/* chronyd/chronyc - Programs for keeping computer clocks accurate. ********************************************************************** * Copyright (C) Richard P. Curnow 1997-2003 * Copyright (C) Miroslav Lichvar 2009 * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * ********************************************************************** ======================================================================= Various utility functions */ #include "sysincl.h" #include "util.h" #include "md5.h" /* ================================================== */ INLINE_STATIC void UTI_TimevalToDouble(struct timeval *a, double *b) { *b = (double)(a->tv_sec) + 1.0e-6 * (double)(a->tv_usec); } /* ================================================== */ INLINE_STATIC void UTI_DoubleToTimeval(double a, struct timeval *b) { long int_part, frac_part; int_part = (long)(a); frac_part = (long)(0.5 + 1.0e6 * (a - (double)(int_part))); b->tv_sec = int_part; b->tv_usec = frac_part; UTI_NormaliseTimeval(b); } /* ================================================== */ INLINE_STATIC int UTI_CompareTimevals(struct timeval *a, struct timeval *b) { if (a->tv_sec < b->tv_sec) { return -1; } else if (a->tv_sec > b->tv_sec) { return +1; } else { if (a->tv_usec < b->tv_usec) { return -1; } else if (a->tv_usec > b->tv_usec) { return +1; } else { return 0; } } } /* ================================================== */ INLINE_STATIC void UTI_NormaliseTimeval(struct timeval *x) { /* Reduce tv_usec to within +-1000000 of zero. JGH */ if ((x->tv_usec >= 1000000) || (x->tv_usec <= -1000000)) { x->tv_sec += x->tv_usec/1000000; x->tv_usec = x->tv_usec%1000000; } /* Make tv_usec positive. JGH */ if (x->tv_usec < 0) { --x->tv_sec; x->tv_usec += 1000000; } } /* ================================================== */ INLINE_STATIC void UTI_DiffTimevals(struct timeval *result, struct timeval *a, struct timeval *b) { result->tv_sec = a->tv_sec - b->tv_sec; result->tv_usec = a->tv_usec - b->tv_usec; /* Correct microseconds field to bring it into the range (0,1000000) */ UTI_NormaliseTimeval(result); /* JGH */ return; } /* ================================================== */ /* Calculate result = a - b and return as a double */ INLINE_STATIC void UTI_DiffTimevalsToDouble(double *result, struct timeval *a, struct timeval *b) { *result = (double)(a->tv_sec - b->tv_sec) + (double)(a->tv_usec - b->tv_usec) * 1.0e-6; } /* ================================================== */ INLINE_STATIC void UTI_AddDoubleToTimeval(struct timeval *start, double increment, struct timeval *end) { long int_part, frac_part; /* Don't want to do this by using (long)(1000000 * increment), since that will only cope with increments up to +/- 2148 seconds, which is too marginal here. */ int_part = (long) increment; frac_part = (long) (0.5 + 1.0e6 * (increment - (double)int_part)); end->tv_sec = int_part + start->tv_sec; end->tv_usec = frac_part + start->tv_usec; UTI_NormaliseTimeval(end); } /* ================================================== */ /* Calculate the average and difference (as a double) of two timevals */ INLINE_STATIC void UTI_AverageDiffTimevals (struct timeval *earlier, struct timeval *later, struct timeval *average, double *diff) { struct timeval tvdiff; struct timeval tvhalf; UTI_DiffTimevals(&tvdiff, later, earlier); *diff = (double)tvdiff.tv_sec + 1.0e-6 * (double)tvdiff.tv_usec; if (*diff < 0.0) { /* Either there's a bug elsewhere causing 'earlier' and 'later' to be backwards, or something wierd has happened. Maybe when we change the frequency on Linux? */ /* This seems to be fairly benign, so don't bother logging it */ #if 0 LOG(LOGS_INFO, LOGF_Util, "Earlier=[%s] Later=[%s]", UTI_TimevalToString(earlier), UTI_TimevalToString(later)); #endif /* Assume the required behaviour is to treat it as zero */ *diff = 0.0; } tvhalf.tv_sec = tvdiff.tv_sec / 2; tvhalf.tv_usec = tvdiff.tv_usec / 2 + (tvdiff.tv_sec % 2) * 500000; /* JGH */ average->tv_sec = earlier->tv_sec + tvhalf.tv_sec; average->tv_usec = earlier->tv_usec + tvhalf.tv_usec; /* Bring into range */ UTI_NormaliseTimeval(average); } /* ================================================== */ #define POOL_ENTRIES 16 #define BUFFER_LENGTH 64 static char buffer_pool[POOL_ENTRIES][BUFFER_LENGTH]; static int pool_ptr = 0; #define NEXT_BUFFER (buffer_pool[pool_ptr = ((pool_ptr + 1) % POOL_ENTRIES)]) /* ================================================== */ /* Convert a timeval into a temporary string, largely for diagnostic display */ char * UTI_TimevalToString(struct timeval *tv) { char buffer[64], *result; struct tm stm; stm = *gmtime((time_t *) &(tv->tv_sec)); strftime(buffer, sizeof(buffer), "%a %x %X", &stm); result = NEXT_BUFFER; snprintf(result, BUFFER_LENGTH, "%s.%06ld", buffer, (unsigned long)(tv->tv_usec)); return result; } /* ================================================== */ #define JAN_1970 0x83aa7e80UL inline static void int64_to_timeval(NTP_int64 *src, struct timeval *dest) { dest->tv_sec = ntohl(src->hi) - JAN_1970; /* Until I invent a slick way to do this, just do it the obvious way */ dest->tv_usec = (int)(0.5 + (double)(ntohl(src->lo)) / 4294.967296); } /* ================================================== */ /* Convert an NTP timestamp into a temporary string, largely for diagnostic display */ char * UTI_TimestampToString(NTP_int64 *ts) { struct timeval tv; int64_to_timeval(ts, &tv); return UTI_TimevalToString(&tv); } /* ================================================== */ char * UTI_RefidToString(unsigned long ref_id) { unsigned int i, j, c; char buf[5], *result; for (i = j = 0; i < 4; i++) { c = (ref_id >> (24 - i * 8)) & 0xff; if (isprint(c)) buf[j++] = c; } buf[j] = '\0'; result = NEXT_BUFFER; snprintf(result, BUFFER_LENGTH, "%s", buf); return result; } /* ================================================== */ char * UTI_IPToString(IPAddr *addr) { unsigned long a, b, c, d, ip; uint8_t *ip6; char *result; result = NEXT_BUFFER; switch (addr->family) { case IPADDR_UNSPEC: snprintf(result, BUFFER_LENGTH, "[UNSPEC]"); break; case IPADDR_INET4: ip = addr->addr.in4; a = (ip>>24) & 0xff; b = (ip>>16) & 0xff; c = (ip>> 8) & 0xff; d = (ip>> 0) & 0xff; snprintf(result, BUFFER_LENGTH, "%ld.%ld.%ld.