# # General architecture dependent options # config OPROFILE tristate "OProfile system profiling (EXPERIMENTAL)" depends on PROFILING depends on HAVE_OPROFILE select RING_BUFFER select RING_BUFFER_ALLOW_SWAP help OProfile is a profiling system capable of profiling the whole system, include the kernel, kernel modules, libraries, and applications. If unsure, say N. config OPROFILE_IBS bool "OProfile AMD IBS support (EXPERIMENTAL)" default n depends on OPROFILE && SMP && X86 help Instruction-Based Sampling (IBS) is a new profiling technique that provides rich, precise program performance information. IBS is introduced by AMD Family10h processors (AMD Opteron Quad-Core processor "Barcelona") to overcome the limitations of conventional performance counter sampling. If unsure, say N. config OPROFILE_EVENT_MULTIPLEX bool "OProfile multiplexing support (EXPERIMENTAL)" default n depends on OPROFILE && X86 help The number of hardware counters is limited. The multiplexing feature enables OProfile to gather more events than counters are provided by the hardware. This is realized by switching between events at an user specified time interval. If unsure, say N. config HAVE_OPROFILE bool config KPROBES bool "Kprobes" depends on KALLSYMS && MODULES depends on HAVE_KPROBES help Kprobes allows you to trap at almost any kernel address and execute a callback function. register_kprobe() establishes a probepoint and specifies the callback. Kprobes is useful for kernel debugging, non-intrusive instrumentation and testing. If in doubt, say "N". config HAVE_EFFICIENT_UNALIGNED_ACCESS bool help Some architectures are unable to perform unaligned accesses without the use of get_unaligned/put_unaligned. Others are unable to perform such accesses efficiently (e.g. trap on unaligned access and require fixing it up in the exception handler.) This symbol should be selected by an architecture if it can perform unaligned accesses efficiently to allow different code paths to be selected for these cases. Some network drivers, for example, could opt to not fix up alignment problems with received packets if doing so would not help much. See Documentation/unaligned-memory-access.txt for more information on the topic of unaligned memory accesses. config HAVE_SYSCALL_WRAPPERS bool config KRETPROBES def_bool y depends on KPROBES && HAVE_KRETPROBES config HAVE_IOREMAP_PROT bool config HAVE_KPROBES bool config HAVE_KRETPROBES bool # # An arch should select this if it provides all these things: # # task_pt_regs() in asm/processor.h or asm/ptrace.h # arch_has_single_step() if there is hardware single-step support # arch_has_block_step() if there is hardware block-step support # asm/syscall.h supplying asm-generic/syscall.h interface # linux/regset.h user_regset interfaces # CORE_DUMP_USE_REGSET #define'd in linux/elf.h # TIF_SYSCALL_TRACE calls tracehook_report_syscall_{entry,exit} # TIF_NOTIFY_RESUME calls tracehook_notify_resume() # signal delivery calls tracehook_signal_handler() # config HAVE_ARCH_TRACEHOOK bool config HAVE_DMA_ATTRS bool config USE_GENERIC_SMP_HELPERS bool config HAVE_CLK bool help The calls support software clock gating and thus are a key power management tool on many systems. config HAVE_DMA_API_DEBUG bool config HAVE_DEFAULT_NO_SPIN_MUTEXES bool config AVM_ARCH_STATIC_WLAN_MEMORY bool "Use static memory for WLAN subsystem" depends on MACH_FUSIV || (LANTIQ && (AR9 || (AR10 || VR9))) default n help Reserve a fixed memory region for DMA descriptors in AVM WLAN subsystem besides the kernel memory management. config AVM_ARCH_STATIC_WLAN_MEMORY_SIZE int "Static WLAN memory size (in kilobytes)" depends on AVM_ARCH_STATIC_WLAN_MEMORY default "1024" if MACH_FUSIV default "512" help Fixed/static memory region size in kilobytes. # # Whether Atheros AoW is supported for a given platform. # config HAVE_AOW_PLATFORM_SUPPORT bool source "kernel/gcov/Kconfig"