/* * Simple MTD partitioning layer * * (C) 2000 Nicolas Pitre * * This code is GPL * * 02-21-2002 Thomas Gleixner * added support for read_oob, write_oob */ #include #include #include #include #include #include #include #include #include #include #include #define MTD_ERASE_PARTIAL 0x8000 /* partition only covers parts of an erase block */ /* Our partition linked list */ static LIST_HEAD(mtd_partitions); /* Our partition node structure */ struct mtd_part { struct mtd_info mtd; struct mtd_info *master; uint64_t offset; struct list_head list; }; /* * Given a pointer to the MTD object in the mtd_part structure, we can retrieve * the pointer to that structure with this macro. */ #define PART(x) ((struct mtd_part *)(x)) #define IS_PART(mtd) (mtd->read == part_read) /* * MTD methods which simply translate the effective address and pass through * to the _real_ device. */ static int part_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); struct mtd_ecc_stats stats; int res; stats = part->master->ecc_stats; if (from >= mtd->size) len = 0; else if (from + len > mtd->size) len = mtd->size - from; res = part->master->read(part->master, from + part->offset, len, retlen, buf); if (unlikely(res)) { if (res == -EUCLEAN) mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected; if (res == -EBADMSG) mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed; } return res; } static int part_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { struct mtd_part *part = PART(mtd); if (from >= mtd->size) len = 0; else if (from + len > mtd->size) len = mtd->size - from; return part->master->point (part->master, from + part->offset, len, retlen, virt, phys); } static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); part->master->unpoint(part->master, from + part->offset, len); } static unsigned long part_get_unmapped_area(struct mtd_info *mtd, unsigned long len, unsigned long offset, unsigned long flags) { struct mtd_part *part = PART(mtd); offset += part->offset; return part->master->get_unmapped_area(part->master, len, offset, flags); } static int part_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct mtd_part *part = PART(mtd); int res; if (from >= mtd->size) return -EINVAL; if (ops->datbuf && from + ops->len > mtd->size) return -EINVAL; res = part->master->read_oob(part->master, from + part->offset, ops); if (unlikely(res)) { if (res == -EUCLEAN) mtd->ecc_stats.corrected++; if (res == -EBADMSG) mtd->ecc_stats.failed++; } return res; } static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->read_user_prot_reg(part->master, from, len, retlen, buf); } static int part_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf, size_t len) { struct mtd_part *part = PART(mtd); return part->master->get_user_prot_info(part->master, buf, len); } static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->read_fact_prot_reg(part->master, from, len, retlen, buf); } static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, size_t len) { struct mtd_part *part = PART(mtd); return part->master->get_fact_prot_info(part->master, buf, len); } static int part_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (to >= mtd->size) len = 0; else if (to + len > mtd->size) len = mtd->size - to; return part->master->write(part->master, to + part->offset, len, retlen, buf); } static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (to >= mtd->size) len = 0; else if (to + len > mtd->size) len = mtd->size - to; return part->master->panic_write(part->master, to + part->offset, len, retlen, buf); } static int part_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (to >= mtd->size) return -EINVAL; if (ops->datbuf && to + ops->len > mtd->size) return -EINVAL; return part->master->write_oob(part->master, to + part->offset, ops); } static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->write_user_prot_reg(part->master, from, len, retlen, buf); } static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); return part->master->lock_user_prot_reg(part->master, from, len); } static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; return