegra_spi_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); int ret; ret = pm_runtime_get_sync(dev); if (ret < 0) { pm_runtime_put_noidle(dev); dev_err(dev, "pm runtime failed, e = %d\n", ret); return ret; } tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1); pm_runtime_put(dev); return spi_master_resume(master); } #endif static int tegra_spi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); /* Flush all write which are in PPSB queue by reading back */ tegra_spi_readl(tspi, SPI_COMMAND1); clk_disable_unprepare(tspi->clk); return 0; } static int tegra_spi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); int ret; ret = clk_prepare_enable(tspi->clk); if (ret < 0) { dev_err(tspi->dev, "clk_prepare failed: %d\n", ret); return ret; } return 0; } static const struct dev_pm_ops tegra_spi_pm_ops = { SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend, tegra_spi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume) }; static struct platform_driver tegra_spi_driver = { .driver = { .name = "spi-tegra114", .pm = &tegra_spi_pm_ops, .of_match_table = tegra_spi_of_match, }, .probe = tegra_spi_probe, .remove = tegra_spi_remove, }; module_platform_driver(tegra_spi_driver); MODULE_ALIAS("platform:spi-tegra114"); MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver"); MODULE_AUTHOR("Laxman Dewangan "); MODULE_LICENSE("GPL v2");