%ld", a, b, c, d); break; case IPADDR_INET6: ip6 = addr->addr.in6; #ifdef HAVE_IPV6 inet_ntop(AF_INET6, ip6, result, BUFFER_LENGTH); #else snprintf(result, BUFFER_LENGTH, "%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x", ip6[0], ip6[1], ip6[2], ip6[3], ip6[4], ip6[5], ip6[6], ip6[7], ip6[8], ip6[9], ip6[10], ip6[11], ip6[12], ip6[13], ip6[14], ip6[15]); #endif break; default: snprintf(result, BUFFER_LENGTH, "[UNKNOWN]"); } return result; } /* ================================================== */ int UTI_StringToIP(const char *addr, IPAddr *ip) { #ifdef HAVE_IPV6 struct in_addr in4; struct in6_addr in6; if (inet_pton(AF_INET, addr, &in4) > 0) { ip->family = IPADDR_INET4; ip->addr.in4 = ntohl(in4.s_addr); return 1; } if (inet_pton(AF_INET6, addr, &in6) > 0) { ip->family = IPADDR_INET6; memcpy(ip->addr.in6, in6.s6_addr, sizeof (ip->addr.in6)); return 1; } #else unsigned long a, b, c, d, n; n = sscanf(addr, "%lu.%lu.%lu.%lu", &a, &b, &c, &d); if (n == 4) { ip->family = IPADDR_INET4; ip->addr.in4 = ((a & 0xff) << 24) | ((b & 0xff) << 16) | ((c & 0xff) << 8) | (d & 0xff); return 1; } #endif return 0; } /* ================================================== */ unsigned long UTI_IPToRefid(IPAddr *ip) { MD5_CTX ctx; switch (ip->family) { case IPADDR_INET4: return ip->addr.in4; case IPADDR_INET6: MD5Init(&ctx); MD5Update(&ctx, (unsigned const char *) ip->addr.in6, sizeof (ip->addr.in6)); MD5Final(&ctx); return ctx.digest[0] << 24 | ctx.digest[1] << 16 | ctx.digest[2] << 8 | ctx.digest[3]; } return 0; } /* ================================================== */ void UTI_IPHostToNetwork(IPAddr *src, IPAddr *dest) { /* Don't send uninitialized bytes over network */ memset(dest, 0, sizeof (IPAddr)); dest->family = htons(src->family); switch (src->family) { case IPADDR_INET4: dest->addr.in4 = htonl(src->addr.in4); break; case IPADDR_INET6: memcpy(dest->addr.in6, src->addr.in6, sizeof (dest->addr.in6)); break; } } /* ================================================== */ void UTI_IPNetworkToHost(IPAddr *src, IPAddr *dest) { dest->family = ntohs(src->family); switch (dest->family) { case IPADDR_INET4: dest->addr.in4 = ntohl(src->addr.in4); break; case IPADDR_INET6: memcpy(dest->addr.in6, src->addr.in6, sizeof (dest->addr.in6)); break; } } /* ================================================== */ int UTI_CompareIPs(IPAddr *a, IPAddr *b, IPAddr *mask) { int i, d; if (a->family != b->family) return a->family - b->family; if (mask && mask->family != b->family) mask = NULL; switch (a->family) { case IPADDR_UNSPEC: return 0; case IPADDR_INET4: if (mask) return (a->addr.in4 & mask->addr.in4) - (b->addr.in4 & mask->addr.in4); else return a->addr.in4 - b->addr.in4; case IPADDR_INET6: for (i = 0, d = 0; !d && i < 16; i++) { if (mask) d = (a->addr.in6[i] & mask->addr.in6[i]) - (b->addr.in6[i] & mask->addr.in6[i]); else d = a->addr.in6[i] - b->addr.in6[i]; } return d; } return 0; } /* ================================================== */ char * UTI_TimeToLogForm(time_t t) { struct tm stm; char *result; result = NEXT_BUFFER; stm = *gmtime(&t); strftime(result, BUFFER_LENGTH, "%Y-%m-%d %H:%M:%S", &stm); return result; } /* ================================================== */ void UTI_AdjustTimeval(struct timeval *old_tv, struct timeval *when, struct timeval *new_tv, double *delta_time, double dfreq, double doffset) { double elapsed; UTI_DiffTimevalsToDouble(&elapsed, when, old_tv); *delta_time = elapsed * dfreq - doffset; UTI_AddDoubleToTimeval(old_tv, *delta_time, new_tv); } /* ================================================== */ /* Seconds part of RFC1305 timestamp correponding to the origin of the struct timeval format. */ #define JAN_1970 0x83aa7e80UL void UTI_TimevalToInt64(struct timeval *src, NTP_int64 *dest) { unsigned