part->master->writev(part->master, vecs, count, to + part->offset, retlen); } static int part_erase(struct mtd_info *mtd, struct erase_info *instr) { struct mtd_part *part = PART(mtd); int ret; if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (instr->addr >= mtd->size) return -EINVAL; instr->partial_start = false; if (mtd->flags & MTD_ERASE_PARTIAL) { size_t readlen = 0; u64 mtd_ofs; instr->erase_buf = kmalloc(part->master->erasesize, GFP_ATOMIC); if (!instr->erase_buf) return -ENOMEM; mtd_ofs = part->offset + instr->addr; instr->erase_buf_ofs = do_div(mtd_ofs, part->master->erasesize); if (instr->erase_buf_ofs > 0) { instr->addr -= instr->erase_buf_ofs; ret = part->master->read(part->master, instr->addr + part->offset, part->master->erasesize, &readlen, instr->erase_buf); instr->partial_start = true; } else { mtd_ofs = part->offset + part->mtd.size; instr->erase_buf_ofs = part->master->erasesize - do_div(mtd_ofs, part->master->erasesize); if (instr->erase_buf_ofs > 0) { instr->len += instr->erase_buf_ofs; ret = part->master->read(part->master, part->offset + instr->addr + instr->len - part->master->erasesize, part->master->erasesize, &readlen, instr->erase_buf); } else { ret = 0; } } if (ret < 0) { kfree(instr->erase_buf); return ret; } } instr->addr += part->offset; ret = part->master->erase(part->master, instr); if (ret) { if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; instr->addr -= part->offset; if (mtd->flags & MTD_ERASE_PARTIAL) kfree(instr->erase_buf); } return ret; } void mtd_erase_callback(struct erase_info *instr) { if (instr->mtd->erase == part_erase) { struct mtd_part *part = PART(instr->mtd); size_t wrlen = 0; if (instr->mtd->flags & MTD_ERASE_PARTIAL) { if (instr->partial_start) { part->master->write(part->master, instr->addr, instr->erase_buf_ofs, &wrlen, instr->erase_buf); instr->addr += instr->erase_buf_ofs; } else { instr->len -= instr->erase_buf_ofs; part->master->write(part->master, instr->addr + instr->len, instr->erase_buf_ofs, &wrlen, instr->erase_buf + part->master->erasesize - instr->erase_buf_ofs); } kfree(instr->erase_buf); } if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; instr->addr -= part->offset; } if (instr->callback) instr->callback(instr); } EXPORT_SYMBOL_GPL(mtd_erase_callback); static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = PART(mtd); if ((len + ofs) > mtd->size) return -EINVAL; return part->master->lock(part->master, ofs + part->offset, len); } static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = PART(mtd); if ((len + ofs) > mtd->size) return -EINVAL; return part->master->unlock(part->master, ofs + part->offset, len); } static void part_sync(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); part->master->sync(part->master); } static int part_suspend(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); return part->master->suspend(part->master); } static void part_resume(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); part->master->resume(part->master); } static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); if (ofs >= mtd->size) return -EINVAL; ofs += part->offset; return part->master->block_isbad(part->master, ofs); } static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); int res; if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (ofs >= mtd->size) return -EINVAL; ofs += part->offset; res = part->master->block_markbad(part->master, ofs); if (!res) mtd->ecc_stats.badblocks++; return res; } /* * This function unregisters and destroy all slave MTD objects which are * attached to the given master MTD object. */ int del_mtd_partitions(struct mtd_info *master) { struct mtd_part *slave, *next; list_for_each_entry_safe(slave, next, &mtd_partitions, list) if (slave->master == master) { list_del(&slave->list); del_mtd_device(&slave->mtd); kfree(slave); } return 0; } EXPORT_SYMBOL(del_mtd_partitions); static struct mtd_part *add_one_partition(struct mtd_info *master, const struct mtd_partition *part, int partno, uint64_t cur_offset) { struct mtd_part *slave; /* allocate the