/* * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. */ /* * VPE support module * * Provides support for loading a MIPS SP program on VPE1. * The SP environment is rather simple, no tlb's. It needs to be relocatable * (or partially linked). You should initialise your stack in the startup * code. This loader looks for the symbol __start and sets up * execution to resume from there. The MIPS SDE kit contains suitable examples. * * To load and run, simply cat a SP 'program file' to /dev/vpe1. * i.e cat spapp >/dev/vpe1. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef void *vpe_handle; #ifndef ARCH_SHF_SMALL #define ARCH_SHF_SMALL 0 #endif /* If this is set, the section belongs in the init part of the module */ #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1)) /* * The number of TCs and VPEs physically available on the core */ static int hw_tcs, hw_vpes; static char module_name[] = "vpe"; static int major; static const int minor = 1; /* fixed for now */ /* grab the likely amount of memory we will need. */ #ifdef CONFIG_MIPS_VPE_LOADER_TOM #define P_SIZE (2 * 1024 * 1024) #else /* add an overhead to the max kmalloc size for non-striped symbols/etc */ #define P_SIZE (256 * 1024) #endif extern unsigned long physical_memsize; #define MAX_VPES 16 #define VPE_PATH_MAX 256 enum vpe_state { VPE_STATE_UNUSED = 0, VPE_STATE_INUSE, VPE_STATE_RUNNING }; enum tc_state { TC_STATE_UNUSED = 0, TC_STATE_INUSE, TC_STATE_RUNNING, TC_STATE_DYNAMIC }; enum load_state { LOAD_STATE_EHDR, LOAD_STATE_PHDR, LOAD_STATE_SHDR, LOAD_STATE_PIMAGE, LOAD_STATE_TRAILER, LOAD_STATE_DONE, LOAD_STATE_ERROR }; struct vpe { enum vpe_state state; /* (device) minor associated with this vpe */ int minor; /* elfloader stuff */ unsigned long offset; /* File offset into input stream */ void *load_addr; unsigned long copied; char *pbuffer; unsigned long pbsize; /* Program loading state */ enum load_state l_state; Elf_Ehdr *l_ehdr; struct elf_phdr *l_phdr; unsigned int l_phlen; Elf_Shdr *l_shdr; unsigned int l_shlen; int *l_phsort; /* Sorted index list of program headers */ int l_segoff; /* Offset into current program segment */ int l_cur_seg; /* Indirect index of segment currently being loaded */ unsigned int l_progminad; unsigned int l_progmaxad; unsigned int l_trailer; unsigned int uid, gid; char cwd[VPE_PATH_MAX]; unsigned long __start; /* tc's associated with this vpe */ struct list_head tc; /* The list of vpe's */ struct list_head list; /* legacy shared symbol address */ void *shared_ptr; /* shared area descriptor array address */ struct vpe_shared_area *shared_areas; /* the list of who wants to know when something major happens */ struct list_head notify; unsigned int ntcs; }; struct tc { enum tc_state state; int index; struct vpe *pvpe; /* parent VPE */ struct list_head tc; /* The list of TC's with this VPE */ struct list_head list; /* The global list of tc's */ }; struct { spinlock_t vpe_list_lock; struct list_head vpe_list; /* Virtual processing elements */ spinlock_t tc_list_lock; struct list_head tc_list; /* Thread contexts */ } vpecontrol = { .vpe_list_lock = __SPIN_LOCK_UNLOCKED(vpecontrol.vpe_list_lock), .vpe_list = LIST_HEAD_INIT(vpecontrol.vpe_list), .tc_list_lock = __SPIN_LOCK_UNLOCKED(vpecontrol.tc_list_lock), .tc_list = LIST_HEAD_INIT(vpecontrol.tc_list) }; static void release_progmem(void *ptr); /* * Values and state associated with publishing shared memory areas */ #define N_PUB_AREAS 4 static struct vpe_shared_area published_vpe_area[N_PUB_AREAS] = { {VPE_SHARED_RESERVED, 0}, {VPE_SHARED_RESERVED, 0}, {VPE_SHARED_RESERVED, 0}, {VPE_SHARED_RESERVED, 0} }; /* get the vpe associated with this minor */ static struct vpe *get_vpe(int minor) { struct vpe *res, *v; if (!cpu_has_mipsmt) return NULL; res = NULL; spin_lock(&vpecontrol.vpe_list_lock); list_for_each_entry(v, &vpecontrol.vpe_list, list) { if (v->minor == minor) { res = v; break; } } spin_unlock(&vpecontrol.vpe_list_lock); return res; } /* get the tc associated with this minor */ static struct tc *get_tc(int index) { struct tc *res, *t; res = NULL; spin_lock(&vpecontrol.tc_list_lock); list_for_each_entry(t, &vpecontrol.tc_list, list) { if (t->index == index) { res = t; break; } } spin_unlock(&vpecontrol.tc_list_lock); return res; } /* allocate a vpe and associate it with this minor (or index) */ static struct vpe *alloc_vpe(int minor) { struct vpe *v; if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) return NULL; printk(KERN_DEBUG "Used kzalloc to allocate %d bytes at %x\n", sizeof(struct vpe), (unsigned int)v); INIT_LIST_HEAD(&v->tc); spin_lock(&vpecontrol.vpe_list_lock); list_add_tail(&v->list, &vpecontrol.vpe_list); spin_unlock(&vpecontrol.vpe_list_lock); INIT_LIST_HEAD(&v->notify); v->minor = minor; return v; } /* allocate a tc. At startup only tc0 is running, all other can be halted. */ static struct tc *alloc_tc(int index) { struct tc *tc; if ((tc = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) goto out; printk(KERN_DEBUG "Used kzalloc to allocate %d bytes at %x\n", sizeof(struct tc), (unsigned int)tc); INIT_LIST_HEAD(&tc->tc); tc->index = index; spin_lock(&vpecontrol.tc_list_lock); list_add_tail(&tc->list, &vpecontrol.tc_list); spin_unlock(&vpecontrol.tc_list_lock); out: return tc; } /* clean up and free everything */ static void release_vpe(struct vpe *v) { list_del(&v->list); if (v->load_addr) release_progmem(v); printk(KERN_DEBUG "Used kfree to free memory at %x\n", (unsigned int)v->l_phsort); kfree(v->l_phsort); printk(KERN_DEBUG "Used kfree to free memory at %x\n", (unsigned int)v); kfree(v); } static void __maybe_unused dump_mtregs(void) { unsigned long val; val = read_c0_config3(); printk("config3 0x%lx MT %ld\n", val, (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT); val = read_c0_mvpcontrol(); printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val, (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT, (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT, (val & MVPCONTROL_EVP)); val = read_c0_mvpconf0(); printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val, (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT, val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT); } /* * The original APRP prototype assumed a single, unshared IRQ for * cross-VPE interrupts, used by the RTLX code. But M3P networking * and other future functions may need to share an IRQ, particularly * in 34K/Malta configurations without an external interrupt controller. * All cross-VPE insterrupt users need to coordinate through shared * functions here. */ /* * It would be nice if I could just have this initialized to zero, * but the patchcheck police won't hear of it... */ static int xvpe_vector_set; #define XVPE_INTR_OFFSET 0 static int xvpe_irq = MIPS_CPU_IRQ_BASE + XVPE_INTR_OFFSET; static void xvpe_dispatch(void) { do_IRQ(xvpe_irq); } /* Name here is generic, as m3pnet.c could in principle be used by non-MIPS */ int arch_get_xcpu_irq() { /* * Some of this will ultimately become platform code, * but for now, we're only targeting 34K/FPGA/Malta, * and there's only one generic mechanism. */ if (!xvpe_vector_set) { /* * A more elaborate shared variable shouldn't be needed. * Two initializations back-to-back should be harmless. */ if (cpu_has_vint) { set_vi_handler(XVPE_INTR_OFFSET, xvpe_dispatch); xvpe_vector_set = 1; } else { printk(KERN_ERR "APRP requires vectored interrupts\n"); return -1; } } return xvpe_irq; } EXPORT_SYMBOL(arch_get_xcpu_irq); int vpe_send_interrupt(int vpe, int inter) { unsigned long flags; unsigned int vpeflags; local_irq_save(flags); vpeflags = dvpe(); /* * Initial version makes same simple-minded assumption * as is implicit elsewhere in this module, that the * only RP of interest is using the first non-Linux TC. * We ignore the parameters provided by the caller! */ settc(tclimit); /* * In 34K/Malta, the only cross-VPE interrupts possible * are done by setting SWINT bits in Cause, of which there * are two. SMTC uses SW1 for a multiplexed class of IPIs, * and this mechanism should be generalized to APRP and use * the same protocol. Until that's implemented, send only * SW0 here, regardless of requested type. */ write_vpe_c0_cause(read_vpe_c0_cause() | C_SW0); evpe(vpeflags); local_irq_restore(flags); return 1; } EXPORT_SYMBOL(vpe_send_interrupt); /* Find some VPE program space */ static void *alloc_progmem(void *requested, unsigned long len) { void *addr; #ifdef CONFIG_MIPS_VPE_LOADER_TOM /* * This means you must tell Linux to use less memory than you * physically have, for example by passing a mem= boot argument. */ addr = pfn_to_kaddr(max_low_pfn); if (requested != 0) { if (requested >= addr) addr = requested; else addr = 0; } if (addr != 0) memset(addr, 0, len); printk(KERN_DEBUG "pfn_to_kaddr returns %lu bytes of memory at %x\n", len, (unsigned int)addr); #else if (requested != 0) { /* If we have a target in mind, grab a 2x slice and hope... */ addr = kzalloc(len*2, GFP_KERNEL); if ((requested >= addr) && (requested < (addr + len))) addr = requested; else addr = 0; } else { /* simply grab some mem for now */ addr = kzalloc(len, GFP_KERNEL); } #endif return addr; } static void release_progmem(void *ptr) { #ifndef CONFIG_MIPS_VPE_LOADER_TOM kfree(ptr); #endif } /* Update size with this section: return offset. */ static long get_offset(unsigned long *size, Elf_Shdr * sechdr) { long ret; ret = ALIGN(*size, sechdr->sh_addralign ? : 1); *size = ret + sechdr->sh_size; return ret; } /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld might -- code, read-only data, read-write data, small data. Tally sizes, and place the offsets into sh_entsize fields: high bit means it belongs in init. */ static void layout_sections(struct module *mod, const Elf_Ehdr * hdr, Elf_Shdr * sechdrs, const char *secstrings) { static unsigned long const masks[][2] = { /* NOTE: all executable code must be the first section * in this array; otherwise modify the text_size * finder in the two loops below */ {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL}, {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL}, {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL}, {ARCH_SHF_SMALL | SHF_ALLOC, 0} }; unsigned int m, i; for (i = 0; i < hdr->e_shnum; i++) sechdrs[i].sh_entsize = ~0UL; for (m = 0; m < ARRAY_SIZE(masks); ++m) { for (i = 0; i < hdr->e_shnum; ++i) { Elf_Shdr *s = &sechdrs[i]; // || strncmp(secstrings + s->sh_name, ".init", 5) == 0) if ((s->sh_flags & masks[m][0]) != masks[m][0] || (s->sh_flags & masks[m][1]) || s->sh_entsize != ~0UL) continue; s->sh_entsize = get_offset((unsigned long *)&mod->core_size, s); } if (m == 0) mod->core_text_size = mod->core_size; } } /* from module-elf32.c, but subverted a little */ struct mips_hi16 { struct mips_hi16 *next; Elf32_Addr *addr; Elf32_Addr value; }; static struct mips_hi16 *mips_hi16_list; static unsigned int gp_offs, gp_addr; static int apply_r_mips_none(struct module *me, uint32_t *location, Elf32_Addr v) { return 0; } static int apply_r_mips_gprel16(struct module *me, uint32_t *location, Elf32_Addr v) { int rel; if( !