/* * Copyright (c) 2012 The Linux Foundation. All rights reserved.* */ /* * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rpm_resources.h" #include "rpm-regulator-private.h" /* Debug Definitions */ enum { MSM_RPM_VREG_DEBUG_REQUEST = BIT(0), MSM_RPM_VREG_DEBUG_VOTE = BIT(1), MSM_RPM_VREG_DEBUG_DUPLICATE = BIT(2), MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG = BIT(3), }; static int msm_rpm_vreg_debug_mask; module_param_named( debug_mask, msm_rpm_vreg_debug_mask, int, S_IRUSR | S_IWUSR ); /* Used for access via the rpm_regulator_* API. */ struct rpm_regulator { int vreg_id; enum rpm_vreg_voter voter; int sleep_also; int min_uV; int max_uV; }; struct vreg_config *(*get_config[])(void) = { [RPM_VREG_VERSION_8660] = get_config_8660, [RPM_VREG_VERSION_8960] = get_config_8960, [RPM_VREG_VERSION_8960_PM8917] = get_config_8960_pm8917, [RPM_VREG_VERSION_IPQ806X] = get_config_ipq806x, }; static struct rpm_regulator_consumer_mapping *consumer_map; static int consumer_map_len; #define SET_PART(_vreg, _part, _val) \ _vreg->req[_vreg->part->_part.word].value \ = (_vreg->req[_vreg->part->_part.word].value \ & ~_vreg->part->_part.mask) \ | (((_val) << _vreg->part->_part.shift) \ & _vreg->part->_part.mask) #define GET_PART(_vreg, _part) \ ((_vreg->req[_vreg->part->_part.word].value & _vreg->part->_part.mask) \ >> _vreg->part->_part.shift) #define GET_PART_PREV_ACT(_vreg, _part) \ ((_vreg->prev_active_req[_vreg->part->_part.word].value \ & _vreg->part->_part.mask) \ >> _vreg->part->_part.shift) #define USES_PART(_vreg, _part) (_vreg->part->_part.mask) #define vreg_err(vreg, fmt, ...) \ pr_err("%s: " fmt, vreg->rdesc.name, ##__VA_ARGS__) #define RPM_VREG_PIN_CTRL_EN0 0x01 #define RPM_VREG_PIN_CTRL_EN1 0x02 #define RPM_VREG_PIN_CTRL_EN2 0x04 #define RPM_VREG_PIN_CTRL_EN3 0x08 #define RPM_VREG_PIN_CTRL_ALL 0x0F static const char *label_freq[] = { [RPM_VREG_FREQ_NONE] = " N/A", [RPM_VREG_FREQ_19p20] = "19.2", [RPM_VREG_FREQ_9p60] = "9.60", [RPM_VREG_FREQ_6p40] = "6.40", [RPM_VREG_FREQ_4p80] = "4.80", [RPM_VREG_FREQ_3p84] = "3.84", [RPM_VREG_FREQ_3p20] = "3.20", [RPM_VREG_FREQ_2p74] = "2.74", [RPM_VREG_FREQ_2p40] = "2.40", [RPM_VREG_FREQ_2p13] = "2.13", [RPM_VREG_FREQ_1p92] = "1.92", [RPM_VREG_FREQ_1p75] = "1.75", [RPM_VREG_FREQ_1p60] = "1.60", [RPM_VREG_FREQ_1p48] = "1.48", [RPM_VREG_FREQ_1p37] = "1.37", [RPM_VREG_FREQ_1p28] = "1.28", [RPM_VREG_FREQ_1p20] = "1.20", }; static const char *label_corner[] = { [RPM_VREG_CORNER_NONE] = "NONE", [RPM_VREG_CORNER_LOW] = "LOW", [RPM_VREG_CORNER_NOMINAL] = "NOM", [RPM_VREG_CORNER_HIGH] = "HIGH", }; /* * This is used when voting for LPM or HPM by subtracting or adding to the * hpm_min_load of a regulator. It has units of uA. */ #define LOAD_THRESHOLD_STEP 1000 /* rpm_version keeps track of the version for the currently running driver. */ enum rpm_vreg_version rpm_version = -1; /* config holds all configuration data of the currently running driver. */ static struct vreg_config *config; /* These regulator ID values are specified in the board file. */ static int vreg_id_vdd_mem, vreg_id_vdd_dig; static inline int vreg_id_is_vdd_mem_or_dig(int id) { return id == vreg_id_vdd_mem || id == vreg_id_vdd_dig; } #define DEBUG_PRINT_BUFFER_SIZE 512 static void rpm_regulator_req(struct vreg *vreg, int set) { int uV, mV, fm, pm, pc, pf, pd, freq, state, i; const char *pf_label = "", *fm_label = "", *pc_total = ""; const char *pc_en[4] = {"", "", "", ""}; const char *pm_label = "", *freq_label = "", *corner_label = ""; char buf[DEBUG_PRINT_BUFFER_SIZE]; size_t buflen = DEBUG_PRINT_BUFFER_SIZE; int pos = 0; /* Suppress VDD_MEM and VDD_DIG printing. */ if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG) && vreg_id_is_vdd_mem_or_dig(vreg->id)) return; uV = GET_PART(vreg, uV); mV = GET_PART(vreg, mV); if (vreg->type == RPM_REGULATOR_TYPE_NCP) { uV = -uV; mV = -mV; } fm = GET_PART(vreg, fm); pm = GET_PART(vreg, pm); pc = GET_PART(vreg, pc); pf = GET_PART(vreg, pf); pd = GET_PART(vreg, pd); freq = GET_PART(vreg, freq); state = GET_PART(vreg, enable_state); if (pf >= 0 && pf < config->label_pin_func_len) pf_label = config->label_pin_func[pf]; if (fm >= 0 && fm < config->label_force_mode_len) fm_label = config->label_force_mode[fm]; if (pm >= 0 && pm < config->label_power_mode_len) pm_label = config->label_power_mode[pm]; if (freq >= 0 && freq < ARRAY_SIZE(label_freq)) freq_label = label_freq[freq]; for (i = 0; i < config->label_pin_ctrl_len; i++) if (pc & (1 << i)) pc_en[i] = config->label_pin_ctrl[i]; if (pc == RPM_VREG_PIN_CTRL_NONE) pc_total = " none"; pos += scnprintf(buf + pos, buflen - pos, "%s%s: ", KERN_INFO, __func__); pos += scnprintf(buf + pos, buflen - pos, "%s %-9s: s=%c", (set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"), vreg->rdesc.name, (set == MSM_RPM_CTX_SET_0 ? 'A' : 'S')); if (USES_PART(vreg, uV) && vreg->type != RPM_REGULATOR_TYPE_CORNER) pos += scnprintf(buf + pos, buflen - pos, ", v=%7d uV", uV); if (USES_PART(vreg, mV)) pos += scnprintf(buf + pos, buflen - pos, ", v=%4d mV", mV); if (USES_PART(vreg, enable_state)) pos += scnprintf(buf + pos, buflen - pos, ", state=%s (%d)", (state == 1 ? "on" : "off"), state); if (USES_PART(vreg, ip)) pos += scnprintf(buf + pos, buflen - pos, ", ip=%4d mA", GET_PART(vreg, ip)); if (USES_PART(vreg, fm)) pos += scnprintf(buf + pos, buflen - pos, ", fm=%s (%d)", fm_label, fm); if (USES_PART(vreg, pc)) pos += scnprintf(buf + pos, buflen - pos, ", pc=%s%s%s%s%s (%X)", pc_en[0], pc_en[1], pc_en[2], pc_en[3], pc_total, pc); if (USES_PART(vreg, pf)) pos += scnprintf(buf + pos, buflen - pos, ", pf=%s (%d)", pf_label, pf); if (USES_PART(vreg, pd)) pos += scnprintf(buf + pos, buflen - pos, ", pd=%s (%d)", (pd == 1 ? "Y" : "N"), pd); if (USES_PART(vreg, ia)) pos += scnprintf(buf + pos, buflen - pos, ", ia=%4d mA", GET_PART(vreg, ia)); if (USES_PART(vreg, freq)) { if (vreg->type == RPM_REGULATOR_TYPE_NCP) pos += scnprintf(buf + pos, buflen - pos, ", freq=%2d", freq); else pos += scnprintf(buf + pos, buflen - pos, ", freq=%s MHz (%2d)", freq_label, freq); } if (USES_PART(vreg, pm)) pos += scnprintf(buf + pos, buflen - pos, ", pm=%s (%d)", pm_label, pm); if (USES_PART(vreg, freq_clk_src)) pos += scnprintf(buf + pos, buflen - pos, ", clk_src=%d", GET_PART(vreg, freq_clk_src)); if (USES_PART(vreg, comp_mode)) pos += scnprintf(buf + pos, buflen - pos, ", comp=%d", GET_PART(vreg, comp_mode)); if (USES_PART(vreg, hpm)) pos += scnprintf(buf + pos, buflen - pos, ", hpm=%d", GET_PART(vreg, hpm)); if (USES_PART(vreg, uV) && vreg->type == RPM_REGULATOR_TYPE_CORNER) { if (uV >= 0 && uV < (ARRAY_SIZE(label_corner) - 1)) corner_label = label_corner[uV+1]; pos += scnprintf(buf + pos, buflen - pos, ", corner=%s (%d)", corner_label, uV); } pos += scnprintf(buf + pos, buflen - pos, "; req[0]={%d, 0x%08X}", vreg->req[0].id, vreg->req[0].value); if (vreg->part->request_len > 1) pos += scnprintf(buf + pos, buflen - pos, ", req[1]={%d, 0x%08X}", vreg->req[1].id, vreg->req[1].value); pos += scnprintf(buf + pos, buflen - pos, "\n"); printk(buf); } static void rpm_regulator_vote(struct vreg *vreg, enum rpm_vreg_voter voter, int set, int voter_uV, int aggregate_uV) { /* Suppress VDD_MEM and VDD_DIG printing. */ if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG) && vreg_id_is_vdd_mem_or_dig(vreg->id)) return; pr_info("vote received %-9s: voter=%d, set=%c, v_voter=%7d uV, " "v_aggregate=%7d uV\n", vreg->rdesc.name, voter, (set == 0 ? 