/****************************************************************************** ** ** FILE NAME : ifxmips_sha1.c ** PROJECT : IFX UEIP ** MODULES : DEU Module for Danube ** ** DATE : September 8, 2009 ** AUTHOR : Mohammad Firdaus ** DESCRIPTION : Data Encryption Unit Driver ** COPYRIGHT : Copyright (c) 2009 ** Infineon Technologies AG ** Am Campeon 1-12, 85579 Neubiberg, Germany ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** HISTORY ** $Date $Author $Comment ** 08,Sept 2009 Mohammad Firdaus Initial UEIP release *******************************************************************************/ /*! \defgroup IFX_DEU IFX_DEU_DRIVERS \ingroup API \brief ifx deu driver module */ /*! \file ifxmips_sha1.c \ingroup IFX_DEU \brief SHA1 encryption deu driver file */ /*! \defgroup IFX_SHA1_FUNCTIONS IFX_SHA1_FUNCTIONS \ingroup IFX_DEU \brief ifx deu sha1 functions */ /* Project header */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_DANUBE) #include "ifxmips_deu_danube.h" #elif defined(CONFIG_AR9) #include "ifxmips_deu_ar9.h" #elif defined(CONFIG_VR9) || defined(CONFIG_AR10) #include "ifxmips_deu_vr9.h" #else #error "Plaform Unknwon!" #endif #define SHA1_DIGEST_SIZE 20 #define SHA1_HMAC_BLOCK_SIZE 64 #define MAX_SHA1_ALGO 1 #define SHA1_STATUS 0 static int sha1_algo_status; //#define CRYPTO_DEBUG #ifdef CRYPTO_DEBUG extern char debug_level; #define DPRINTF(level, format, args...) if (level < debug_level) printk(KERN_INFO "[%s %s %d]: " format, __FILE__, __func__, __LINE__, ##args); #else #define DPRINTF(level, format, args...) #endif /* * \brief SHA1 private structure */ struct sha1_ctx { int started; u64 count; u32 hash[5]; u32 state[5]; u8 buffer[64]; }; void chip_version(void); void powerup_deu(int crypto); void powerdown_deu(int crypto); #ifdef CONFIG_CRYPTO_DEV_DMA static int disable_deudma = 0; #else static int disable_deudma = 1; #endif void set_sha1_algo_status(unsigned int sha1_algo, int cmd) { sha1_algo_status = cmd; } int read_sha1_algo_status(void) { int status; status = sha1_algo_status; return status; } /*! \fn static void sha1_transform (u32 *state, const u32 *in) * \ingroup IFX_SHA1_FUNCTIONS * \brief main interface to sha1 hardware * \param state current state * \param in 64-byte block of input */ static void sha1_transform (struct sha1_ctx *sctx, u32 *state, const u32 *in) { int i = 0; volatile struct deu_hash_t *hashs = (struct deu_hash_t *) HASH_START; unsigned long flag; set_sha1_algo_status(SHA1_STATUS, CRYPTO_STARTED); CRTCL_SECT_START; powerup_deu(SHA1_INIT); /* For context switching purposes, the previous hash output * is loaded back into the output register */ if (sctx->started) { hashs->D1R = *((u32 *) sctx->hash + 0); hashs->D2R = *((u32 *) sctx->hash + 1); hashs->D3R = *((u32 *) sctx->hash + 2); hashs->D4R = *((u32 *) sctx->hash + 3); hashs->D5R = *((u32 *) sctx->hash + 4); } for (i = 0; i < 16; i++) { hashs->MR = in[i]; }; //wait for processing while (hashs->controlr.BSY) { // this will not take long } /* For context switching purposes, the output is saved into a * context struct which can be used later on */ *((u32 *) sctx->hash + 0) = hashs->D1R; *((u32 *) sctx->hash + 1) = hashs->D2R; *((u32 *) sctx->hash + 2) = hashs->D3R; *((u32 *) sctx->hash + 3) = hashs->D4R; *((u32 *) sctx->hash + 4) = hashs->D5R; sctx->started = 1; powerdown_deu(SHA1_INIT); CRTCL_SECT_END; set_sha1_algo_status(SHA1_STATUS, CRYPTO_IDLE); } /*! \fn static void sha1_init(struct crypto_tfm *tfm) * \ingroup IFX_SHA1_FUNCTIONS * \brief initialize sha1 hardware * \param tfm linux crypto algo transform */ static int sha1_init(struct shash_desc *desc) { struct sha1_ctx *sctx = shash_desc_ctx(desc); unsigned long