(*location & 0xffff) ) { rel = (int)v - gp_addr; } else { /* .sbss + gp(relative) + offset */ /* kludge! */ rel = (int)(short)((int)v + gp_offs + (int)(short)(*location & 0xffff) - gp_addr); } if( (rel > 32768) || (rel < -32768) ) { printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: " "relative address 0x%x out of range of gp register\n", rel); return -ENOEXEC; } *location = (*location & 0xffff0000) | (rel & 0xffff); return 0; } static int apply_r_mips_pc16(struct module *me, uint32_t *location, Elf32_Addr v) { int rel; rel = (((unsigned int)v - (unsigned int)location)); rel >>= 2; // because the offset is in _instructions_ not bytes. rel -= 1; // and one instruction less due to the branch delay slot. if( (rel > 32768) || (rel < -32768) ) { printk(KERN_DEBUG "VPE loader: " "apply_r_mips_pc16: relative address out of range 0x%x\n", rel); return -ENOEXEC; } *location = (*location & 0xffff0000) | (rel & 0xffff); return 0; } static int apply_r_mips_32(struct module *me, uint32_t *location, Elf32_Addr v) { *location += v; return 0; } static int apply_r_mips_26(struct module *me, uint32_t *location, Elf32_Addr v) { if (v % 4) { printk(KERN_DEBUG "VPE loader: apply_r_mips_26 " " unaligned relocation\n"); return -ENOEXEC; } /* * Not desperately convinced this is a good check of an overflow condition * anyway. But it gets in the way of handling undefined weak symbols which * we want to set to zero. * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) { * printk(KERN_ERR * "module %s: relocation overflow\n", * me->name); * return -ENOEXEC; * } */ *location = (*location & ~0x03ffffff) | ((*location + (v >> 2)) & 0x03ffffff); return 0; } static int apply_r_mips_hi16(struct module *me, uint32_t *location, Elf32_Addr v) { struct mips_hi16 *n; /* * We cannot relocate this one now because we don't know the value of * the carry we need to add. Save the information, and let LO16 do the * actual relocation. */ n = kmalloc(sizeof *n, GFP_KERNEL); printk(KERN_DEBUG "Used kmalloc to allocate %d bytes at %x\n", sizeof(struct mips_hi16), (unsigned int)n); if (!n) return -ENOMEM; n->addr = location; n->value = v; n->next = mips_hi16_list; mips_hi16_list = n; return 0; } static int apply_r_mips_lo16(struct module *me, uint32_t *location, Elf32_Addr v) { unsigned long insnlo = *location; Elf32_Addr val, vallo; struct mips_hi16 *l, *next; /* Sign extend the addend we extract from the lo insn. */ vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000; if (mips_hi16_list != NULL) { l = mips_hi16_list; while (l != NULL) { unsigned long insn; /* * The value for the HI16 had best be the same. */ if (v != l->value) { printk(KERN_DEBUG "VPE loader: " "apply_r_mips_lo16/hi16: \t" "inconsistent value information\n"); goto out_free; } /* * Do the HI16 relocation. Note that we actually don't * need to know anything about the LO16 itself, except * where to find the low 16 bits of the addend needed * by the LO16. */ insn = *l->addr; val = ((insn & 0xffff) << 16) + vallo; val += v; /* * Account for the sign extension that will happen in * the low bits. */ val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff; insn = (insn & ~0xffff) | val; *l->addr = insn; next = l->next; printk(KERN_DEBUG "Used kfree to free memory at %x\n", (unsigned int)l); kfree(l); l = next; } mips_hi16_list = NULL; } /* * Ok, we're done with the HI16 relocs. Now deal with the LO16. */ val = v + vallo; insnlo = (insnlo & ~0xffff) | (val & 0xffff); *location = insnlo; return 0; out_free: while (l != NULL) { next = l->next; kfree(l); l = next; } mips_hi16_list = NULL; return -ENOEXEC; } static int (*reloc_handlers[]) (struct module *me, uint32_t *location, Elf32_Addr v) = { [R_MIPS_NONE] = apply_r_mips_none, [R_MIPS_32] = apply_r_mips_32, [R_MIPS_26] = apply_r_mips_26, [R_MIPS_HI16] = apply_r_mips_hi16, [R_MIPS_LO16] = apply_r_mips_lo16, [R_MIPS_GPREL16] = apply_r_mips_gprel16, [R_MIPS_PC16] = apply_r_mips_pc16 }; static char *rstrs[] = { [R_MIPS_NONE] = "MIPS_NONE", [R_MIPS_32] = "MIPS_32", [R_MIPS_26] = "MIPS_26", [R_MIPS_HI16] = "MIPS_HI16", [R_MIPS_LO16] = "MIPS_LO16", [R_MIPS_GPREL16] = "MIPS_GPREL16", [R_MIPS_PC16] = "MIPS_PC16" }; static int apply_relocations(Elf32_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr; Elf32_Sym *sym; uint32_t *location; unsigned int i; Elf32_Addr v; int res; for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { Elf32_Word r_info = rel[i].r_info; /* This is where to make the change */ location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr + rel[i].r_offset; /* This is the symbol it is referring to */ sym = (Elf32_Sym *)sechdrs[symindex].sh_addr + ELF32_R_SYM(r_info); if (!sym->st_value) { printk(KERN_DEBUG "%s: undefined weak symbol %s\n", me->name, strtab + sym->st_name); /* just print the warning, dont barf */ } v = sym->st_value; res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v); if( res ) { char *r = rstrs[ELF32_R_TYPE(r_info)]; printk(KERN_WARNING "VPE loader: .text+0x%x " "relocation type %s for symbol \"%s\" failed\n", rel[i].r_offset, r ? r : "UNKNOWN", strtab + sym->st_name); return res; } } return 0; } void save_gp_address(unsigned int secbase, unsigned int rel) { gp_addr = secbase + rel; gp_offs = gp_addr - (secbase & 0xffff0000); } /* end module-elf32.c */ /* Change all symbols so that sh_value encodes the pointer directly. */ static void simplify_symbols(Elf_Shdr * sechdrs, unsigned int symindex, const char *strtab, const char *secstrings, unsigned int nsecs, struct module *mod) { Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; unsigned long secbase, bssbase = 0; unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); int size; /* find the .bss section for COMMON symbols */ for (i = 0; i < nsecs; i++) { if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) { bssbase = sechdrs[i].sh_addr; break; } } for (i = 1; i < n; i++) { switch (sym[i].st_shndx) { case SHN_COMMON: /* Allocate space for the symbol in the .bss section. st_value is currently size. We want it to have the address of the symbol. */ size = sym[i].st_value; sym[i].st_value = bssbase; bssbase += size; break; case SHN_ABS: /* Don't need to do anything */ break; case SHN_UNDEF: /* ret = -ENOENT; */ break; case SHN_MIPS_SCOMMON: printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON " "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name, sym[i].st_shndx); // .sbss section break; default: secbase = sechdrs[sym[i].st_shndx].sh_addr; if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) { save_gp_address(secbase, sym[i].st_value); } sym[i].st_value += secbase; break; } } } #ifdef DEBUG_ELFLOADER static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex, const char *strtab, struct module *mod) { Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n); for (i = 1; i < n; i++) { printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i, strtab + sym[i].st_name, sym[i].st_value); } } #endif /* We are prepared so configure and start the VPE... */ static int vpe_run(struct vpe * v) { unsigned long flags, val, dmt_flag; struct vpe_notifications *n; unsigned int vpeflags; struct tc *t; /* check we are the Master VPE */ local_irq_save(flags); val = read_c0_vpeconf0(); if (!(val & VPECONF0_MVP)) { printk(KERN_WARNING "VPE loader: only Master VPE's are allowed to configure MT\n"); local_irq_restore(flags); return -1; } dmt_flag = dmt(); vpeflags = dvpe(); if (!list_empty(&v->tc)) { if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) { evpe(vpeflags); emt(dmt_flag); local_irq_restore(flags); printk(KERN_WARNING "VPE loader: TC %d is already in use.\n", t->index); return -ENOEXEC; } } else { evpe(vpeflags); emt(dmt_flag); local_irq_restore(flags); printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n", v->minor); return -ENOEXEC; } /* Put MVPE's into 'configuration state' */ set_c0_mvpcontrol(MVPCONTROL_VPC); settc(t->index); /* should check it is halted, and not activated */ if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) { evpe(vpeflags); emt(dmt_flag); local_irq_restore(flags); printk(KERN_WARNING "VPE loader: TC %d is already active!\n", t->index); return -ENOEXEC; } /* Write the address we want it to start running from in the TCPC register. */ write_tc_c0_tcrestart((unsigned long)v->__start); write_tc_c0_tccontext((unsigned long)0); /* * Mark the TC as activated, not interrupt exempt and not dynamically * allocatable */ val = read_tc_c0_tcstatus(); val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A; write_tc_c0_tcstatus(val); write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H); /* * The sde-kit passes 'memsize' to __start in $a3, so set something * here... Or set $a3 to zero and define DFLT_STACK_SIZE and * DFLT_HEAP_SIZE when you compile your program */ mttgpr(6, v->ntcs); mttgpr(7, physical_memsize); /* set up VPE1 */ /* * bind the TC to VPE 1 as late as possible so we only have the final * VPE registers to set up, and so an EJTAG probe can trigger on it */ write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1); write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA)); back_to_back_c0_hazard(); /* Set up the XTC bit in vpeconf0 to point at our tc */ write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC)) | (t->index << VPECONF0_XTC_SHIFT)); back_to_back_c0_hazard(); /* enable this VPE */ write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA); /* clear out any left overs from a previous program */ write_vpe_c0_status(0); write_vpe_c0_cause(0); /* take system out of configuration state */ clear_c0_mvpcontrol(MVPCONTROL_VPC); /* * SMTC/SMVP kernels manage VPE enable independently, * but uniprocessor kernels need to turn it on, even * if that wasn't the pre-dvpe() state. */ #ifdef CONFIG_SMP evpe(vpeflags); #else evpe(EVPE_ENABLE); #endif emt(dmt_flag); local_irq_restore(flags); list_for_each_entry(n, &v->notify, list) n->start(minor); return 0; } static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs, unsigned int symindex, const char *strtab, struct module *mod) { Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; unsigned int i, j, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); for (i = 1; i < n; i++) { if (strcmp(strtab + sym[i].st_name, "__start") == 0) v->__start = sym[i].st_value; if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) v->shared_ptr = (void *)sym[i].st_value; if (strcmp(strtab + sym[i].st_name, "_vpe_shared_areas") == 0) { struct vpe_shared_area *psa = (struct vpe_shared_area *)sym[i].st_value; struct vpe_shared_area *tpsa; v->shared_areas = psa; printk(KERN_INFO"_vpe_shared_areas found, 0x%x\n", (unsigned int)v->shared_areas); /* * Copy any "published" areas to the descriptor */ for (j = 0; j < N_PUB_AREAS; j++) { if (published_vpe_area[j].type != VPE_SHARED_RESERVED) { tpsa = psa; while (tpsa->type != VPE_SHARED_NULL) { if ((tpsa->type == VPE_SHARED_RESERVED) || (tpsa->type == published_vpe_area[j].type)) { tpsa->type = published_vpe_area[j].type; tpsa->addr = published_vpe_area[j].addr; break; } tpsa++; } } } } } if ( (v->__start == 0) || (v->shared_ptr == NULL)) return -1; return 0; } /* * Allocates a VPE with some program code space(the load address), copies the * contents of the program (p)buffer performing relocatations/etc, free's it * when finished. */ static int vpe_elfload(struct vpe * v) { Elf_Ehdr *hdr; Elf_Shdr *sechdrs; long err = 0; char *secstrings, *strtab = NULL; unsigned int len, i, symindex = 0, strindex = 0, relocate = 0; struct module mod; // so we can re-use the relocations code mm_segment_t old_fs; memset(&mod, 0, sizeof(struct module)); strcpy(mod.name, "VPE loader"); hdr = v->l_ehdr; len = v->pbsize; /* Sanity checks against insmoding binaries or wrong arch, weird elf version */ if ((hdr->e_type != ET_REL && hdr->e_type != ET_EXEC) || !elf_check_arch(hdr) || hdr->e_shentsize != sizeof(*sechdrs)) { printk(KERN_WARNING "VPE loader: program wrong arch or weird elf version\n"); return -ENOEXEC; } if (hdr->e_type == ET_REL) relocate = 1; if (len < v->l_phlen + v->l_shlen) { printk(KERN_ERR "VPE loader: Headers exceed %u bytes\n", len); return -ENOEXEC; } /* Convenience