/* Copyright (c) 2009-2012, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clock-local.h" /* * When enabling/disabling a clock, check the halt bit up to this number * number of times (with a 1 us delay in between) before continuing. */ #define HALT_CHECK_MAX_LOOPS 200 /* For clock without halt checking, wait this long after enables/disables. */ #define HALT_CHECK_DELAY_US 10 DEFINE_SPINLOCK(local_clock_reg_lock); struct clk_freq_tbl rcg_dummy_freq = F_END; /* * Common Set-Rate Functions */ /* For clocks with MND dividers. */ void set_rate_mnd(struct rcg_clk *rcg, struct clk_freq_tbl *nf) { uint32_t ns_reg_val, ctl_reg_val; /* Assert MND reset. */ ns_reg_val = readl_relaxed(rcg->ns_reg); ns_reg_val |= BIT(7); writel_relaxed(ns_reg_val, rcg->ns_reg); /* Program M and D values. */ writel_relaxed(nf->md_val, rcg->md_reg); /* If the clock has a separate CC register, program it. */ if (rcg->ns_reg != rcg->b.ctl_reg) { ctl_reg_val = readl_relaxed(rcg->b.ctl_reg); ctl_reg_val &= ~(rcg->ctl_mask); ctl_reg_val |= nf->ctl_val; writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); } /* Deassert MND reset. */ ns_reg_val &= ~BIT(7); writel_relaxed(ns_reg_val, rcg->ns_reg); } void set_rate_nop(struct rcg_clk *rcg, struct clk_freq_tbl *nf) { /* * Nothing to do for fixed-rate or integer-divider clocks. Any settings * in NS registers are applied in the enable path, since power can be * saved by leaving an un-clocked or slowly-clocked source selected * until the clock is enabled. */ } void set_rate_mnd_8(struct rcg_clk *rcg, struct clk_freq_tbl *nf) { uint32_t ctl_reg_val; /* Assert MND reset. */ ctl_reg_val = readl_relaxed(rcg->b.ctl_reg); ctl_reg_val |= BIT(8); writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); /* Program M and D values. */ writel_relaxed(nf->md_val, rcg->md_reg); /* Program MN counter Enable and Mode. */ ctl_reg_val &= ~(rcg->ctl_mask); ctl_reg_val |= nf->ctl_val; writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); /* Deassert MND reset. */ ctl_reg_val &= ~BIT(8); writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); } void set_rate_mnd_banked(struct rcg_clk *rcg, struct clk_freq_tbl *nf) { struct bank_masks *banks = rcg->bank_info; const struct bank_mask_info *new_bank_masks; const struct bank_mask_info *old_bank_masks; uint32_t ns_reg_val, ctl_reg_val; uint32_t bank_sel; /* * Determine active bank and program the other one. If the clock is * off, program the active bank since bank switching won't work if * both banks aren't running. */ ctl_reg_val = readl_relaxed(rcg->b.ctl_reg); bank_sel = !!(ctl_reg_val & banks->bank_sel_mask); /* If clock isn't running, don't switch banks. */ bank_sel ^= (!rcg->enabled || rcg->current_freq->freq_hz == 0); if (bank_sel == 0) { new_bank_masks = &banks->bank1_mask; old_bank_masks = &banks->bank0_mask; } else { new_bank_masks = &banks->bank0_mask; old_bank_masks = &banks->bank1_mask; } ns_reg_val = readl_relaxed(rcg->ns_reg); /* Assert bank MND reset. */ ns_reg_val |= new_bank_masks->rst_mask; writel_relaxed(ns_reg_val, rcg->ns_reg); /* * Program NS only if the clock is enabled, since the NS will be set * as part of the enable procedure and should remain with a low-power * MUX input selected until then. */ if (rcg->enabled) { ns_reg_val &= ~(new_bank_masks->ns_mask); ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask); writel_relaxed(ns_reg_val, rcg->ns_reg); } writel_relaxed(nf->md_val, new_bank_masks->md_reg); /* Enable counter only if clock is enabled. */ if (rcg->enabled) ctl_reg_val |= new_bank_masks->mnd_en_mask; else ctl_reg_val &= ~(new_bank_masks->mnd_en_mask); ctl_reg_val &= ~(new_bank_masks->mode_mask); ctl_reg_val |= (nf->ctl_val & new_bank_masks->mode_mask); writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); /* Deassert bank MND reset. */ ns_reg_val &= ~(new_bank_masks->rst_mask); writel_relaxed(ns_reg_val, rcg->ns_reg); /* * Switch to the new bank if clock is running. If it isn't, then * no switch is necessary since we programmed the active bank. */ if (rcg->enabled && rcg->current_freq->freq_hz) { ctl_reg_val ^= banks->bank_sel_mask; writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); /* * Wait at least 6 cycles of slowest bank's clock * for the glitch-free MUX to fully switch sources. */ mb(); udelay(1); /* Disable old bank's MN counter. */ ctl_reg_val &= ~(old_bank_masks->mnd_en_mask); writel_relaxed(ctl_reg_val, rcg->b.ctl_reg); /* Program old bank to a low-power source and divider. */ ns_reg_val &= ~(old_bank_masks->ns_mask); ns_reg_val |= (rcg->freq_tbl->ns_val & old_bank_masks->ns_mask); writel_relaxed(ns_reg_val, rcg->ns_reg); } /* Update the MND_EN and NS masks to match the current bank. */ rcg->mnd_en_mask = new_bank_masks->mnd_en_mask; rcg->ns_mask = new_bank_masks->ns_mask; } void set_rate_div_banked(struct rcg_clk *rcg, struct clk_freq_tbl *nf) { struct bank_masks *banks = rcg->bank_info; const struct bank_mask_info *new_bank_masks; const struct bank_mask_info *old_bank_masks; uint32_t ns_reg_val, bank_sel; /* * Determine active bank and program the other one. If the clock is * off, program the active bank since bank switching won't work if * both banks aren't running. */ ns_reg_val = readl_relaxed(rcg->ns_reg); bank_sel = !!(ns_reg_val & banks->bank_sel_mask); /* If clock isn't running, don't switch banks. */ bank_sel ^= (!rcg->enabled || rcg->current_freq->freq_hz == 0); if (bank_sel == 0) { new_bank_masks = &banks->bank1_mask; old_bank_masks = &banks->bank0_mask; } else { new_bank_masks = &banks->bank0_mask; old_bank_masks = &banks->bank1_mask; } /* * Program NS only if the clock is enabled, since the NS will be set * as part of the enable procedure and should remain with a low-power * MUX input selected until then. */ if (rcg->enabled) { ns_reg_val &= ~(new_bank_masks->ns_mask); ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask); writel_relaxed(ns_reg_val, rcg->ns_reg); } /* * Switch to the new bank if clock is running. If it isn't, then * no switch is necessary since we programmed the active bank. */ if (rcg->enabled && rcg->current_freq->freq_hz) { ns_reg_val ^= banks->bank_sel_mask; writel_relaxed(ns_reg_val, rcg->ns_reg); /* * Wait at least 6 cycles of slowest bank's clock * for the glitch-free MUX to fully switch sources. */ mb(); udelay(1); /* Program old bank to a low-power source and divider. */ ns_reg_val &= ~(old_bank_masks->ns_mask); ns_reg_val |= (rcg->freq_tbl->ns_val & old_bank_masks->ns_mask); writel_relaxed(ns_reg_val, rcg->ns_reg); } /* Update the NS mask to match the current bank. */ rcg->ns_mask = new_bank_masks->ns_mask; } /* * Clock enable/disable functions */ /* Return non-zero if a clock status registers shows the clock is halted. */ static int branch_clk_is_halted(const struct branch *b) { int invert = (b->halt_check == ENABLE); int status_bit = readl_relaxed(b->halt_reg) & BIT(b->halt_bit); return invert ? !status_bit : status_bit; } static int branch_in_hwcg_mode(const struct branch *b) { if (!b->hwcg_mask) return 0; return !!