flag; CRTCL_SECT_START; SHA_HASH_INIT; CRTCL_SECT_END; sctx->started = 0; sctx->count = 0; return 0; } /*! \fn static void sha1_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len) * \ingroup IFX_SHA1_FUNCTIONS * \brief on-the-fly sha1 computation * \param tfm linux crypto algo transform * \param data input data * \param len size of input data */ static int sha1_update(struct shash_desc * desc, const u8 *data, unsigned int len) { struct sha1_ctx *sctx = shash_desc_ctx(desc); unsigned int i, j; j = (sctx->count >> 3) & 0x3f; sctx->count += len << 3; if ((j + len) > 63) { memcpy (&sctx->buffer[j], data, (i = 64 - j)); sha1_transform (sctx, sctx->state, (const u32 *)sctx->buffer); for (; i + 63 < len; i += 64) { sha1_transform (sctx, sctx->state, (const u32 *)&data[i]); } j = 0; } else i = 0; memcpy (&sctx->buffer[j], &data[i], len - i); return 0; } /*! \fn static void sha1_final(struct crypto_tfm *tfm, u8 *out) * \ingroup IFX_SHA1_FUNCTIONS * \brief compute final sha1 value * \param tfm linux crypto algo transform * \param out final md5 output value */ static int sha1_final(struct shash_desc *desc, u8 *out) { struct sha1_ctx *sctx = shash_desc_ctx(desc); u32 index, padlen; u64 t; u8 bits[8] = { 0, }; static const u8 padding[64] = { 0x80, }; volatile struct deu_hash_t *hashs = (struct deu_hash_t *) HASH_START; unsigned long flag; t = sctx->count; bits[7] = 0xff & t; t >>= 8; bits[6] = 0xff & t; t >>= 8; bits[5] = 0xff & t; t >>= 8; bits[4] = 0xff & t; t >>= 8; bits[3] = 0xff & t; t >>= 8; bits[2] = 0xff & t; t >>= 8; bits[1] = 0xff & t; t >>= 8; bits[0] = 0xff & t; /* Pad out to 56 mod 64 */ index = (sctx->count >> 3) & 0x3f; padlen = (index < 56) ? (56 - index) : ((64 + 56) - index); sha1_update (desc, padding, padlen); /* Append length */ sha1_update (desc, bits, sizeof bits); CRTCL_SECT_START; *((u32 *) out + 0) = hashs->D1R; *((u32 *) out + 1) = hashs->D2R; *((u32 *) out + 2) = hashs->D3R; *((u32 *) out + 3) = hashs->D4R; *((u32 *) out + 4) = hashs->D5R; CRTCL_SECT_END; // Wipe context memset (sctx, 0, sizeof *sctx); return 0; } /* * \brief SHA1 function mappings */ static struct shash_alg ifxdeu_sha1_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_init, .update = sha1_update, .final = sha1_final, .descsize = sizeof(struct sha1_ctx), .statesize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name= "ifxdeu-sha1", .cra_flags = CRYPTO_ALG_TYPE_DIGEST, .cra_blocksize = SHA1_HMAC_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; void ifx_sha1_toggle_algo(int mode) { int ret = 0; if (mode) { crypto_unregister_shash(&ifxdeu_sha1_alg); ifxdeu_sha1_alg.base.cra_flags = CRYPTO_ALG_TYPE_DIGEST; } else { ret = crypto_register_shash(&ifxdeu_sha1_alg); if (ret < 0) { printk("Error registering for sha1 hash alg\n"); crypto_unregister_shash(&ifxdeu_sha1_alg); } } } /*! \fn int __init ifxdeu_init_sha1 (void) * \ingroup IFX_SHA1_FUNCTIONS * \brief initialize sha1 driver */ int __init ifxdeu_init_sha1 (void) { int ret = -ENOSYS; #define IFX_DEU_DRV_VERSION "2.0.0" printk(KERN_INFO "Infineon Technologies DEU driver version %s \n", IFX_DEU_DRV_VERSION); if ((ret = crypto_register_shash(&ifxdeu_sha1_alg))) goto sha1_err; set_sha1_algo_status(SHA1_STATUS, CRYPTO_IDLE); printk (KERN_NOTICE "IFX DEU SHA1 initialized%s.\n", disable_deudma ? "" : " (DMA)"); return ret; sha1_err: printk(KERN_ERR "IFX DEU SHA1 initialization failed!\n"); return ret; } /*! \fn void __exit ifxdeu_fini_sha1 (void) * \ingroup IFX_SHA1_FUNCTIONS * \brief unregister sha1 driver */ void __exit ifxdeu_fini_sha1 (void) { crypto_unregister_shash(&ifxdeu_sha1_alg); #if defined(CONFIG_CRYPTO_DEV_DMA) printk("DMA has deregistered successfully\n"); #endif }