'A' : 'S'), voter_uV, aggregate_uV); } static void rpm_regulator_duplicate(struct vreg *vreg, int set, int cnt) { /* Suppress VDD_MEM and VDD_DIG printing. */ if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG) && vreg_id_is_vdd_mem_or_dig(vreg->id)) return; if (cnt == 2) pr_info("ignored request %-9s: set=%c; req[0]={%d, 0x%08X}, " "req[1]={%d, 0x%08X}\n", vreg->rdesc.name, (set == 0 ? 'A' : 'S'), vreg->req[0].id, vreg->req[0].value, vreg->req[1].id, vreg->req[1].value); else if (cnt == 1) pr_info("ignored request %-9s: set=%c; req[0]={%d, 0x%08X}\n", vreg->rdesc.name, (set == 0 ? 'A' : 'S'), vreg->req[0].id, vreg->req[0].value); } static bool requires_tcxo_workaround; static struct clk *tcxo_handle; static struct wake_lock tcxo_wake_lock; static DEFINE_MUTEX(tcxo_mutex); static bool tcxo_is_enabled; /* * TCXO must be kept on for at least the duration of its warmup (4 ms); * otherwise, it will stay on when hardware disabling is attempted. */ #define TCXO_WARMUP_TIME_MS 4 static void tcxo_get_handle(void) { if (!tcxo_handle) { tcxo_handle = clk_get_sys("rpm-regulator", "vref_buff"); if (IS_ERR(tcxo_handle)) tcxo_handle = NULL; } } /* * Perform best effort enable of CXO. Since the MSM clock drivers depend upon * the rpm-regulator driver, any rpm-regulator devices that are configured with * always_on == 1 will not be able to enable CXO during probe. This does not * cause a problem though since CXO will be enabled by the boot loaders before * Apps boots up. */ static bool tcxo_enable(void) { int rc; if (tcxo_handle && !tcxo_is_enabled) { rc = clk_prepare_enable(tcxo_handle); if (!rc) { tcxo_is_enabled = true; wake_lock(&tcxo_wake_lock); return true; } } return false; } static void tcxo_delayed_disable_work(struct work_struct *work) { mutex_lock(&tcxo_mutex); clk_disable_unprepare(tcxo_handle); tcxo_is_enabled = false; wake_unlock(&tcxo_wake_lock); mutex_unlock(&tcxo_mutex); } static DECLARE_DELAYED_WORK(tcxo_disable_work, tcxo_delayed_disable_work); static void tcxo_delayed_disable(void) { /* * The delay in jiffies has 1 added to it to ensure that at least * one jiffy takes place before the work is enqueued. Without this, * the work would be scheduled to run in the very next jiffy which could * result in too little delay and TCXO being stuck on. */ if (tcxo_handle) schedule_delayed_work(&tcxo_disable_work, msecs_to_jiffies(TCXO_WARMUP_TIME_MS) + 1); } /* Mutex lock needed for sleep-selectable regulators. */ static DEFINE_MUTEX(rpm_sleep_sel_lock); static int voltage_from_req(struct vreg *vreg) { int uV = 0; if (vreg->part->uV.mask) uV = GET_PART(vreg, uV); else if (vreg->part->mV.mask) uV = MILLI_TO_MICRO(GET_PART(vreg, mV)); else if (vreg->part->enable_state.mask) uV = GET_PART(vreg, enable_state); return uV; } static void voltage_to_req(int uV, struct vreg *vreg) { if (vreg->part->uV.mask) SET_PART(vreg, uV, uV); else if (vreg->part->mV.mask) SET_PART(vreg, mV, MICRO_TO_MILLI(uV)); else if (vreg->part->enable_state.mask) SET_PART(vreg, enable_state, uV); } static int vreg_send_request(struct vreg *vreg, enum rpm_vreg_voter voter, int set, unsigned mask0, unsigned val0, unsigned mask1, unsigned val1, unsigned cnt, int update_voltage) { struct msm_rpm_iv_pair *prev_req; int rc = 0, max_uV_vote = 0; bool tcxo_enabled = false; bool voltage_increased = false; unsigned prev0, prev1; int *min_uV_vote; int i; if (set == MSM_RPM_CTX_SET_0) { min_uV_vote = vreg->active_min_uV_vote; prev_req = vreg->prev_active_req; } else { min_uV_vote = vreg->sleep_min_uV_vote; prev_req = vreg->prev_sleep_req; } prev0 = vreg->req[0].value; vreg->req[0].value &= ~mask0; vreg->req[0].value |= val0 & mask0; prev1 = vreg->req[1].value; vreg->req[1].value &= ~mask1; vreg->req[1].value |= val1 & mask1; /* Set the force mode field based on which set is being requested. */ if (set == MSM_RPM_CTX_SET_0) SET_PART(vreg, fm, vreg->pdata.force_mode); else SET_PART(vreg, fm, vreg->pdata.sleep_set_force_mode); if (update_voltage) min_uV_vote[voter] = voltage_from_req(vreg); /* Find the highest voltage voted for and use it. */ for (i = 0; i < RPM_VREG_VOTER_COUNT; i++) max_uV_vote = max(max_uV_vote, min_uV_vote[i]); voltage_to_req(max_uV_vote, vreg); if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_VOTE) rpm_regulator_vote(vreg, voter, set, min_uV_vote[voter], max_uV_vote); /* Ignore duplicate requests */ if (vreg->req[0].value != prev_req[0].value || vreg->req[1].value != prev_req[1].value) { /* Enable CXO clock if necessary for TCXO workaround. */ if (requires_tcxo_workaround && vreg->requires_cxo && (set == MSM_RPM_CTX_SET_0) && (GET_PART(vreg, uV) > GET_PART_PREV_ACT(vreg, uV))) { mutex_lock(&tcxo_mutex); if (!tcxo_handle) tcxo_get_handle(); voltage_increased = true; tcxo_enabled = tcxo_enable(); } rc = msm_rpmrs_set(set, vreg->req, cnt); if (rc) { vreg->req[0].value = prev0; vreg->req[1].value = prev1; vreg_err(vreg, "msm_rpmrs_set failed - " "set=%s, id=%d, rc=%d\n", (set == MSM_RPM_CTX_SET_0 ? "active" : "sleep"), vreg->req[0].id, rc); } else { /* Only save if nonzero and active set. */ if (max_uV_vote && (set == MSM_RPM_CTX_SET_0)) vreg->save_uV = max_uV_vote; if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_REQUEST) rpm_regulator_req(vreg, set); prev_req[0].value = vreg->req[0].value; prev_req[1].value = vreg->req[1].value; } /* * Schedule CXO clock to be disabled after TCXO warmup time if * TCXO workaround is applicable for this regulator. */ if (voltage_increased) { if (tcxo_enabled) tcxo_delayed_disable(); mutex_unlock(&tcxo_mutex); } } else