(readl_relaxed(b->hwcg_reg) & b->hwcg_mask); } void __branch_enable_reg(const struct branch *b, const char *name) { u32 reg_val; if (b->en_mask) { reg_val = readl_relaxed(b->ctl_reg); reg_val |= b->en_mask; writel_relaxed(reg_val, b->ctl_reg); } /* * Use a memory barrier since some halt status registers are * not within the same 1K segment as the branch/root enable * registers. It's also needed in the udelay() case to ensure * the delay starts after the branch enable. */ mb(); /* Skip checking halt bit if the clock is in hardware gated mode */ if (branch_in_hwcg_mode(b)) return; /* Wait for clock to enable before returning. */ if (b->halt_check == DELAY) { udelay(HALT_CHECK_DELAY_US); } else if (b->halt_check == ENABLE || b->halt_check == HALT || b->halt_check == ENABLE_VOTED || b->halt_check == HALT_VOTED) { int count; /* Wait up to HALT_CHECK_MAX_LOOPS for clock to enable. */ for (count = HALT_CHECK_MAX_LOOPS; branch_clk_is_halted(b) && count > 0; count--) udelay(1); WARN(count == 0, "%s status stuck at 'off'", name); } } /* Perform any register operations required to enable the clock. */ static void __rcg_clk_enable_reg(struct rcg_clk *rcg) { u32 reg_val; void __iomem *const reg = rcg->b.ctl_reg; /* * Program the NS register, if applicable. NS registers are not * set in the set_rate path because power can be saved by deferring * the selection of a clocked source until the clock is enabled. */ if (rcg->ns_mask) { reg_val = readl_relaxed(rcg->ns_reg); reg_val &= ~(rcg->ns_mask); reg_val |= (rcg->current_freq->ns_val & rcg->ns_mask); writel_relaxed(reg_val, rcg->ns_reg); } /* Enable MN counter, if applicable. */ reg_val = readl_relaxed(reg); if (rcg->current_freq->md_val) { reg_val |= rcg->mnd_en_mask; writel_relaxed(reg_val, reg); } /* Enable root. */ if (rcg->root_en_mask) { reg_val |= rcg->root_en_mask; writel_relaxed(reg_val, reg); } __branch_enable_reg(&rcg->b, rcg->c.dbg_name); } /* Perform any register operations required to disable the branch. */ u32 __branch_disable_reg(const struct branch *b, const char *name) { u32 reg_val; reg_val = b->ctl_reg ? readl_relaxed(b->ctl_reg) : 0; if (b->en_mask) { reg_val &= ~(b->en_mask); writel_relaxed(reg_val, b->ctl_reg); } /* * Use a memory barrier since some halt status registers are * not within the same K segment as the branch/root enable * registers. It's also needed in the udelay() case to ensure * the delay starts after the branch disable. */ mb(); /* Skip checking halt bit if the clock is in hardware gated mode */ if (branch_in_hwcg_mode(b)) return reg_val; /* Wait for clock to disable before continuing. */ if (b->halt_check == DELAY || b->halt_check == ENABLE_VOTED || b->halt_check == HALT_VOTED) { udelay(HALT_CHECK_DELAY_US); } else if (b->halt_check == ENABLE || b->halt_check == HALT) { int count; /* Wait up to HALT_CHECK_MAX_LOOPS for clock to disable. */ for (count = HALT_CHECK_MAX_LOOPS; !branch_clk_is_halted(b) && count > 0; count--) udelay(1); WARN(count == 0, "%s status stuck at 'on'", name); } return reg_val; } /* Perform any register operations