variables */ sechdrs = (void *)hdr + hdr->e_shoff; secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; sechdrs[0].sh_addr = 0; /* And these should exist, but gcc whinges if we don't init them */ symindex = strindex = 0; if (relocate) { for (i = 1; i < hdr->e_shnum; i++) { if (sechdrs[i].sh_type != SHT_NOBITS && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) { printk(KERN_ERR "VPE program length %u truncated\n", len); return -ENOEXEC; } /* Mark all sections sh_addr with their address in the temporary image. */ sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset; /* Internal symbols and strings. */ if (sechdrs[i].sh_type == SHT_SYMTAB) { symindex = i; strindex = sechdrs[i].sh_link; strtab = (char *)hdr + sechdrs[strindex].sh_offset; } } layout_sections(&mod, hdr, sechdrs, secstrings); /* * Non-relocatable loads should have already done their * allocates, based on program header table. */ } memset(v->load_addr, 0, mod.core_size); if (!v->load_addr) return -ENOMEM; pr_info("VPE loader: loading to %p\n", v->load_addr); if (relocate) { for (i = 0; i < hdr->e_shnum; i++) { void *dest; if (!(sechdrs[i].sh_flags & SHF_ALLOC)) continue; dest = v->load_addr + sechdrs[i].sh_entsize; if (sechdrs[i].sh_type != SHT_NOBITS) memcpy(dest, (void *)sechdrs[i].sh_addr, sechdrs[i].sh_size); /* Update sh_addr to point to copy in image. */ sechdrs[i].sh_addr = (unsigned long)dest; printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n", secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr); } /* Fix up syms, so that st_value is a pointer to location. */ simplify_symbols(sechdrs, symindex, strtab, secstrings, hdr->e_shnum, &mod); /* Now do relocations. */ for (i = 1; i < hdr->e_shnum; i++) { const char *strtab = (char *)sechdrs[strindex].sh_addr; unsigned int info = sechdrs[i].sh_info; /* Not a valid relocation section? */ if (info >= hdr->e_shnum) continue; /* Don't bother with non-allocated sections */ if (!(sechdrs[info].sh_flags & SHF_ALLOC)) continue; if (sechdrs[i].sh_type == SHT_REL) err = apply_relocations(sechdrs, strtab, symindex, i, &mod); else if (sechdrs[i].sh_type == SHT_RELA) err = apply_relocate_add(sechdrs, strtab, symindex, i, &mod); if (err < 0) return err; } } else { struct elf_phdr *phdr = (struct elf_phdr *) ((char *)hdr + hdr->e_phoff); for (i = 0; i < hdr->e_phnum; i++) { if (phdr->p_type == PT_LOAD) { memcpy((void *)phdr->p_paddr, (char *)hdr + phdr->p_offset, phdr->p_filesz); memset((void *)phdr->p_paddr + phdr->p_filesz, 0, phdr->p_memsz - phdr->p_filesz); } phdr++; } /* * Program image is already in memory. */ for (i = 0; i < hdr->e_shnum; i++) { /* Internal symbols and strings. */ if (sechdrs[i].sh_type == SHT_SYMTAB) { symindex = i; strindex = sechdrs[i].sh_link; strtab = (char *)hdr + sechdrs[strindex].sh_offset; /* mark the symtab's address for when we try to find the magic symbols */ sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset; } } } /* make sure it's physically written out */ /* flush the icache in correct context */ old_fs = get_fs(); set_fs(KERNEL_DS); flush_icache_range((unsigned long)v->load_addr, (unsigned long)v->load_addr + v->copied); set_fs(old_fs); if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) { if (v->__start == 0) { printk(KERN_WARNING "VPE loader: program does not contain " "a __start symbol\n"); return -ENOEXEC; } if (v->shared_ptr == NULL) printk(KERN_WARNING "VPE loader: " "program does not contain vpe_shared symbol.\n" " Unable to use AMVP (AP/SP) facilities.\n"); } pr_info("APRP VPE loader: elf loaded\n"); return 0; } static void cleanup_tc(struct tc *tc) { unsigned long flags; unsigned int mtflags, vpflags; int tmp; local_irq_save(flags); mtflags = dmt(); vpflags = dvpe(); /* Put MVPE's into 'configuration state' */ set_c0_mvpcontrol(MVPCONTROL_VPC); settc(tc->index); tmp = read_tc_c0_tcstatus(); /* mark not allocated and not dynamically allocatable */ tmp &= ~(TCSTATUS_A | TCSTATUS_DA); tmp |= TCSTATUS_IXMT; /* interrupt exempt */ write_tc_c0_tcstatus(tmp); write_tc_c0_tchalt(TCHALT_H); mips_ihb(); /* bind it to anything other than VPE1 */ // write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE clear_c0_mvpcontrol(MVPCONTROL_VPC); evpe(vpflags); emt(mtflags); local_irq_restore(flags); } static int getcwd(char *buff, int size) { mm_segment_t old_fs; int ret; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_getcwd(buff, size); set_fs(old_fs); return ret; } /* checks VPE is unused and gets ready to load program */ static int vpe_open(struct inode *inode, struct file *filp) { enum vpe_state state; struct vpe_notifications *not; struct vpe *v; int ret; if (minor != iminor(inode)) { /* assume only 1 device at the moment. */ pr_warning("VPE loader: only vpe1 is supported\n"); return -ENODEV; } /* * This treats the tclimit command line configuration input * as a minor device indication, which is probably unwholesome. */ if ((v = get_vpe(tclimit)) == NULL) { pr_warning("VPE loader: unable to get vpe\n"); return -ENODEV; } state = xchg(&v->state, VPE_STATE_INUSE); if (state != VPE_STATE_UNUSED) { printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n"); list_for_each_entry(not, &v->notify, list) { not->stop(tclimit); } release_progmem(v->load_addr); kfree(v->l_phsort); cleanup_tc(get_tc(tclimit)); } /* this of-course trashes what was there before... */ v->pbuffer = vmalloc(P_SIZE); v->load_addr = NULL; v->copied = 0; v->offset = 0; v->l_state = LOAD_STATE_EHDR; v->l_ehdr = NULL; v->l_phdr = NULL; v->l_phsort = NULL; v->l_shdr = NULL; v->uid = filp->f_cred->fsuid; v->gid = filp->f_cred->fsgid; v->cwd[0] = 0; ret = getcwd(v->cwd, VPE_PATH_MAX); if (ret < 0) printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret); v->shared_ptr = NULL; v->shared_areas = NULL; v->__start = 0; return 0; } static int vpe_release(struct inode *inode, struct file *filp) { struct vpe *v; int ret = 0; v = get_vpe(tclimit); if (v == NULL) return -ENODEV; /* * If image load had no errors, massage program/section tables * to reflect movement of program/section data into VPE program * memory. */ if (v->l_state != LOAD_STATE_DONE) { printk(KERN_WARNING "VPE Release after incomplete load\n"); printk(KERN_DEBUG "Used vfree to free memory at " "%x after failed load attempt\n", (unsigned int)v->pbuffer); if (v->pbuffer != NULL) vfree(v->pbuffer); return -ENOEXEC; } if (memcmp(((Elf_Ehdr *)v->pbuffer)->e_ident, ELFMAG, SELFMAG) == 0) { if (vpe_elfload(v) >= 0) vpe_run(v); else { printk(KERN_WARNING "VPE loader: ELF load failed.