if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_DUPLICATE) { rpm_regulator_duplicate(vreg, set, cnt); } return rc; } static int vreg_set_sleep_sel(struct vreg *vreg, enum rpm_vreg_voter voter, int sleep, unsigned mask0, unsigned val0, unsigned mask1, unsigned val1, unsigned cnt, int update_voltage) { unsigned int s_mask[2] = {mask0, mask1}, s_val[2] = {val0, val1}; int rc; if (voter < 0 || voter >= RPM_VREG_VOTER_COUNT) return -EINVAL; mutex_lock(&rpm_sleep_sel_lock); /* * Send sleep set request first so that subsequent set_mode, etc calls * use the voltage from the active set. */ if (sleep) rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_SLEEP, mask0, val0, mask1, val1, cnt, update_voltage); else { /* * Vote for 0 V in the sleep set when active set-only is * specified. This ensures that a disable vote will be issued * at some point for the sleep set of the regulator. */ if (vreg->part->uV.mask) { s_val[vreg->part->uV.word] = 0 << vreg->part->uV.shift; s_mask[vreg->part->uV.word] = vreg->part->uV.mask; } else if (vreg->part->mV.mask) { s_val[vreg->part->mV.word] = 0 << vreg->part->mV.shift; s_mask[vreg->part->mV.word] = vreg->part->mV.mask; } else if (vreg->part->enable_state.mask) { s_val[vreg->part->enable_state.word] = 0 << vreg->part->enable_state.shift; s_mask[vreg->part->enable_state.word] = vreg->part->enable_state.mask; } rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_SLEEP, s_mask[0], s_val[0], s_mask[1], s_val[1], cnt, update_voltage); } rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_0, mask0, val0, mask1, val1, cnt, update_voltage); mutex_unlock(&rpm_sleep_sel_lock); return rc; } /** * rpm_vreg_set_voltage - vote for a min_uV value of specified regualtor * @vreg: ID for regulator * @voter: ID for the voter * @min_uV: minimum acceptable voltage (in uV) that is voted for * @max_uV: maximum acceptable voltage (in uV) that is voted for * @sleep_also: 0 for active set only, non-0 for active set and sleep set * * Returns 0 on success or errno. * * This function is used to vote for the voltage of a regulator without * using the regulator framework. It is needed for consumers which wish to only * vote for active set regulator voltage. * * If sleep_also == 0, then a sleep-set value of 0V will be voted for. * * This function may only be called for regulators which have the sleep flag * specified in their private data. * * Consumers can vote to disable a regulator with this function by passing * min_uV = 0 and max_uV = 0. * * Voltage switch type regulators may be controlled via rpm_vreg_set_voltage * as well. For this type of regulator, max_uV > 0 is treated as an enable * request and max_uV == 0 is treated as a disable request. */ int rpm_vreg_set_voltage(int vreg_id, enum rpm_vreg_voter voter, int min_uV, int max_uV, int sleep_also) { unsigned int mask[2] = {0}, val[2] = {0}; struct vreg_range *range; struct vreg *vreg; int uV = min_uV; int lim_min_uV, lim_max_uV, i, rc; if (machine_is_ipq806x_rumi3()) { printk("Skipping %s for rumi\n", __func__); return 0; } if (!config) { pr_err("rpm-regulator driver has not probed yet.\n"); return -ENODEV; } if (vreg_id < config->vreg_id_min || vreg_id > config->vreg_id_max) { pr_err("invalid regulator id=%d\n", vreg_id); return -EINVAL; } vreg = &config->vregs[vreg_id]; if (!vreg->pdata.sleep_selectable) { vreg_err(vreg, "regulator is not marked sleep selectable\n"); return -EINVAL; } /* Allow min_uV == max_uV == 0 to represent a disable request. */ if ((min_uV != 0 || max_uV != 0) && (vreg->part->uV.mask || vreg->part->mV.mask)) { /* * Check if request voltage is outside of allowed range. The * regulator core has already checked that constraint range * is inside of the physically allowed range. */ lim_min_uV = vreg->pdata.init_data.constraints.min_uV; lim_max_uV = vreg->pdata.init_data.constraints.max_uV; if (uV < lim_min_uV && max_uV >= lim_min_uV) uV = lim_min_uV; if (uV < lim_min_uV || uV > lim_max_uV) { vreg_err(vreg, "request v=[%d, %d] is outside allowed " "v=[%d, %d]\n", min_uV, max_uV, lim_min_uV, lim_max_uV); return -EINVAL; } range = &vreg->set_points->range[0]; /* Find the range which uV is inside of. */ for (i = vreg->set_points->count - 1; i > 0; i--) { if (uV > vreg->set_points->range[i - 1].max_uV) { range = &vreg->set_points->range[i]; break; } } /* * Force uV to be an allowed set point and apply a ceiling * function to non-set point values. */ uV = (uV - range->min_uV + range->step_uV - 1) / range->step_uV; uV = uV * range->step_uV + range->min_uV; if (uV > max_uV) { vreg_err(vreg, "request v=[%d, %d] cannot be met by any set point; " "next set point: %d\n", min_uV, max_uV, uV); return -EINVAL; } } if (vreg->type == RPM_REGULATOR_TYPE_CORNER) { /* * Translate from enum values which work as inputs in the * rpm_vreg_set_voltage function to the actual corner values * sent to the RPM. */ if (uV > 0) uV -= RPM_VREG_CORNER_NONE; } if (vreg->part->uV.mask) { val[vreg->part->uV.word] = uV << vreg->part->uV.shift; mask[vreg->part->uV.word] = vreg->part->uV.mask; } else if (vreg->part->mV.mask) { val[vreg->part->mV.word] = MICRO_TO_MILLI(uV) << vreg->part->mV.shift; mask[vreg->part->mV.word] = vreg->part->mV.mask; } else if (vreg->part->enable_state.mask) { /* * Translate max_uV > 0 into an enable request for regulator * types which to not support voltage setting, e.g. voltage * switches. */ val[vreg->part->enable_state.word] = (max_uV > 0 ? 1 : 0) << vreg->part->enable_state.shift; mask[vreg->part->enable_state.word] = vreg->part->enable_state.mask; } rc = vreg_set_sleep_sel(vreg, voter, sleep_also, mask[0], val[0], mask[1], val[1], vreg->part->request_len, 1); if (rc) vreg_err(vreg, "vreg_set_sleep_sel failed, rc=%d\n", rc); return rc; } EXPORT_SYMBOL_GPL(rpm_vreg_set_voltage); /** * rpm_vreg_set_frequency - sets the frequency of a switching regulator * @vreg: ID for regulator * @freq: enum corresponding to desired frequency * * Returns 0 on success or errno. */ int rpm_vreg_set_frequency(int vreg_id, enum rpm_vreg_freq freq) { unsigned int mask[2] = {0}, val[2] = {0}; struct vreg *vreg; int rc; if (machine_is_ipq806x_rumi3()) { printk("Skipping %s for rumi\n", __func__); return 0; } if (!config) { pr_err("rpm-regulator driver has not probed yet.