required to disable the generator. */ static void __rcg_clk_disable_reg(struct rcg_clk *rcg) { void __iomem *const reg = rcg->b.ctl_reg; uint32_t reg_val; reg_val = __branch_disable_reg(&rcg->b, rcg->c.dbg_name); /* Disable root. */ if (rcg->root_en_mask) { reg_val &= ~(rcg->root_en_mask); writel_relaxed(reg_val, reg); } /* Disable MN counter, if applicable. */ if (rcg->current_freq->md_val) { reg_val &= ~(rcg->mnd_en_mask); writel_relaxed(reg_val, reg); } /* * Program NS register to low-power value with an un-clocked or * slowly-clocked source selected. */ if (rcg->ns_mask) { reg_val = readl_relaxed(rcg->ns_reg); reg_val &= ~(rcg->ns_mask); reg_val |= (rcg->freq_tbl->ns_val & rcg->ns_mask); writel_relaxed(reg_val, rcg->ns_reg); } } static int rcg_clk_prepare(struct clk *c) { struct rcg_clk *rcg = to_rcg_clk(c); WARN(rcg->current_freq == &rcg_dummy_freq, "Attempting to prepare %s before setting its rate. " "Set the rate first!\n", rcg->c.dbg_name); rcg->prepared = true; return 0; } /* Enable a rate-settable clock. */ static int rcg_clk_enable(struct clk *c) { unsigned long flags; struct rcg_clk *rcg = to_rcg_clk(c); spin_lock_irqsave(&local_clock_reg_lock, flags); __rcg_clk_enable_reg(rcg); rcg->enabled = true; spin_unlock_irqrestore(&local_clock_reg_lock, flags); return 0; } /* Disable a rate-settable clock. */ static void rcg_clk_disable(struct clk *c) { unsigned long flags; struct rcg_clk *rcg = to_rcg_clk(c); spin_lock_irqsave(&local_clock_reg_lock, flags); __rcg_clk_disable_reg(rcg); rcg->enabled = false; spin_unlock_irqrestore(&local_clock_reg_lock, flags); } static void rcg_clk_unprepare(struct clk *c) { struct rcg_clk *rcg = to_rcg_clk(c); rcg->prepared = false; } /* * Frequency-related functions */ /* Set a clock to an exact rate. */ static int rcg_clk_set_rate(struct clk *c, unsigned long rate) { struct rcg_clk *rcg = to_rcg_clk(c); struct clk_freq_tbl *nf, *cf; struct clk *chld; int rc = 0; unsigned long flags; for (nf = rcg->freq_tbl; nf->freq_hz != FREQ_END && nf->freq_hz != rate; nf++) ; if (nf->freq_hz == FREQ_END) return -EINVAL; cf = rcg->current_freq; /* Enable source clock dependency for the new frequency */ if (rcg->prepared) { rc = clk_prepare(nf->src_clk); if (rc) return rc; } spin_lock_irqsave(&c->lock, flags); if (rcg->enabled) { rc = clk_enable(nf->src_clk); if (rc) { spin_unlock_irqrestore(&c->lock, flags); clk_unprepare(nf->src_clk); return rc; } } spin_lock(&local_clock_reg_lock); /* Disable branch if clock isn't dual-banked with a glitch-free MUX. */ if (!rcg->bank_info) { /* Disable all branches to prevent glitches. */ list_for_each_entry(chld, &rcg->c.children, siblings) { struct branch_clk *x = to_branch_clk(chld); /* * We don't need to grab the child's lock because * we hold the local_clock_reg_lock and 'enabled' is * only modified within lock. */ if (x->enabled) __branch_disable_reg(&x->b, x->c.dbg_name); } if (rcg->enabled) __rcg_clk_disable_reg(rcg); } /* Perform clock-specific frequency switch operations. */ BUG_ON(!rcg->set_rate); rcg->set_rate(rcg, nf); /* * Current freq must be updated before __rcg_clk_enable_reg() * is called to make sure the MNCNTR_EN bit is set correctly. */ rcg->current_freq = nf; /* Enable any clocks that were disabled. */ if (!rcg->bank_info) { if (rcg->enabled) __rcg_clk_enable_reg(rcg); /* Enable only branches that were ON before. */ list_for_each_entry(chld, &rcg->c.children, siblings) { struct branch_clk *x = to_branch_clk(chld); if (x->enabled) __branch_enable_reg(&x->b, x->c.dbg_name); } } spin_unlock(&local_clock_reg_lock); /* Release source requirements of the old freq. */ if (rcg->enabled) clk_disable(cf->src_clk); spin_unlock_irqrestore(&c->lock, flags); if (rcg->prepared) clk_unprepare(cf->src_clk); return rc; } /* Check if a clock is currently enabled. */ static int rcg_clk_is_enabled(struct clk *c) { return to_rcg_clk(c)->enabled; } /* Return a supported rate that's at least the specified rate. */ static long rcg_clk_round_rate(struct clk *c, unsigned long rate) { struct rcg_clk *rcg = to_rcg_clk(c); struct clk_freq_tbl *f; for (f = rcg->freq_tbl; f->freq_hz != FREQ_END; f++) if (f->freq_hz >= rate) return f->freq_hz; return -EPERM; } /* Return the nth supported frequency for a given clock. */ static int rcg_clk_list_rate(struct clk *c, unsigned n) { struct rcg_clk *rcg = to_rcg_clk(c); if (!rcg->freq_tbl || rcg->freq_tbl->freq_hz == FREQ_END) return -ENXIO; return (rcg->freq_tbl + n)->freq_hz; } static struct clk *rcg_clk_get_parent(struct clk *c) { return to_rcg_clk(c)->current_freq->src_clk; } /* Disable hw clock gating if not set at boot */ enum handoff branch_handoff(struct branch *b, struct clk *c) { if (!branch_in_hwcg_mode(b)) { b->hwcg_mask = 0; if (b->ctl_reg && readl_relaxed(b->ctl_reg) & b->en_mask) return HANDOFF_ENABLED_CLK; } return HANDOFF_DISABLED_CLK; } static enum handoff branch_clk_handoff(struct clk *c) { struct branch_clk *br = to_branch_clk(c); return branch_handoff(&br->b, &br->c); } static enum handoff rcg_clk_handoff(struct clk *c) { struct rcg_clk *rcg = to_rcg_clk(c); uint32_t ctl_val, ns_val, md_val, ns_mask; struct clk_freq_tbl *freq; enum handoff ret; ctl_val = readl_relaxed(rcg->b.ctl_reg); ret = branch_handoff(&rcg->b, &rcg->c); if (ret == HANDOFF_DISABLED_CLK) return HANDOFF_DISABLED_CLK; if (rcg->bank_info) { const struct bank_masks *bank_masks = rcg->bank_info; const struct bank_mask_info *bank_info; if (!(ctl_val & bank_masks->bank_sel_mask)) bank_info = &bank_masks->bank0_mask; else bank_info = &bank_masks->bank1_mask; ns_mask = bank_info->ns_mask; md_val = bank_info->md_reg ? readl_relaxed(bank_info->md_reg) : 0; } else { ns_mask = rcg->ns_mask; md_val = rcg->md_reg ? readl_relaxed(rcg->md_reg) : 0; } if (!ns_mask) return HANDOFF_UNKNOWN_RATE; ns_val = readl_relaxed(rcg->ns_reg) & ns_mask; for (freq = rcg->freq_tbl; freq->freq_hz != FREQ_END; freq++) { if ((freq->ns_val & ns_mask) == ns_val && (!freq->md_val || freq->md_val == md_val)) break; } if (freq->freq_hz == FREQ_END) return HANDOFF_UNKNOWN_RATE; rcg->current_freq = freq; c->rate = freq->freq_hz; return HANDOFF_ENABLED_CLK; } struct clk_ops clk_ops_empty; struct fixed_clk gnd_clk = { .c = { .dbg_name = "ground_clk", .ops = &clk_ops_empty, CLK_INIT(gnd_clk.c), }, }; static int branch_clk_enable(struct clk *c) { unsigned long flags; struct branch_clk *br = to_branch_clk(c); spin_lock_irqsave(&local_clock_reg_lock, flags); __branch_enable_reg(&br->b, br->c.dbg_name); br->enabled = true; spin_unlock_irqrestore(&local_clock_reg_lock, flags); return 0; } static void branch_clk_disable(struct clk *c) { unsigned long flags; struct branch_clk *br = to_branch_clk(c); spin_lock_irqsave(&local_clock_reg_lock, flags); __branch_disable_reg(&br->b, br->c.dbg_name); br->enabled = false; spin_unlock_irqrestore(&local_clock_reg_lock, flags); } static struct clk *branch_clk_get_parent(struct clk *c) { return to_branch_clk(c)->parent; } static int branch_clk_is_enabled(struct clk *c) { return to_branch_clk(c)->enabled; } static void branch_enable_hwcg(struct branch *b) { unsigned long flags; u32 reg_val; spin_lock_irqsave(&local_clock_reg_lock, flags); reg_val = readl_relaxed(b->hwcg_reg); reg_val |= b->hwcg_mask; writel_relaxed(reg_val, b->hwcg_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); } static void branch_disable_hwcg(struct branch *b) { unsigned long flags; u32 reg_val; spin_lock_irqsave(&local_clock_reg_lock, flags); reg_val = readl_relaxed(b->hwcg_reg); reg_val &= ~b->hwcg_mask; writel_relaxed(reg_val, b->hwcg_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); } static void branch_clk_enable_hwcg(struct clk *c) { branch_enable_hwcg(&to_branch_clk(c)->b); } static void branch_clk_disable_hwcg(struct clk *c) { branch_disable_hwcg(&to_branch_clk(c)->b); } static int branch_set_flags(struct branch *b, unsigned flags) { unsigned long irq_flags; u32 reg_val; int ret = 0; if (!b->retain_reg) return -EPERM; spin_lock_irqsave(&local_clock_reg_lock, irq_flags); reg_val = readl_relaxed(b->retain_reg); switch (flags) { case CLKFLAG_RETAIN: reg_val |= b->retain_mask; break; case CLKFLAG_NORETAIN: reg_val &= ~b->retain_mask; break; default: ret = -EINVAL; } writel_relaxed(reg_val, b->retain_reg); spin_unlock_irqrestore(&local_clock_reg_lock, irq_flags); return ret; } static int branch_clk_set_flags(struct clk *clk, unsigned flags) { return branch_set_flags(&to_branch_clk(clk)->b, flags); } static int branch_clk_in_hwcg_mode(struct clk *c) { return branch_in_hwcg_mode(&to_branch_clk(c)->b); } static void rcg_clk_enable_hwcg(struct clk *c) { branch_enable_hwcg(&to_rcg_clk(c)->b); } static void rcg_clk_disable_hwcg(struct clk *c) { branch_disable_hwcg(&to_rcg_clk(c)->b); } static int rcg_clk_in_hwcg_mode(struct clk *c) { return branch_in_hwcg_mode(&to_rcg_clk(c)->b); } static int rcg_clk_set_flags(struct clk *clk, unsigned flags) { return branch_set_flags(&to_rcg_clk(clk)->b, flags); } int branch_reset(struct branch *b, enum clk_reset_action action) { int ret = 0; u32 reg_val; unsigned long flags; if (!b->reset_reg) return -EPERM; /* Disable hw gating when asserting a reset */ if (b->hwcg_mask && action == CLK_RESET_ASSERT) branch_disable_hwcg(b); spin_lock_irqsave(&local_clock_reg_lock, flags); /* Assert/Deassert reset */ reg_val = readl_relaxed(b->reset_reg); switch (action) { case CLK_RESET_ASSERT: reg_val |= b->reset_mask; break; case CLK_RESET_DEASSERT: reg_val &= ~b->reset_mask; break; default: ret = -EINVAL; } writel_relaxed(reg_val, b->reset_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); /* Enable hw gating when deasserting a reset */ if (b->hwcg_mask && action == CLK_RESET_DEASSERT) branch_enable_hwcg(b); /* Make sure write is issued before returning. */ mb(); return ret; } static int branch_clk_reset(struct clk *c, enum clk_reset_action action) { return branch_reset(&to_branch_clk(c)->b, action); } struct clk_ops clk_ops_branch = { .enable = branch_clk_enable, .disable = branch_clk_disable, .enable_hwcg = branch_clk_enable_hwcg, .disable_hwcg = branch_clk_disable_hwcg, .in_hwcg_mode = branch_clk_in_hwcg_mode, .is_enabled = branch_clk_is_enabled, .reset = branch_clk_reset, .get_parent = branch_clk_get_parent, .handoff = branch_clk_handoff, .set_flags = branch_clk_set_flags, }; struct clk_ops clk_ops_reset = { .reset = branch_clk_reset, }; static int rcg_clk_reset(struct clk *c, enum clk_reset_action action) { return branch_reset(&to_rcg_clk(c)->b, action); } struct clk_ops clk_ops_rcg = { .prepare = rcg_clk_prepare, .enable = rcg_clk_enable, .disable = rcg_clk_disable, .unprepare = rcg_clk_unprepare, .enable_hwcg = rcg_clk_enable_hwcg, .disable_hwcg = rcg_clk_disable_hwcg, .in_hwcg_mode = rcg_clk_in_hwcg_mode, .handoff = rcg_clk_handoff, .set_rate = rcg_clk_set_rate, .list_rate = rcg_clk_list_rate, .is_enabled = rcg_clk_is_enabled, .round_rate = rcg_clk_round_rate, .reset = rcg_clk_reset, .get_parent = rcg_clk_get_parent, .set_flags = rcg_clk_set_flags, }; static int cdiv_clk_enable(struct clk *c) { unsigned long flags; struct cdiv_clk *cdiv = to_cdiv_clk(c); spin_lock_irqsave(&local_clock_reg_lock, flags); __branch_enable_reg(&cdiv->b, cdiv->c.dbg_name); spin_unlock_irqrestore(&local_clock_reg_lock, flags); return 0; } static void cdiv_clk_disable(struct clk *c) { unsigned long flags; struct cdiv_clk *cdiv = to_cdiv_clk(c); spin_lock_irqsave(&local_clock_reg_lock, flags); __branch_disable_reg(&cdiv->b, cdiv->c.dbg_name); spin_unlock_irqrestore(&local_clock_reg_lock, flags); } static int cdiv_clk_set_rate(struct clk *c, unsigned long rate) { struct cdiv_clk *cdiv = to_cdiv_clk(c); u32 reg_val; if (rate > cdiv->max_div) return -EINVAL; spin_lock(&local_clock_reg_lock); reg_val = readl_relaxed(cdiv->ns_reg); reg_val &= ~(cdiv->ext_mask | (cdiv->max_div - 1) << cdiv->div_offset); /* Non-zero rates mean set a divider, zero means use external input */ if (rate) reg_val |= (rate - 1) << cdiv->div_offset; else reg_val |= cdiv->ext_mask; writel_relaxed(reg_val, cdiv->ns_reg); spin_unlock(&local_clock_reg_lock); cdiv->cur_div = rate; return 0; } static unsigned long cdiv_clk_get_rate(struct clk *c) { return to_cdiv_clk(c)->cur_div; } static long cdiv_clk_round_rate(struct clk *c, unsigned long rate) { return rate > to_cdiv_clk(c)->max_div ? -EPERM : rate; } static int cdiv_clk_list_rate(struct clk *c, unsigned n) { return n > to_cdiv_clk(c)->max_div ? -ENXIO : n; } static enum handoff cdiv_clk_handoff(struct clk *c) { struct cdiv_clk *cdiv = to_cdiv_clk(c); enum handoff ret; u32 reg_val; ret = branch_handoff(&cdiv->b, &cdiv->c); if (ret == HANDOFF_DISABLED_CLK) return ret; reg_val = readl_relaxed(cdiv->ns_reg); if (reg_val & cdiv->ext_mask) { cdiv->cur_div = 0; } else { reg_val >>= cdiv->div_offset; cdiv->cur_div = (reg_val & (cdiv->max_div - 1)) + 1; } return HANDOFF_ENABLED_CLK; } static void cdiv_clk_enable_hwcg(struct clk *c) { branch_enable_hwcg(&to_cdiv_clk(c)->b); } static void cdiv_clk_disable_hwcg(struct clk *c) { branch_disable_hwcg(&to_cdiv_clk(c)->b); } static int cdiv_clk_in_hwcg_mode(struct clk *c) { return branch_in_hwcg_mode(&to_cdiv_clk(c)->b); } struct clk_ops clk_ops_cdiv = { .enable = cdiv_clk_enable, .disable = cdiv_clk_disable, .in_hwcg_mode = cdiv_clk_in_hwcg_mode, .enable_hwcg = cdiv_clk_enable_hwcg, .disable_hwcg = cdiv_clk_disable_hwcg, .handoff = cdiv_clk_handoff, .set_rate = cdiv_clk_set_rate, .get_rate = cdiv_clk_get_rate, .list_rate = cdiv_clk_list_rate, .round_rate = cdiv_clk_round_rate, };