long usec = src->tv_usec; unsigned long sec = src->tv_sec; /* Recognize zero as a special case - it always signifies an 'unknown' value */ if (!usec && !sec) { dest->hi = dest->lo = 0; } else { dest->hi = htonl(src->tv_sec + JAN_1970); /* This formula gives an error of about 0.1us worst case */ dest->lo = htonl(4295 * usec - (usec>>5) - (usec>>9)); } } /* ================================================== */ void UTI_Int64ToTimeval(NTP_int64 *src, struct timeval *dest) { /* As yet, there is no need to check for zero - all processing that has to detect that case is in the NTP layer */ dest->tv_sec = ntohl(src->hi) - JAN_1970; /* Until I invent a slick way to do this, just do it the obvious way */ dest->tv_usec = (int)(0.5 + (double)(ntohl(src->lo)) / 4294.967296); } /* ================================================== */ void UTI_TimevalNetworkToHost(Timeval *src, struct timeval *dest) { uint32_t sec_low, sec_high; dest->tv_usec = ntohl(src->tv_nsec) / 1000; sec_high = ntohl(src->tv_sec_high); sec_low = ntohl(src->tv_sec_low); /* get the missing bits from current time when received timestamp is only 32-bit */ if (sizeof (time_t) > 4 && sec_high == TV_NOHIGHSEC) { struct timeval now; gettimeofday(&now, NULL); sec_high = now.tv_sec >> 16 >> 16; } dest->tv_sec = (time_t)sec_high << 16 << 16 | sec_low; } /* ================================================== */ void UTI_TimevalHostToNetwork(struct timeval *src, Timeval *dest) { dest->tv_nsec = htonl(src->tv_usec * 1000); if (sizeof (time_t) > 4) dest->tv_sec_high = htonl(src->tv_sec >> 16 >> 16); else dest->tv_sec_high = htonl(TV_NOHIGHSEC); dest->tv_sec_low = htonl(src->tv_sec); } /* ================================================== */ #define FLOAT_EXP_BITS 7 #define FLOAT_EXP_MIN (-(1 << (FLOAT_EXP_BITS - 1))) #define FLOAT_EXP_MAX (-FLOAT_EXP_MIN - 1) #define FLOAT_COEF_BITS ((int)sizeof (int32_t) * 8 - FLOAT_EXP_BITS) #define FLOAT_COEF_MIN (-(1 << (FLOAT_COEF_BITS - 1))) #define FLOAT_COEF_MAX (-FLOAT_COEF_MIN - 1) double UTI_FloatNetworkToHost(Float f) { int32_t exp, coef, x; x = ntohl(f.f); exp = (x >> FLOAT_COEF_BITS) - FLOAT_COEF_BITS; coef = x << FLOAT_EXP_BITS >> FLOAT_EXP_BITS; return coef * pow(2.0, exp); } Float UTI_FloatHostToNetwork(double x) { int32_t exp, coef, neg; Float f; if (x < 0.0) { x = -x; neg = 1; } else { neg = 0; } if (x < 1.0e-100) { exp = coef = 0; } else if (x > 1.0e100) { exp = FLOAT_EXP_MAX; coef = FLOAT_COEF_MAX + neg; } else { exp = log(x) / log(2) + 1; coef = x * pow(2.0, -exp + FLOAT_COEF_BITS) + 0.5; assert(coef > 0); /* we may need to shift up to two bits down */ while (coef > FLOAT_COEF_MAX + neg) { coef >>= 1; exp++; } if (exp > FLOAT_EXP_MAX) { /* overflow */ exp = FLOAT_EXP_MAX; coef = FLOAT_COEF_MAX + neg; } else if (exp < FLOAT_EXP_MIN) { /* underflow */ if (exp + FLOAT_COEF_BITS >= FLOAT_EXP_MIN) { coef >>= FLOAT_EXP_MIN - exp; exp = FLOAT_EXP_MIN; } else { exp = coef = 0; } } } /* negate back */ if (neg) coef = (uint32_t)-coef << FLOAT_EXP_BITS >> FLOAT_EXP_BITS; f.f = htonl(exp << FLOAT_COEF_BITS | coef); return f; } /* ================================================== */ void UTI_FdSetCloexec(int fd) { int flags; flags = fcntl(fd, F_GETFD); if (flags != -1) { flags |= FD_CLOEXEC; fcntl(fd, F_SETFD, flags); } } /* ================================================== */