\n"); return -ENODEV; } if (vreg_id < config->vreg_id_min || vreg_id > config->vreg_id_max) { pr_err("invalid regulator id=%d\n", vreg_id); return -EINVAL; } vreg = &config->vregs[vreg_id]; if (freq < 0 || freq > RPM_VREG_FREQ_1p20) { vreg_err(vreg, "invalid frequency=%d\n", freq); return -EINVAL; } if (!vreg->pdata.sleep_selectable) { vreg_err(vreg, "regulator is not marked sleep selectable\n"); return -EINVAL; } if (!vreg->part->freq.mask) { vreg_err(vreg, "frequency not supported\n"); return -EINVAL; } val[vreg->part->freq.word] = freq << vreg->part->freq.shift; mask[vreg->part->freq.word] = vreg->part->freq.mask; rc = vreg_set_sleep_sel(vreg, RPM_VREG_VOTER_REG_FRAMEWORK, 1, mask[0], val[0], mask[1], val[1], vreg->part->request_len, 0); if (rc) vreg_err(vreg, "vreg_set_sleep_sel failed, rc=%d\n", rc); return rc; } EXPORT_SYMBOL_GPL(rpm_vreg_set_frequency); #define MAX_NAME_LEN 64 /** * rpm_regulator_get() - lookup and obtain a handle to an RPM regulator * @dev: device for regulator consumer * @supply: supply name * * Returns a struct rpm_regulator corresponding to the regulator producer, * or ERR_PTR() containing errno. * * This function may only be called from nonatomic context. The mapping between * tuples and rpm_regulators struct pointers is specified via * rpm-regulator platform data. */ struct rpm_regulator *rpm_regulator_get(struct device *dev, const char *supply) { struct rpm_regulator_consumer_mapping *mapping = NULL; const char *devname = NULL; struct rpm_regulator *regulator; int i; if (!config) { pr_err("rpm-regulator driver has not probed yet.\n"); return ERR_PTR(-ENODEV); } if (consumer_map == NULL || consumer_map_len == 0) { pr_err("No private consumer mapping has been specified.\n"); return ERR_PTR(-ENODEV); } if (supply == NULL) { pr_err("supply name must be specified\n"); return ERR_PTR(-EINVAL); } if (dev) devname = dev_name(dev); for (i = 0; i < consumer_map_len; i++) { /* If the mapping has a device set up it must match */ if (consumer_map[i].dev_name && (!devname || strncmp(consumer_map[i].dev_name, devname, MAX_NAME_LEN))) continue; if (strncmp(consumer_map[i].supply, supply, MAX_NAME_LEN) == 0) { mapping = &consumer_map[i]; break; } } if (mapping == NULL) { pr_err("could not find mapping for dev=%s, supply=%s\n", (devname ? devname : "(null)"), supply); return ERR_PTR(-ENODEV); } regulator = kzalloc(sizeof(struct rpm_regulator), GFP_KERNEL); if (regulator == NULL) { pr_err("could not allocate memory for regulator\n"); return ERR_PTR(-ENOMEM); } regulator->vreg_id = mapping->vreg_id; regulator->voter = mapping->voter; regulator->sleep_also = mapping->sleep_also; return regulator; } EXPORT_SYMBOL_GPL(rpm_regulator_get); static int rpm_regulator_check_input(struct rpm_regulator *regulator) { int rc = 0; if (regulator == NULL) { rc = -EINVAL; pr_err("invalid (null) rpm_regulator pointer\n"); } else if (IS_ERR(regulator)) { rc = PTR_ERR(regulator); pr_err("invalid rpm_regulator pointer, rc=%d\n", rc); } return rc; } /** * rpm_regulator_put() - free the RPM regulator handle * @regulator: RPM regulator handle * * Parameter reaggregation does not take place when rpm_regulator_put is called. * Therefore, regulator enable state and voltage must be configured * appropriately before calling rpm_regulator_put. * * This function may be called from either atomic or nonatomic context. */ void rpm_regulator_put(struct rpm_regulator *regulator) { kfree(regulator); } EXPORT_SYMBOL_GPL(rpm_regulator_put); /** * rpm_regulator_enable() - enable regulator output * @regulator: RPM regulator handle * * Returns 0 on success or errno on failure. * * This function may be called from either atomic or nonatomic context. This * function may only be called for regulators which have the sleep_selectable * flag set in their configuration data. * * rpm_regulator_set_voltage must be called before rpm_regulator_enable because * enabling is defined by the RPM interface to be requesting the desired * non-zero regulator output voltage. */ int rpm_regulator_enable(struct rpm_regulator *regulator) { int rc = rpm_regulator_check_input(regulator); struct vreg *vreg; if (rc) return rc; if (regulator->vreg_id < config->vreg_id_min || regulator->vreg_id > config->vreg_id_max) { pr_err("invalid regulator id=%d\n", regulator->vreg_id); return -EINVAL; } vreg = &config->vregs[regulator->vreg_id]; /* * Handle voltage switches which can be enabled without * rpm_regulator_set_voltage ever being called. */ if (regulator->min_uV == 0 && regulator->max_uV == 0 && vreg->part->uV.mask == 0 && vreg->part->mV.mask == 0) { regulator->min_uV = 1; regulator->max_uV = 1; } if (regulator->min_uV == 0 && regulator->max_uV == 0) { pr_err("Voltage must be set with rpm_regulator_set_voltage " "before calling rpm_regulator_enable; vreg_id=%d, " "voter=%d\n", regulator->vreg_id, regulator->voter); return -EINVAL; } rc = rpm_vreg_set_voltage(regulator->vreg_id, regulator->voter, regulator->min_uV, regulator->max_uV, regulator->sleep_also); if (rc) pr_err("rpm_vreg_set_voltage failed, rc=%d\n", rc); return rc; } EXPORT_SYMBOL_GPL(rpm_regulator_enable); /** * rpm_regulator_disable() - disable regulator output * @regulator: RPM regulator handle * * Returns 0 on success or errno on failure. * * The enable state of the regulator is determined by aggregating the requests * of all consumers. Therefore, it is possible that the regulator will remain * enabled even after rpm_regulator_disable is called. * * This function may be called from either atomic or nonatomic context. This * function may only be called for regulators which have the sleep_selectable * flag set in their configuration data. */ int rpm_regulator_disable(struct rpm_regulator *regulator) { int rc = rpm_regulator_check_input(regulator); if (rc) return rc; rc = rpm_vreg_set_voltage(regulator->vreg_id, regulator->voter, 0, 0, regulator->sleep_also); if (rc) pr_err("rpm_vreg_set_voltage failed, rc=%d\n", rc); return rc; } EXPORT_SYMBOL_GPL(rpm_regulator_disable); /** * rpm_regulator_set_voltage() - set regulator output voltage * @regulator: RPM regulator handle * @min_uV: minimum required voltage in uV * @max_uV: maximum acceptable voltage in uV * * Sets a voltage regulator to the desired output voltage. This can be set * while the regulator is disabled or enabled. If the regulator is disabled, * then rpm_regulator_set_voltage will both enable the regulator and set it to * output at the requested voltage. * * The min_uV to max_uV voltage range requested must intersect with the * voltage constraint range configured for the regulator. * * Returns 0 on success or errno on failure. * * The final voltage value that is sent to the RPM is aggregated based upon the * values requested