\n"); ret = -ENOEXEC; } } else { printk(KERN_WARNING "VPE loader: only elf files are supported\n"); ret = -ENOEXEC; } /* It's good to be able to run the SP and if it chokes have a look at the /dev/rt?. But if we reset the pointer to the shared struct we lose what has happened. So perhaps if garbage is sent to the vpe device, use it as a trigger for the reset. Hopefully a nice executable will be along shortly. */ if (ret < 0) v->shared_ptr = NULL; // cleanup any temp buffers if (v->pbuffer) { printk(KERN_DEBUG "Used vfree to free memory at %x\n", (unsigned int)v->pbuffer); vfree(v->pbuffer); } v->pbsize = 0; return ret; } /* * A sort of insertion sort to generate list of program header indices * in order of their file offsets. */ static void indexort(struct elf_phdr *phdr, int nph, int *index) { int i, j, t; unsigned int toff; /* Create initial mapping */ for (i = 0; i < nph; i++) index[i] = i; /* Do the indexed insert sort */ for (i = 1; i < nph; i++) { j = i; t = index[j]; toff = phdr[t].p_offset; while ((j > 0) && (phdr[index[j-1]].p_offset > toff)) { index[j] = index[j-1]; j--; } index[j] = t; } } /* * This function has to convert the ELF file image being sequentially * streamed to the pseudo-device into the binary image, symbol, and * string information, which the ELF format allows to be in some degree * of disorder. * * The ELF header and, if present, program header table, are copied into * a temporary buffer. Loadable program segments, if present, are copied * into the RP program memory at the addresses specified by the program * header table. * * Sections not specified by the program header table are loaded into * memory following the program segments if they are "allocated", or * into the temporary buffer if they are not. The section header * table is loaded into the temporary buffer.??? */ #define CURPHDR (v->l_phdr[v->l_phsort[v->l_cur_seg]]) static ssize_t vpe_write(struct file *file, const char __user * buffer, size_t count, loff_t * ppos) { size_t ret = count; struct vpe *v; int tocopy, uncopied; int i; unsigned int progmemlen; if (iminor(file->f_path.dentry->d_inode) != minor) return -ENODEV; v = get_vpe(tclimit); if (v == NULL) return -ENODEV; if (v->pbuffer == NULL) { printk(KERN_ERR "VPE loader: no buffer for program\n"); return -ENOMEM; } while (count) { switch (v->l_state) { case LOAD_STATE_EHDR: /* Loading ELF Header into scratch buffer */ tocopy = min((unsigned long)count, sizeof(Elf_Ehdr) - v->offset); uncopied = copy_from_user(v->pbuffer + v->copied, buffer, tocopy); count -= tocopy - uncopied; v->copied += tocopy - uncopied; v->offset += tocopy - uncopied; buffer += tocopy - uncopied; if (v->copied == sizeof(Elf_Ehdr)) { v->l_ehdr = (Elf_Ehdr *)v->pbuffer; if (memcmp(v->l_ehdr->e_ident, ELFMAG, 4) != 0) { printk(KERN_WARNING "VPE loader: %s\n", "non-ELF file image"); ret = -ENOEXEC; v->l_state = LOAD_STATE_ERROR; break; } if (v->l_ehdr->e_phoff != 0) { v->l_phdr = (struct elf_phdr *) (v->pbuffer + v->l_ehdr->e_phoff); v->l_phlen = v->l_ehdr->e_phentsize * v->l_ehdr->e_phnum; /* Check against buffer overflow */ if ((v->copied + v->l_phlen) > v->pbsize) { printk(KERN_WARNING "VPE loader: elf program header table size too big\n"); v->l_state = LOAD_STATE_ERROR; return -ENOMEM; } v->l_state = LOAD_STATE_PHDR; /* * Program headers generally indicate * linked executable with possibly * valid entry point. */ v->__start = v->l_ehdr->e_entry; } else if (v->l_ehdr->e_shoff != 0) { /* * No program headers, but a section * header table. A relocatable binary. * We need to load the works into the * kernel temp buffer to compute the * RP program image. That limits our * binary size, but at least we're no * worse off than the original APRP * prototype. */ v->l_shlen = v->l_ehdr->e_shentsize * v->l_ehdr->e_shnum; if ((v->l_ehdr->e_shoff + v->l_shlen - v->offset) > v->pbsize) { printk(KERN_WARNING "VPE loader: elf sections/section table too big.\n"); v->l_state = LOAD_STATE_ERROR; return -ENOMEM; } v->l_state = LOAD_STATE_SHDR; } else { /* * If neither program nor section tables, * we don't know what to do. */ v->l_state = LOAD_STATE_ERROR; return -ENOEXEC; } } break; case LOAD_STATE_PHDR: /* Loading Program Headers into scratch */ tocopy = min((unsigned long)count, v->l_ehdr->e_phoff + v->l_phlen - v->copied); uncopied = copy_from_user(v->pbuffer + v->copied, buffer, tocopy); count -= tocopy - uncopied; v->copied += tocopy - uncopied; v->offset += tocopy - uncopied; buffer += tocopy - uncopied; if (v->copied == v->l_ehdr->e_phoff + v->l_phlen) { /* * It's legal for the program headers to be * out of order with respect to the file layout. * Generate a list of indices, sorted by file * offset. */ v->l_phsort = kmalloc(v->l_ehdr->e_phnum * sizeof(int), GFP_KERNEL); printk(KERN_DEBUG "Used kmalloc to allocate %d bytes of memory at %x\n", v->l_ehdr->e_phnum*sizeof(int), (unsigned int)v->l_phsort); if (!v->l_phsort) return -ENOMEM; /* Preposterous, but... */ indexort(v->l_phdr, v->l_ehdr->e_phnum, v->l_phsort); v->l_progminad = (unsigned int)-1; v->l_progmaxad = 0; progmemlen = 