partition structure */ slave = kzalloc(sizeof(*slave), GFP_KERNEL); if (!slave) { printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", master->name); del_mtd_partitions(master); return NULL; } list_add(&slave->list, &mtd_partitions); /* set up the MTD object for this partition */ slave->mtd.type = master->type; slave->mtd.flags = master->flags & ~part->mask_flags; slave->mtd.size = part->size; slave->mtd.writesize = master->writesize; slave->mtd.oobsize = master->oobsize; slave->mtd.oobavail = master->oobavail; slave->mtd.subpage_sft = master->subpage_sft; slave->mtd.name = part->name; slave->mtd.owner = master->owner; slave->mtd.backing_dev_info = master->backing_dev_info; /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone * to have the same data be in two different partitions. */ slave->mtd.dev.parent = master->dev.parent; slave->mtd.read = part_read; slave->mtd.write = part_write; if (master->panic_write) slave->mtd.panic_write = part_panic_write; if (master->point && master->unpoint) { slave->mtd.point = part_point; slave->mtd.unpoint = part_unpoint; } if (master->get_unmapped_area) slave->mtd.get_unmapped_area = part_get_unmapped_area; if (master->read_oob) slave->mtd.read_oob = part_read_oob; if (master->write_oob) slave->mtd.write_oob = part_write_oob; if (master->read_user_prot_reg) slave->mtd.read_user_prot_reg = part_read_user_prot_reg; if (master->read_fact_prot_reg) slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; if (master->write_user_prot_reg) slave->mtd.write_user_prot_reg = part_write_user_prot_reg; if (master->lock_user_prot_reg) slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; if (master->get_user_prot_info) slave->mtd.get_user_prot_info = part_get_user_prot_info; if (master->get_fact_prot_info) slave->mtd.get_fact_prot_info = part_get_fact_prot_info; if (master->sync) slave->mtd.sync = part_sync; if (!partno && !master->dev.class && master->suspend && master->resume) { slave->mtd.suspend = part_suspend; slave->mtd.resume = part_resume; } if (master->writev) slave->mtd.writev = part_writev; if (master->lock) slave->mtd.lock = part_lock; if (master->unlock) slave->mtd.unlock = part_unlock; if (master->block_isbad) slave->mtd.block_isbad = part_block_isbad; if (master->block_markbad) slave->mtd.block_markbad = part_block_markbad; slave->mtd.erase = part_erase; slave->master = master; slave->offset = part->offset; if (slave->offset == MTDPART_OFS_APPEND) slave->offset = cur_offset; if (slave->offset == MTDPART_OFS_NXTBLK) { slave->offset = cur_offset; if (mtd_mod_by_eb(cur_offset, master) != 0) { /* Round up to next erasesize */ slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; printk(KERN_NOTICE "Moving partition %d: " "0x%012llx -> 0x%012llx\n", partno, (unsigned long long)cur_offset, (unsigned long long)slave->offset); } } if (slave->mtd.size == MTDPART_SIZ_FULL) slave->mtd.size = master->size - slave->offset; printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); /* let's do some sanity checks */ if (slave->offset >= master->size) { /* let's register it anyway to preserve ordering */ slave->offset = 0; slave->mtd.size = 0; printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", part->name); goto out_register; } if (slave->offset + slave->mtd.size > master->size) { slave->mtd.size = master->size - slave->offset; printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", part->name, master->name, (unsigned long long)slave->mtd.size); } if (master->numeraseregions > 1) { /* Deal with variable erase size stuff */ int i, max = master->numeraseregions; u64 end = slave->offset + slave->mtd.size; struct mtd_erase_region_info *regions = master->eraseregions; /* Find the first erase regions which is part of this * partition. */ for (i = 0; i < max && regions[i].offset <= slave->offset; i++) ; /* The loop searched for the region _behind_ the first one */ if (i > 0) i--; /* Pick biggest erasesize */ for (; i < max && regions[i].offset < end; i++) { if (slave->mtd.erasesize < regions[i].erasesize) { slave->mtd.erasesize = regions[i].erasesize; } } BUG_ON(slave->mtd.erasesize == 0); } else { /* Single erase size */ slave->mtd.erasesize = master->erasesize; } if ((slave->mtd.flags & MTD_WRITEABLE) && mtd_mod_by_eb(slave->offset, &slave->mtd)) { /* Doesn't start on a boundary of major erase size */ slave->mtd.flags |= MTD_ERASE_PARTIAL; if (((u32) slave->mtd.size) > master->erasesize) slave->mtd.flags &= ~MTD_WRITEABLE; else slave->mtd.erasesize = slave->mtd.size; } if ((slave->mtd.flags & MTD_WRITEABLE) && mtd_mod_by_eb(slave->offset + slave->mtd.size, &slave->mtd)) { slave->mtd.flags |= MTD_ERASE_PARTIAL; if ((u32) slave->mtd.size > master->erasesize) slave->mtd.flags &= ~MTD_WRITEABLE; else slave->mtd.erasesize = slave->mtd.size; } if ((slave->mtd.flags & (MTD_ERASE_PARTIAL|MTD_WRITEABLE)) == MTD_ERASE_PARTIAL) printk(KERN_WARNING"mtd: partition \"%s\" must either start or end on erase block boundary or be smaller than an erase block -- forcing read-only\n", part->name); slave->mtd.ecclayout = master->ecclayout; if (master->block_isbad) { uint64_t offs = 0; while (offs < slave->mtd.size) { if (master->block_isbad(master, offs + slave->offset)) slave->mtd.ecc_stats.badblocks++; offs += slave->mtd.erasesize; } } out_register: /* register our partition */ add_mtd_device(&slave->mtd); return slave; } #ifdef CONFIG_MTD_ROOTFS_SPLIT #define ROOTFS_SPLIT_NAME "rootfs_data" #define ROOTFS_REMOVED_NAME "" struct squashfs_super_block { __le32 s_magic; __le32 pad0[9]; __le64 bytes_used; }; static int split_squashfs(struct mtd_info *master, int offset, int *split_offset) { struct squashfs_super_block sb; int len, ret; ret = master->read(master, offset, sizeof(sb), &len, (void *) &sb); if (ret || (len != sizeof(sb))) { printk(KERN_ALERT "split_squashfs: error occured while reading " "from \"%s\"\n", master->name); return -EINVAL; } if (SQUASHFS_MAGIC != le32_to_cpu(sb.s_magic) ) { printk(KERN_ALERT "split_squashfs: no squashfs found in \"%s\"\n", master->name); *split_offset = 0; return 0; } if (le64_to_cpu((sb.bytes_used)) <= 0) { printk(KERN_ALERT "split_squashfs: squashfs is empty in \"%s\"\n", master->name); *split_offset = 0; return 0; } len = (u32) le64_to_cpu(sb.bytes_used); len += (offset & 0x000fffff); len += (master->erasesize - 1); len &= ~(master->erasesize - 1); len -= (offset & 0x000fffff); *split_offset = offset + len; return 0; } static int split_rootfs_data(struct mtd_info *master, struct mtd_info *rpart, const struct mtd_partition *part) { struct mtd_partition *dpart; struct mtd_part *slave = NULL; int split_offset = 0; int ret; ret = split_squashfs(master, part->offset, &split_offset); if (ret) return ret; if (split_offset <= 0) return 0; dpart = kmalloc(sizeof(*part)+sizeof(ROOTFS_SPLIT_NAME)+1, GFP_KERNEL); if (dpart == NULL) { printk(KERN_INFO "split_squashfs: no memory for partition \"%s\"\n", ROOTFS_SPLIT_NAME); return -ENOMEM; } memcpy(dpart, part, sizeof(*part)); dpart->name = (unsigned char *)&dpart[1]; strcpy(dpart->name, ROOTFS_SPLIT_NAME); dpart->size -= split_offset - dpart->offset; dpart->offset = split_offset; if (dpart == NULL) return 1; printk(KERN_INFO "mtd: partition \"%s\" created automatically, ofs=%llX, len=%llX \n", ROOTFS_SPLIT_NAME, dpart->offset, dpart->size); slave = add_one_partition(master, dpart, 0, split_offset); if (!slave) { kfree(dpart); return -ENOMEM; } rpart->split = &slave->mtd; return 0; } static int refresh_rootfs_split(struct mtd_info *mtd) { struct mtd_partition tpart; struct mtd_part *part; char *name; //int index = 0; int offset, size; int ret; part = PART(mtd); /* check for the new squashfs offset first */ ret = split_squashfs(part->master, part->offset, &offset); if (ret) return ret; if ((offset > 0) && !mtd->split) { printk(KERN_INFO "%s: creating new split partition for \"%s\"\n", __func__, mtd->name); /* if we don't have a rootfs split partition, create a new one */ tpart.name = (char *) mtd->name; tpart.size = mtd->size; tpart.offset = part->offset; return split_rootfs_data(part->master, &part->mtd, &tpart); } else if ((offset > 0) && mtd->split) { /* update the offsets of the existing partition */ size = mtd->size + part->offset - offset; part = PART(mtd->split); part->offset = offset; part->mtd.size = size; printk(KERN_INFO "%s: %s partition \"" ROOTFS_SPLIT_NAME "\", offset: 0x%06x (0x%06x)\n", __func__, (!strcmp(part->mtd.name, ROOTFS_SPLIT_NAME) ? "updating" : "creating"), (u32) part->offset, (u32) part->mtd.size); name = kmalloc(sizeof(ROOTFS_SPLIT_NAME) + 1, GFP_KERNEL); strcpy(name, ROOTFS_SPLIT_NAME); part->mtd.name = name; } else if ((offset <= 0) && mtd->split) { printk(KERN_INFO "%s: removing partition \"%s\"\n", __func__, mtd->split->name); /* mark existing partition as removed */ part = PART(mtd->split); name = kmalloc(sizeof(ROOTFS_SPLIT_NAME) + 1, GFP_KERNEL); strcpy(name, ROOTFS_REMOVED_NAME); part->mtd.name = name; part->offset = 0; part->mtd.size = 0; } return 0; } #endif /* CONFIG_MTD_ROOTFS_SPLIT */ /* * This function, given a master MTD object and a partition table, creates * and registers slave MTD objects which are bound to the master according to * the partition definitions. * * We don't register the master, or expect the caller to have done so, * for reasons of data integrity. */ int add_mtd_partitions(struct mtd_info *master, const struct mtd_partition *parts, int nbparts) { struct mtd_part *slave; uint64_t cur_offset = 0; int i; printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); for (i = 0; i < nbparts; i++) { slave = add_one_partition(master, parts + i, i, cur_offset); if (!slave) return -ENOMEM; if (!strcmp(parts[i].name, "rootfs")) { #ifdef CONFIG_MTD_ROOTFS_ROOT_DEV if (ROOT_DEV == 0) { printk(KERN_NOTICE "mtd: partition \"rootfs\" " "set to be root filesystem\n"); ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, slave->mtd.index); } #endif #ifdef CONFIG_MTD_ROOTFS_SPLIT split_rootfs_data(master, &slave->mtd, &parts[i]); #endif } cur_offset = slave->offset + slave->mtd.size; } return 0; } EXPORT_SYMBOL(add_mtd_partitions); int refresh_mtd_partitions(struct mtd_info *mtd) { int ret = 0; if (IS_PART(mtd)) { struct mtd_part *part; struct mtd_info *master; part = PART(mtd); master = part->master; if (master->refresh_device) ret = master->refresh_device(master); } if (!ret && mtd->refresh_device) ret = mtd->refresh_device(mtd); #ifdef CONFIG_MTD_ROOTFS_SPLIT if (!ret && IS_PART(mtd) && !strcmp(mtd->name, "rootfs")) refresh_rootfs_split(mtd); #endif return 0; } EXPORT_SYMBOL_GPL(refresh_mtd_partitions); static DEFINE_SPINLOCK(part_parser_lock); static LIST_HEAD(part_parsers); static struct mtd_part_parser *get_partition_parser(const char *name) { struct mtd_part_parser *p, *ret = NULL; spin_lock(&part_parser_lock); list_for_each_entry(p, &part_parsers, list) if (!strcmp(p->name, name) && try_module_get(p->owner)) { ret = p; break; } spin_unlock(&part_parser_lock); return ret; } int register_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_add(&p->list, &part_parsers); spin_unlock(&part_parser_lock); return 0; } EXPORT_SYMBOL_GPL(register_mtd_parser); int deregister_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_del(&p->list); spin_unlock(&part_parser_lock); return 0; } EXPORT_SYMBOL_GPL(deregister_mtd_parser); int parse_mtd_partitions(struct mtd_info *master, const char **types, struct mtd_partition **pparts, unsigned long origin) { struct mtd_part_parser *parser; int ret = 0; for ( ; ret <= 0 && *types; types++) { parser = get_partition_parser(*types); if (!parser && !request_module("%s", *types)) parser = get_partition_parser(*types); if (!parser) { printk(KERN_NOTICE "%s partition parsing not available\n", *types); continue; } ret = (*parser->parse_fn)(master, pparts, origin); if (ret > 0) { printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", ret, parser->name, master->name); } put_partition_parser(parser); } return ret; } EXPORT_SYMBOL_GPL(parse_mtd_partitions); // AVM/TKL: needed for setting up panic mode struct mtd_info *get_mtd_part_master(struct mtd_info *mtd) { struct mtd_info *master = NULL; struct mtd_part *part; if(IS_PART(mtd)){ part = PART(mtd); master = part->master; } return master; } EXPORT_SYMBOL(get_mtd_part_master);