by all consumers of the regulator. This corresponds to the * maximum min_uV value. * * This function may be called from either atomic or nonatomic context. This * function may only be called for regulators which have the sleep_selectable * flag set in their configuration data. */ int rpm_regulator_set_voltage(struct rpm_regulator *regulator, int min_uV, int max_uV) { int rc = rpm_regulator_check_input(regulator); if (rc) return rc; rc = rpm_vreg_set_voltage(regulator->vreg_id, regulator->voter, min_uV, max_uV, regulator->sleep_also); if (rc) { pr_err("rpm_vreg_set_voltage failed, rc=%d\n", rc); } else { regulator->min_uV = min_uV; regulator->max_uV = max_uV; } return rc; } EXPORT_SYMBOL_GPL(rpm_regulator_set_voltage); static inline int vreg_hpm_min_uA(struct vreg *vreg) { return vreg->hpm_min_load; } static inline int vreg_lpm_max_uA(struct vreg *vreg) { return vreg->hpm_min_load - LOAD_THRESHOLD_STEP; } static inline unsigned saturate_peak_load(struct vreg *vreg, unsigned load_uA) { unsigned load_max = MILLI_TO_MICRO(vreg->part->ip.mask >> vreg->part->ip.shift); return (load_uA > load_max ? load_max : load_uA); } static inline unsigned saturate_avg_load(struct vreg *vreg, unsigned load_uA) { unsigned load_max = MILLI_TO_MICRO(vreg->part->ia.mask >> vreg->part->ia.shift); return (load_uA > load_max ? load_max : load_uA); } /* Change vreg->req, but do not send it to the RPM. */ static int vreg_store(struct vreg *vreg, unsigned mask0, unsigned val0, unsigned mask1, unsigned val1) { if (vreg->pdata.sleep_selectable) mutex_lock(&rpm_sleep_sel_lock); vreg->req[0].value &= ~mask0; vreg->req[0].value |= val0 & mask0; vreg->req[1].value &= ~mask1; vreg->req[1].value |= val1 & mask1; if (vreg->pdata.sleep_selectable) mutex_unlock(&rpm_sleep_sel_lock); return 0; } static int vreg_set(struct vreg *vreg, unsigned mask0, unsigned val0, unsigned mask1, unsigned val1, unsigned cnt) { unsigned prev0 = 0, prev1 = 0; bool tcxo_enabled = false; bool voltage_increased = false; int rc; /* * Bypass the normal route for regulators that can be called to change * just the active set values. */ if (vreg->pdata.sleep_selectable) return vreg_set_sleep_sel(vreg, RPM_VREG_VOTER_REG_FRAMEWORK, 1, mask0, val0, mask1, val1, cnt, 1); prev0 = vreg->req[0].value; vreg->req[0].value &= ~mask0; vreg->req[0].value |= val0 & mask0; prev1 = vreg->req[1].value; vreg->req[1].value &= ~mask1; vreg->req[1].value |= val1 & mask1; /* Ignore duplicate requests */ if (vreg->req[0].value == vreg->prev_active_req[0].value && vreg->req[1].value == vreg->prev_active_req[1].value) { if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_DUPLICATE) rpm_regulator_duplicate(vreg, MSM_RPM_CTX_SET_0, cnt); return 0; } /* Enable CXO clock if necessary for TCXO workaround. */ if (requires_tcxo_workaround && vreg->requires_cxo && (GET_PART(vreg, uV) > GET_PART_PREV_ACT(vreg, uV))) { mutex_lock(&tcxo_mutex); if (!tcxo_handle) tcxo_get_handle(); voltage_increased = true; tcxo_enabled = tcxo_enable(); } rc = msm_rpm_set(MSM_RPM_CTX_SET_0, vreg->req, cnt); if (rc) { vreg->req[0].value = prev0; vreg->req[1].value = prev1; vreg_err(vreg, "msm_rpm_set failed, set=active, id=%d, rc=%d\n", vreg->req[0].id, rc); } else { if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_REQUEST) rpm_regulator_req(vreg, MSM_RPM_CTX_SET_0); vreg->prev_active_req[0].value = vreg->req[0].value; vreg->prev_active_req[1].value = vreg->req[1].value; } /* * Schedule CXO clock to be disabled after TCXO warmup time if TCXO * workaround is applicable for this regulator. */ if (voltage_increased) { if (tcxo_enabled) tcxo_delayed_disable(); mutex_unlock(&tcxo_mutex); } return rc; } static int vreg_is_enabled(struct regulator_dev *rdev) { struct vreg *vreg = rdev_get_drvdata(rdev); int enabled; mutex_lock(&vreg->pc_lock); enabled = vreg->is_enabled; mutex_unlock(&vreg->pc_lock); return enabled; } static void set_enable(struct vreg *vreg, unsigned int *mask, unsigned int *val) { switch (vreg->type) { case RPM_REGULATOR_TYPE_SMPS_FIXED: /* placeholder for fixed regulator */ break; case RPM_REGULATOR_TYPE_LDO: case RPM_REGULATOR_TYPE_SMPS: case RPM_REGULATOR_TYPE_CORNER: /* Enable by setting a voltage. */ if (vreg->part->uV.mask) { val[vreg->part->uV.word] |= vreg->save_uV << vreg->part->uV.shift; mask[vreg->part->uV.word] |= vreg->part->uV.mask; } else { val[vreg->part->mV.word] |= MICRO_TO_MILLI(vreg->save_uV) << vreg->part->mV.shift; mask[vreg->part->mV.word] |= vreg->part->mV.mask; } break; case RPM_REGULATOR_TYPE_VS: case RPM_REGULATOR_TYPE_NCP: /* Enable by setting enable_state. */ val[vreg->part->enable_state.word] |= RPM_VREG_STATE_ON << vreg->part->enable_state.shift; mask[vreg->part->enable_state.word] |= vreg->part->enable_state.mask; } } static int rpm_vreg_enable(struct regulator_dev *rdev) { struct vreg *vreg = rdev_get_drvdata(rdev); unsigned int mask[2] = {0}, val[2] = {0}; int rc = 0; /* * Bypass for Fixed regulators */ if (vreg->type == RPM_REGULATOR_TYPE_SMPS_FIXED) { return 0; } set_enable(vreg, mask, val); mutex_lock(&vreg->pc_lock); rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], vreg->part->request_len); if (!rc) vreg->is_enabled = true; mutex_unlock(&vreg->pc_lock); if (rc) vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); return rc; } static void set_disable(struct vreg *vreg, unsigned int *mask, unsigned int *val) { switch (vreg->type) { case RPM_REGULATOR_TYPE_LDO: case RPM_REGULATOR_TYPE_SMPS: case RPM_REGULATOR_TYPE_CORNER: /* Disable by setting a voltage of 0 uV. */ if (vreg->part->uV.mask) { val[vreg->part->uV.word] |= 0 << vreg->part->uV.shift; mask[vreg->part->uV.word] |= vreg->part->uV.mask; } else { val[vreg->part->mV.word] |= 0 << vreg->part->mV.shift; mask[vreg->part->mV.word] |= vreg->part->mV.mask; } break; case RPM_REGULATOR_TYPE_VS: case RPM_REGULATOR_TYPE_NCP: /* Disable by setting enable_state. */ val[vreg->part->enable_state.word] |= RPM_VREG_STATE_OFF << vreg->part->enable_state.shift; mask[vreg->part->enable_state.word] |= vreg->part->enable_state.mask; } } static int rpm_vreg_disable(struct regulator_dev *rdev) { struct vreg *vreg = rdev_get_drvdata(rdev); unsigned int mask[2] = {0}, val[2] = {0}; int rc = 0; /* * Bypass for Fixed regulators */ if (vreg->type == RPM_REGULATOR_TYPE_SMPS_FIXED) { return 0; } set_disable(vreg, mask, val); mutex_lock(&vreg->pc_lock); /* Only disable if pin control is not in use. */ if (!vreg->is_enabled_pc) rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], vreg->part->request_len); if (!rc) vreg->is_enabled = false; mutex_unlock(&vreg->pc_lock); if (rc) vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); return rc; } static int vreg_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned *selector) { struct vreg *vreg = rdev_get_drvdata(rdev); struct vreg_range *range = &vreg->set_points->range[0]; unsigned int mask[2] = {0}, val[2] = {0}; int rc = 0, uV = min_uV; int lim_min_uV, lim_max_uV, i; /* * For fixed-type regulators , set_voltages is not supported. * Do a graceful return, so that Consumer drivers do not get error * status */ if (vreg->type == RPM_REGULATOR_TYPE_SMPS_FIXED) { return 0; } /* Check if request voltage is outside of physically settable range. */ lim_min_uV = vreg->set_points->range[0].min_uV; lim_max_uV = vreg->set_points->range[vreg->set_points->count - 1].max_uV; if (uV < lim_min_uV && max_uV >= lim_min_uV) uV = lim_min_uV; if (uV < lim_min_uV || uV > lim_max_uV) { vreg_err(vreg, "request v=[%d, %d] is outside possible v=[%d, %d]\n", min_uV, max_uV, lim_min_uV, lim_max_uV); return -EINVAL; } /* Find the range which uV is inside of. */ for (i = vreg->set_points->count - 1; i > 0; i--) { if (uV > vreg->set_points->range[i - 1].max_uV) { range = &vreg->set_points->range[i]; break; } } /* * Force uV to be an allowed set point and apply a ceiling function * to non-set point values. */ uV = (uV - range->min_uV + range->step_uV - 1) / range->step_uV; uV = uV * range->step_uV + range->min_uV; if (uV > max_uV) { vreg_err(vreg, "request v=[%d, %d] cannot be met by any set point; " "next set point: %d\n", min_uV, max_uV, uV); return -EINVAL; } if (vreg->type == RPM_REGULATOR_TYPE_CORNER) { /* * Translate from enum values which work as inputs in the * regulator_set_voltage function to the actual corner values * sent to the RPM. */ uV -= RPM_VREG_CORNER_NONE; } if (vreg->part->uV.mask) { val[vreg->part->uV.word] = uV << vreg->part->uV.shift; mask[vreg->part->uV.word] = vreg->part->uV.mask; } else { val[vreg->part->mV.word] = MICRO_TO_MILLI(uV) << vreg->part->mV.shift; mask[vreg->part->mV.word] = vreg->part->mV.mask; } mutex_lock(&vreg->pc_lock); /* * Only send a request for a new voltage if the regulator is currently * enabled. This will ensure that LDO and SMPS regulators are not * inadvertently turned on because voltage > 0 is equivalent to * enabling. For NCP, this just removes unnecessary RPM requests. */ if (vreg->is_enabled) { rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], vreg->part->request_len); if (rc) vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); } else if (vreg->type == RPM_REGULATOR_TYPE_NCP) { /* Regulator is disabled; store but don't send new request. */ rc = vreg_store(vreg, mask[0], val[0], mask[1], val[1]); } if (!rc && (!vreg->pdata.sleep_selectable || !vreg->is_enabled)) vreg->save_uV = uV; mutex_unlock(&vreg->pc_lock); return rc; } static int vreg_get_voltage(struct regulator_dev *rdev) { struct vreg *vreg = rdev_get_drvdata(rdev); return vreg->save_uV; } static int vreg_list_voltage(struct regulator_dev *rdev, unsigned selector) { struct vreg *vreg = rdev_get_drvdata(rdev); int uV = 0; int i; if (!vreg->set_points) { vreg_err(vreg, "no voltages available\n"); return -EINVAL; } if (selector >= vreg->set_points->n_voltages) return 0; for (i = 0; i < vreg->set_points->count; i++) { if (selector < vreg->set_points->range[i].n_voltages) { uV = selector * vreg->set_points->range[i].step_uV + vreg->set_points->range[i].min_uV; break; } else { selector -= vreg->set_points->range[i].n_voltages; } } return uV; } static int vreg_set_mode(struct regulator_dev *rdev, unsigned int mode) { struct vreg *vreg = rdev_get_drvdata(rdev); unsigned int mask[2] = {0}, val[2] = {0}; int rc = 0; int peak_uA; /* * For fixed-type regulators , set_mode is not supported. * Do a graceful return, so that Consumer drivers do not get error * status */ if (vreg->type == RPM_REGULATOR_TYPE_SMPS_FIXED) { return 0; } mutex_lock(&vreg->pc_lock); peak_uA = MILLI_TO_MICRO((vreg->req[vreg->part->ip.word].value & vreg->part->ip.mask) >> vreg->part->ip.shift); if (mode == config->mode_hpm) { /* Make sure that request currents are in HPM range. */ if (peak_uA < vreg_hpm_min_uA(vreg)) { val[vreg->part->ip.word] = MICRO_TO_MILLI(vreg_hpm_min_uA(vreg)) << vreg->part->ip.shift; mask[vreg->part->ip.word] = vreg->part->ip.mask; if (config->ia_follows_ip) { val[vreg->part->ia.word] |= MICRO_TO_MILLI(vreg_hpm_min_uA(vreg)) << vreg->part->ia.shift; mask[vreg->part->ia.word] |= vreg->part->ia.mask; } } } else if (mode == config->mode_lpm) { /* Make sure that request currents are in LPM range. */ if (peak_uA > vreg_lpm_max_uA(vreg)) { val[vreg->part->ip.word] = MICRO_TO_MILLI(vreg_lpm_max_uA(vreg)) << vreg->part->ip.shift; mask[vreg->part->ip.word] = vreg->part->ip.mask; if (config->ia_follows_ip) { val[vreg->part->ia.word] |= MICRO_TO_MILLI(vreg_lpm_max_uA(vreg)) << vreg->part->ia.shift; mask[vreg->part->ia.word] |= vreg->part->ia.mask; } } } else { vreg_err(vreg, "invalid mode: %u\n", mode); mutex_unlock(&vreg->pc_lock); return -EINVAL; } if (vreg->is_enabled) { rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], vreg->part->request_len); } else { /* Regulator is disabled; store but don't send new request. */ rc = vreg_store(vreg, mask[0], val[0], mask[1], val[1]); } if (rc) vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); else vreg->mode = mode; mutex_unlock(&vreg->pc_lock); return rc; } static unsigned int vreg_get_mode(struct regulator_dev *rdev) { struct vreg *vreg = rdev_get_drvdata(rdev); return vreg->mode; } static unsigned int vreg_get_optimum_mode(struct regulator_dev *rdev, int input_uV, int output_uV, int load_uA) { struct vreg *vreg = rdev_get_drvdata(rdev); unsigned int mode; load_uA += vreg->pdata.system_uA; mutex_lock(&vreg->pc_lock); SET_PART(vreg, ip, MICRO_TO_MILLI(saturate_peak_load(vreg, load_uA))); if (config->ia_follows_ip) SET_PART(vreg, ia, MICRO_TO_MILLI(saturate_avg_load(vreg, load_uA))); mutex_unlock(&vreg->pc_lock); if (load_uA >= vreg->hpm_min_load) mode = config->mode_hpm; else mode = config->mode_lpm; return mode; } static unsigned int vreg_legacy_get_optimum_mode(struct regulator_dev *rdev, int input_uV, int output_uV, int load_uA) { struct vreg *vreg = rdev_get_drvdata(rdev); if (MICRO_TO_MILLI(load_uA) <= 0) { /* * vreg_legacy_get_optimum_mode is being called before consumers * have specified their load currents via * regulator_set_optimum_mode. Return whatever the existing mode * is. */ return vreg->mode; } return vreg_get_optimum_mode(rdev, input_uV, output_uV, load_uA); } /* * Returns the logical pin control enable state because the pin control options * present in the hardware out of restart could be different from those desired * by the consumer. */ static int vreg_pin_control_is_enabled(struct regulator_dev *rdev) { struct vreg *vreg = rdev_get_drvdata(rdev); return vreg->is_enabled_pc; } static int vreg_pin_control_enable(struct regulator_dev *rdev) { struct vreg *vreg = rdev_get_drvdata(rdev); unsigned int mask[2] = {0}, val[2] = {0}; int rc; if (vreg->type == RPM_REGULATOR_TYPE_SMPS_FIXED) { return 0; } mutex_lock(&vreg->pc_lock); val[vreg->part->pc.word] |= vreg->pdata.pin_ctrl << vreg->part->pc.shift; mask[vreg->part->pc.word] |= vreg->part->pc.mask; val[vreg->part->pf.word] |= vreg->pdata.pin_fn << vreg->part->pf.shift; mask[vreg->part->pf.word] |= vreg->part->pf.mask; if (!vreg->is_enabled) set_enable(vreg, mask, val); rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], vreg->part->request_len); if (!rc) vreg->is_enabled_pc = true; mutex_unlock(&vreg->pc_lock); if (rc) vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); return rc; } static int vreg_pin_control_disable(struct regulator_dev *rdev) { struct vreg *vreg = rdev_get_drvdata(rdev); unsigned int mask[2] = {0}, val[2] = {0}; int pin_fn, rc; mutex_lock(&vreg->pc_lock); val[vreg->part->pc.word] |= RPM_VREG_PIN_CTRL_NONE << vreg->part->pc.shift; mask[vreg->part->pc.word] |= vreg->part->pc.mask; pin_fn = config->pin_func_none; if (vreg->pdata.pin_fn == config->pin_func_sleep_b) pin_fn = config->pin_func_sleep_b; val[vreg->part->pf.word] |= pin_fn << vreg->part->pf.shift; mask[vreg->part->pf.word] |= vreg->part->pf.mask; if (!vreg->is_enabled) set_disable(vreg, mask, val); rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], vreg->part->request_len); if (!rc) vreg->is_enabled_pc = false; mutex_unlock(&vreg->pc_lock); if (rc) vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); return rc; } static int vreg_enable_time(struct regulator_dev *rdev) { struct vreg *vreg = rdev_get_drvdata(rdev); return vreg->pdata.enable_time; } /* Real regulator operations. */ static struct regulator_ops ldo_ops = { .enable = rpm_vreg_enable, .disable = rpm_vreg_disable, .is_enabled = vreg_is_enabled, .set_voltage = vreg_set_voltage, .get_voltage = vreg_get_voltage, .list_voltage = vreg_list_voltage, .set_mode = vreg_set_mode, .get_mode = vreg_get_mode, .get_optimum_mode = vreg_get_optimum_mode, .enable_time = vreg_enable_time, }; static struct regulator_ops smps_ops = { .enable = rpm_vreg_enable, .disable = rpm_vreg_disable, .is_enabled = vreg_is_enabled, .set_voltage = vreg_set_voltage, .get_voltage = vreg_get_voltage, .list_voltage = vreg_list_voltage, .set_mode = vreg_set_mode, .get_mode = vreg_get_mode, .get_optimum_mode = vreg_get_optimum_mode, .enable_time = vreg_enable_time, }; static struct regulator_ops switch_ops = { .enable = rpm_vreg_enable, .disable = rpm_vreg_disable, .is_enabled = vreg_is_enabled, .enable_time = vreg_enable_time, }; static struct regulator_ops ncp_ops = { .enable = rpm_vreg_enable, .disable = rpm_vreg_disable, .is_enabled = vreg_is_enabled, .set_voltage = vreg_set_voltage, .get_voltage = vreg_get_voltage, .list_voltage = vreg_list_voltage, .enable_time = vreg_enable_time, }; static struct regulator_ops corner_ops = { .enable = rpm_vreg_enable, .disable = rpm_vreg_disable, .is_enabled = vreg_is_enabled, .set_voltage = vreg_set_voltage, .get_voltage = vreg_get_voltage, .list_voltage = vreg_list_voltage, .enable_time = vreg_enable_time, }; /* Pin control regulator operations. */ static struct regulator_ops pin_control_ops = { .enable = vreg_pin_control_enable, .disable = vreg_pin_control_disable, .is_enabled = vreg_pin_control_is_enabled, }; struct regulator_ops *vreg_ops[] = { [RPM_REGULATOR_TYPE_LDO] = &ldo_ops, [RPM_REGULATOR_TYPE_SMPS] = &smps_ops, [RPM_REGULATOR_TYPE_SMPS_FIXED] = &smps_ops, [RPM_REGULATOR_TYPE_VS] = &switch_ops, [RPM_REGULATOR_TYPE_NCP] = &ncp_ops, [RPM_REGULATOR_TYPE_CORNER] = &corner_ops, }; static struct vreg *rpm_vreg_get_vreg(int id) { struct vreg *vreg; if (id < config->vreg_id_min || id > config->vreg_id_max) return NULL; if (!config->is_real_id(id)) id = config->pc_id_to_real_id(id); vreg = &config->vregs[id]; return vreg; } static int rpm_vreg_init_regulator(const struct rpm_regulator_init_data *pdata, struct device *dev) { struct regulator_desc *rdesc = NULL; struct regulator_dev *rdev; struct regulator_config rconf; struct vreg *vreg; unsigned pin_ctrl; int pin_fn; int rc = 0; if (!pdata) { pr_err("platform data missing\n"); return -EINVAL; } vreg = rpm_vreg_get_vreg(pdata->id); if (!vreg) { pr_err("invalid regulator id: %d\n", pdata->id); return -ENODEV; } if (config->is_real_id(pdata->id)) rdesc = &vreg->rdesc; else rdesc = &vreg->rdesc_pc; if (vreg->type < 0 || vreg->type > RPM_REGULATOR_TYPE_MAX) { pr_err("%s: invalid regulator type: %d\n", vreg->rdesc.name, vreg->type); return -EINVAL; } mutex_lock(&vreg->pc_lock); if (vreg->set_points) rdesc->n_voltages = vreg->set_points->n_voltages; else rdesc->n_voltages = 0; rdesc->id = pdata->id; rdesc->owner = THIS_MODULE; rdesc->type = REGULATOR_VOLTAGE; if (config->is_real_id(pdata->id)) { /* * Real regulator; do not modify pin control and pin function * values. */ rdesc->ops = vreg_ops[vreg->type]; pin_ctrl = vreg->pdata.pin_ctrl; pin_fn = vreg->pdata.pin_fn; memcpy(&(vreg->pdata), pdata, sizeof(struct rpm_regulator_init_data)); vreg->pdata.pin_ctrl = pin_ctrl; vreg->pdata.pin_fn = pin_fn; vreg->save_uV = vreg->pdata.default_uV; if (vreg->pdata.peak_uA >= vreg->hpm_min_load) vreg->mode = config->mode_hpm; else vreg->mode = config->mode_lpm; /* Initialize the RPM request. */ SET_PART(vreg, ip, MICRO_TO_MILLI(saturate_peak_load(vreg, vreg->pdata.peak_uA))); SET_PART(vreg, fm, vreg->pdata.force_mode); SET_PART(vreg, pm, vreg->pdata.power_mode); SET_PART(vreg, pd, vreg->pdata.pull_down_enable); SET_PART(vreg, ia, MICRO_TO_MILLI(saturate_avg_load(vreg, vreg->pdata.avg_uA))); SET_PART(vreg, freq, vreg->pdata.freq); SET_PART(vreg, freq_clk_src, 0); SET_PART(vreg, comp_mode, 0); SET_PART(vreg, hpm, 0); if (!vreg->is_enabled_pc) { SET_PART(vreg, pf, config->pin_func_none); SET_PART(vreg, pc, RPM_VREG_PIN_CTRL_NONE); } } else { if ((pdata->pin_ctrl & RPM_VREG_PIN_CTRL_ALL) == RPM_VREG_PIN_CTRL_NONE && pdata->pin_fn != config->pin_func_sleep_b) { pr_err("%s: no pin control input specified\n", vreg->rdesc.name); mutex_unlock(&vreg->pc_lock); return -EINVAL; } rdesc->ops = &pin_control_ops; vreg->pdata.pin_ctrl = pdata->pin_ctrl; vreg->pdata.pin_fn = pdata->pin_fn; /* Initialize the RPM request. */ pin_fn = config->pin_func_none; /* Allow pf=sleep_b to be specified by platform data. */ if (vreg->pdata.pin_fn == config->pin_func_sleep_b) pin_fn = config->pin_func_sleep_b; SET_PART(vreg, pf, pin_fn); SET_PART(vreg, pc, RPM_VREG_PIN_CTRL_NONE); } mutex_unlock(&vreg->pc_lock); if (rc) goto bail; rconf = (struct regulator_config) { .dev = dev, .init_data = &(pdata->init_data), .driver_data = vreg, }; rdev = regulator_register(rdesc, &rconf); if (IS_ERR(rdev)) { rc = PTR_ERR(rdev); pr_err("regulator_register failed: %s, rc=%d\n", vreg->rdesc.name, rc); return rc; } else { if (config->is_real_id(pdata->id)) vreg->rdev = rdev; else vreg->rdev_pc = rdev; } bail: if (rc) pr_err("error for %s, rc=%d\n", vreg->rdesc.name, rc); return rc; } int rpm_vreg_regulator_set_fixed(void) { int i; config = get_config[RPM_VREG_VERSION_IPQ806X](); for (i = 0; i < config->vregs_len; i++) { if (strstr(config->vregs[i].rdesc.name,"smb208")) { config->vregs[i].is_enabled = true; config->vregs[i].type = RPM_REGULATOR_TYPE_SMPS_FIXED; } } return 0; } static void rpm_vreg_set_point_init(void) { struct vreg_set_points **set_points; int i, j, temp; set_points = config->set_points; /* Calculate the number of set points available for each regulator. */ for (i = 0; i < config->set_points_len; i++) { temp = 0; for (j = 0; j < set_points[i]->count; j++) { set_points[i]->range[j].n_voltages = (set_points[i]->range[j].max_uV - set_points[i]->range[j].min_uV) / set_points[i]->range[j].step_uV + 1; temp += set_points[i]->range[j].n_voltages; } set_points[i]->n_voltages = temp; } } static int rpm_vreg_probe(struct platform_device *pdev) { struct rpm_regulator_platform_data *platform_data; static struct rpm_regulator_consumer_mapping *prev_consumer_map; static int prev_consumer_map_len; int rc = 0; int i, id; platform_data = pdev->dev.platform_data; if (!platform_data) { pr_err("rpm-regulator requires platform data\n"); return -EINVAL; } if (rpm_version >= 0 && rpm_version <= RPM_VREG_VERSION_MAX && platform_data->version != rpm_version) { pr_err("rpm version %d does not match previous version %d\n", platform_data->version, rpm_version); return -EINVAL; } if (platform_data->version < 0 || platform_data->version > RPM_VREG_VERSION_MAX) { pr_err("rpm version %d is invalid\n", platform_data->version); return -EINVAL; } if (rpm_version < 0 || rpm_version > RPM_VREG_VERSION_MAX) { rpm_version = platform_data->version; config = get_config[platform_data->version](); vreg_id_vdd_mem = platform_data->vreg_id_vdd_mem; vreg_id_vdd_dig = platform_data->vreg_id_vdd_dig; if (!config) { pr_err("rpm version %d is not available\n", platform_data->version); return -ENODEV; } if (config->use_legacy_optimum_mode) for (i = 0; i < ARRAY_SIZE(vreg_ops); i++) vreg_ops[i]->get_optimum_mode = vreg_legacy_get_optimum_mode; rpm_vreg_set_point_init(); /* First time probed; initialize pin control mutexes. */ for (i = 0; i < config->vregs_len; i++) mutex_init(&config->vregs[i].pc_lock); } /* Copy the list of private API consumers. */ if (platform_data->consumer_map_len > 0) { if (consumer_map_len == 0) { consumer_map_len = platform_data->consumer_map_len; consumer_map = kmemdup(platform_data->consumer_map, sizeof(struct rpm_regulator_consumer_mapping) * consumer_map_len, GFP_KERNEL); if (consumer_map == NULL) { pr_err("memory allocation failed\n"); consumer_map_len = 0; return -ENOMEM; } } else { /* Concatenate new map with the existing one. */ prev_consumer_map = consumer_map; prev_consumer_map_len = consumer_map_len; consumer_map_len += platform_data->consumer_map_len; consumer_map = kmalloc( sizeof(struct rpm_regulator_consumer_mapping) * consumer_map_len, GFP_KERNEL); if (consumer_map == NULL) { pr_err("memory allocation failed\n"); consumer_map_len = 0; return -ENOMEM; } memcpy(consumer_map, prev_consumer_map, sizeof(struct rpm_regulator_consumer_mapping) * prev_consumer_map_len); memcpy(&consumer_map[prev_consumer_map_len], platform_data->consumer_map, sizeof(struct rpm_regulator_consumer_mapping) * platform_data->consumer_map_len); } } if (platform_data->requires_tcxo_workaround && !requires_tcxo_workaround) { requires_tcxo_workaround = true; wake_lock_init(&tcxo_wake_lock, WAKE_LOCK_SUSPEND, "rpm_regulator_tcxo"); } /* Initialize all of the regulators listed in the platform data. */ for (i = 0; i < platform_data->num_regulators; i++) { rc = rpm_vreg_init_regulator(&platform_data->init_data[i], &pdev->dev); if (rc) { pr_err("rpm_vreg_init_regulator failed, rc=%d\n", rc); goto remove_regulators; } } platform_set_drvdata(pdev, platform_data); return rc; remove_regulators: /* Unregister all regulators added before the erroring one. */ for (; i >= 0; i--) { id = platform_data->init_data[i].id; if (config->is_real_id(id)) { regulator_unregister(config->vregs[id].rdev); config->vregs[id].rdev = NULL; } else { regulator_unregister(config->vregs[ config->pc_id_to_real_id(id)].rdev_pc); config->vregs[id].rdev_pc = NULL; } } return rc; } static int rpm_vreg_remove(struct platform_device *pdev) { struct rpm_regulator_platform_data *platform_data; int i, id; platform_data = platform_get_drvdata(pdev); platform_set_drvdata(pdev, NULL); if (platform_data) { for (i = 0; i < platform_data->num_regulators; i++) { id = platform_data->init_data[i].id; if (config->is_real_id(id)) { regulator_unregister(config->vregs[id].rdev); config->vregs[id].rdev = NULL; } else { regulator_unregister(config->vregs[ config->pc_id_to_real_id(id)].rdev_pc); config->vregs[id].rdev_pc = NULL; } } } return 0; } static struct platform_driver rpm_vreg_driver = { .probe = rpm_vreg_probe, .remove = rpm_vreg_remove, .driver = { .name = RPM_REGULATOR_DEV_NAME, .owner = THIS_MODULE, }, }; static int __init rpm_vreg_init(void) { return platform_driver_register(&rpm_vreg_driver); } static void __exit rpm_vreg_exit(void) { int i; platform_driver_unregister(&rpm_vreg_driver); kfree(consumer_map); for (i = 0; i < config->vregs_len; i++) mutex_destroy(&config->vregs[i].pc_lock); if (tcxo_handle) clk_put(tcxo_handle); } postcore_initcall(rpm_vreg_init); module_exit(rpm_vreg_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MSM RPM regulator driver"); MODULE_VERSION("1.0"); MODULE_ALIAS("platform:" RPM_REGULATOR_DEV_NAME);