0; for (i = 0; i < v->l_ehdr->e_phnum; i++) { if (v->l_phdr[v->l_phsort[i]].p_type == PT_LOAD) { /* Unstripped .reginfo sections are bad */ if (v->l_phdr[v->l_phsort[i]].p_vaddr < __UA_LIMIT) { printk(KERN_WARNING "%s%s%s\n", "VPE loader: ", "User-mode p_vaddr, ", "skipping program segment,"); printk(KERN_WARNING "%s%s%s\n", "VPE loader: ", "strip .reginfo from binary ", "if necessary."); continue; } if (v->l_phdr[v->l_phsort[i]].p_vaddr < v->l_progminad) v->l_progminad = v->l_phdr[v->l_phsort[i]].p_vaddr; if ((v->l_phdr[v->l_phsort[i]].p_vaddr + v->l_phdr[v->l_phsort[i]].p_memsz) > v->l_progmaxad) v->l_progmaxad = v->l_phdr[v->l_phsort[i]].p_vaddr + v->l_phdr[v->l_phsort[i]].p_memsz; } } printk(KERN_INFO "APRP RP program 0x%x to 0x%x\n", v->l_progminad, v->l_progmaxad); /* * Do a simple sanity check of the memory being * allocated. Abort if greater than an arbitrary * value of 32MB */ if (v->l_progmaxad - v->l_progminad > 32*1024*1024) { printk(KERN_WARNING "RP program failed to allocate %d kbytes - limit is 32,768 KB\n", (v->l_progmaxad - v->l_progminad)/1024); return -ENOMEM; } v->load_addr = alloc_progmem((void *)v->l_progminad, v->l_progmaxad - v->l_progminad); if (!v->load_addr) return -ENOMEM; if ((unsigned int)v->load_addr > v->l_progminad) { release_progmem(v->load_addr); return -ENOMEM; } /* Find first segment with loadable content */ for (i = 0; i < v->l_ehdr->e_phnum; i++) { if (v->l_phdr[v->l_phsort[i]].p_type == PT_LOAD) { if (v->l_phdr[v->l_phsort[i]].p_vaddr < __UA_LIMIT) { /* Skip userspace segments */ continue; } v->l_cur_seg = i; break; } } if (i == v->l_ehdr->e_phnum) { /* No loadable program segment? Bogus file. */ printk(KERN_WARNING "Bad ELF file for APRP\n"); return -ENOEXEC; } v->l_segoff = 0; v->l_state = LOAD_STATE_PIMAGE; } break; case LOAD_STATE_PIMAGE: /* * Skip through input stream until * first program segment. Would be * better to have loaded up to here * into the temp buffer, but for now * we simply rule out "interesting" * sections prior to the last program * segment in an executable file. */ if (v->offset < CURPHDR.p_offset) { uncopied = CURPHDR.p_offset - v->offset; if (uncopied > count) uncopied = count; count -= uncopied; buffer += uncopied; v->offset += uncopied; /* Go back through the "while" */ break; } /* * Having dispensed with any unlikely fluff, * copy from user I/O buffer to program segment. */ tocopy = min(count, CURPHDR.p_filesz - v->l_segoff); /* Loading image into RP memory */ uncopied = copy_from_user((char *)CURPHDR.p_vaddr + v->l_segoff, buffer, tocopy); count -= tocopy - uncopied; v->offset += tocopy - uncopied; v->l_segoff += tocopy - uncopied; buffer += tocopy - uncopied; if (v->l_segoff >= CURPHDR.p_filesz) { /* Finished current segment load */ /* Zero out non-file-sourced image */ uncopied = CURPHDR.p_memsz - CURPHDR.p_filesz; if (uncopied > 0) memset((char *)CURPHDR.p_vaddr + v->l_segoff, 0, uncopied); /* Advance to next segment */ for (i = v->l_cur_seg + 1; i < v->l_ehdr->e_phnum; i++) { if (v->l_phdr[v->l_phsort[i]].p_type == PT_LOAD) { if (v->l_phdr[v->l_phsort[i]].p_vaddr < __UA_LIMIT) { /* Skip userspace segments */ continue; } v->l_cur_seg = i; break; } } /* If none left, prepare to load section headers */ if (i == v->l_ehdr->e_phnum) { if (v->l_ehdr->e_shoff != 0) { /* Copy to where we left off in temp buffer */ v->l_shlen = v->l_ehdr->e_shentsize * v->l_ehdr->e_shnum; if ((v->l_ehdr->e_shoff + v->l_shlen - v->offset) > v->pbsize) { printk(KERN_WARNING "VPE loader: elf sections/section table too big\n"); v->l_state = LOAD_STATE_ERROR; return -ENOMEM; } v->l_state = LOAD_STATE_SHDR; break; } } else { /* reset offset for new program segment */ v->l_segoff = 0; } } break; case LOAD_STATE_SHDR: /* * Read stream into private buffer up * through and including the section header * table. */ tocopy = min((unsigned long)count, v->l_ehdr->e_shoff + v->l_shlen - v->offset); if (tocopy) { uncopied = copy_from_user(v->pbuffer + v->copied, buffer, tocopy); count -= tocopy - uncopied; v->copied += tocopy - uncopied; v->offset += tocopy - uncopied; buffer += tocopy - uncopied; } /* Finished? */ if (v->offset == v->l_ehdr->e_shoff + v->l_shlen) { unsigned int offset_delta = v->offset - v->copied; v->l_shdr = (Elf_Shdr *)(v->pbuffer + v->l_ehdr->e_shoff - offset_delta); /* * Check for sections after the section table, * which for gcc MIPS binaries includes * the symbol table. Do any other processing * that requires value within stream, and * normalize offsets to be relative to * the header-only layout of temp buffer. */ /* Assume no trailer until we detect one */ v->l_trailer = 0; v->l_state = LOAD_STATE_DONE; for (i = 0; i < v->l_ehdr->e_shnum; i++) { if (v->l_shdr[i].sh_offset > v->l_ehdr->e_shoff) { v->l_state = LOAD_STATE_TRAILER; /* Track trailing data length */ if (v->l_trailer < (v->l_shdr[i].sh_offset + v->l_shdr[i].sh_size) - (v->l_ehdr->e_shoff + v->l_shlen)) v->l_trailer = (v->l_shdr[i].sh_offset + v->l_shdr[i].sh_size) - (v->l_ehdr->e_shoff + v->l_shlen); } /* Adjust section offset if necessary */ v->l_shdr[i].sh_offset -= offset_delta; } if ((v->copied + v->l_trailer) > v->pbsize) { printk(KERN_WARNING "VPE loader: elf size too big. Perhaps strip uneeded symbols\n"); v->l_state = LOAD_STATE_ERROR; return -ENOMEM; } /* Fix up offsets in ELF header */ v->l_ehdr->e_shoff = (unsigned int)v->l_shdr - (unsigned int)v->pbuffer; } break; case LOAD_STATE_TRAILER: /* * Symbol and string tables follow section headers * in gcc binaries for MIPS. Copy into temp buffer. */ if (v->l_trailer) { tocopy = min(count, v->l_trailer); uncopied = copy_from_user(v->pbuffer + v->copied, buffer, tocopy); count -= tocopy - uncopied; v->l_trailer -= tocopy - uncopied; v->copied += tocopy - uncopied; v->offset += tocopy - uncopied; buffer += tocopy - uncopied; } if (!v->l_trailer) v->l_state = LOAD_STATE_DONE; break; case LOAD_STATE_DONE: if (count) count = 0; break; case LOAD_STATE_ERROR: default: return -EINVAL; } } return ret; } static const struct file_operations vpe_fops = { .owner = THIS_MODULE, .open = vpe_open, .release = vpe_release, .write = vpe_write, .llseek = noop_llseek, }; /* module wrapper entry points */ /* give me a vpe */ vpe_handle vpe_alloc(void) { int i; struct vpe *v; /* find a vpe */ for (i = 1; i < MAX_VPES; i++) { if ((v = get_vpe(i)) != NULL) { v->state = VPE_STATE_INUSE; return v; } } return NULL; } EXPORT_SYMBOL(vpe_alloc); /* start running from here */ int vpe_start(vpe_handle vpe, unsigned long start) { struct vpe *v = vpe; /* Null start address means use value from ELF file */ if (start) v->__start = start; return vpe_run(v); } EXPORT_SYMBOL(vpe_start); /* halt it for now */ int vpe_stop(vpe_handle vpe) { struct vpe *v = vpe; struct tc *t; unsigned int evpe_flags; evpe_flags = dvpe(); if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) { settc(t->index); write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA); } evpe(evpe_flags); return 0; } EXPORT_SYMBOL(vpe_stop); /* I've done with it thank you */ int vpe_free(vpe_handle vpe) { struct vpe *v = vpe; struct tc *t; unsigned int evpe_flags; if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) { return -ENOEXEC; } evpe_flags = dvpe(); /* Put MVPE's into 'configuration state' */ set_c0_mvpcontrol(MVPCONTROL_VPC); settc(t->index); write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA); /* halt the TC */ write_tc_c0_tchalt(TCHALT_H); mips_ihb(); /* mark the TC unallocated */ write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A); v->state = VPE_STATE_UNUSED; clear_c0_mvpcontrol(MVPCONTROL_VPC); evpe(evpe_flags); return 0; } EXPORT_SYMBOL(vpe_free); void *vpe_get_shared(int index) { struct vpe *v; if ((v = get_vpe(index)) == NULL) return NULL; return v->shared_ptr; } EXPORT_SYMBOL(vpe_get_shared); int vpe_getuid(int index) { struct vpe *v; if ((v = get_vpe(index)) == NULL) return -1; return v->uid; } EXPORT_SYMBOL(vpe_getuid); int vpe_getgid(int index) { struct vpe *v; if ((v = get_vpe(index)) == NULL) return -1; return v->gid; } EXPORT_SYMBOL(vpe_getgid); int vpe_notify(int index, struct vpe_notifications *notify) { struct vpe *v; if ((v = get_vpe(index)) == NULL) return -1; list_add(¬ify->list, &v->notify); return 0; } EXPORT_SYMBOL(vpe_notify); char *vpe_getcwd(int index) { struct vpe *v; if ((v = get_vpe(index)) == NULL) return NULL; return v->cwd; } EXPORT_SYMBOL(vpe_getcwd); /* * RP applications may contain a _vpe_shared_area descriptor * array to allow for data sharing with Linux kernel functions * that's slightly more abstracted and extensible than the * fixed binding used by the rtlx support. Indeed, the rtlx * support should ideally be converted to use the generic * shared area descriptor scheme at some point. * * mips_get_vpe_shared_area() can be used by AP kernel * modules to get an area pointer of a given type, if * it exists. * * mips_publish_vpe_area() is used by AP kernel modules * to share kseg0 kernel memory with the RP. It maintains * a private table, so that publishing can be done before * the RP program is launched. Making this table dynamically * allocated and extensible would be good scalable OS design. * however, until there's more than one user of the mechanism, * it should be an acceptable simplification to allow a static * maximum of 4 published areas. */ void *mips_get_vpe_shared_area(int index, int type) { struct vpe *v; struct vpe_shared_area *vsa; v = get_vpe(index); if (v == NULL) return NULL; if (v->shared_areas == NULL) return NULL; vsa = v->shared_areas; while (vsa->type != VPE_SHARED_NULL) { if (vsa->type == type) return vsa->addr; else vsa++; } /* Fell through without finding type */ return NULL; } EXPORT_SYMBOL(mips_get_vpe_shared_area); int mips_publish_vpe_area(int type, void *ptr) { int i; int retval = 0; struct vpe *v; unsigned long flags; unsigned int vpflags; printk(KERN_INFO "mips_publish_vpe_area(0x%x, 0x%x)\n", type, (int)ptr); if ((unsigned int)ptr >= KSEG2) { printk(KERN_ERR "VPE area pubish of invalid address 0x%x\n", (int)ptr); return 0; } for (i = 0; i < N_PUB_AREAS; i++) { if (published_vpe_area[i].type == VPE_SHARED_RESERVED) { published_vpe_area[i].type = type; published_vpe_area[i].addr = ptr; retval = type; break; } } /* * If we've already got a VPE up and running, try to * update the shared descriptor with the new data. */ list_for_each_entry(v, &vpecontrol.vpe_list, list) { if (v->shared_areas != NULL) { local_irq_save(flags); vpflags = dvpe(); for (i = 0; v->shared_areas[i].type != VPE_SHARED_NULL; i++) { if ((v->shared_areas[i].type == type) || (v->shared_areas[i].type == VPE_SHARED_RESERVED)) { v->shared_areas[i].type = type; v->shared_areas[i].addr = ptr; } } evpe(vpflags); local_irq_restore(flags); } } return retval; } EXPORT_SYMBOL(mips_publish_vpe_area); #ifdef CONFIG_MIPS_APSP_KSPD static void kspd_sp_exit( int sp_id) { cleanup_tc(get_tc(sp_id)); } #endif static ssize_t store_kill(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct vpe *vpe = get_vpe(tclimit); struct vpe_notifications *not; list_for_each_entry(not, &vpe->notify, list) { not->stop(tclimit); } release_progmem(vpe->load_addr); kfree(vpe->l_phsort); cleanup_tc(get_tc(tclimit)); vpe_stop(vpe); vpe_free(vpe); return len; } static ssize_t show_ntcs(struct device *cd, struct device_attribute *attr, char *buf) { struct vpe *vpe = get_vpe(tclimit); return sprintf(buf, "%d\n", vpe->ntcs); } static ssize_t store_ntcs(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct vpe *vpe = get_vpe(tclimit); unsigned long new; char *endp; new = simple_strtoul(buf, &endp, 0); if (endp == buf) goto out_einval; if (new == 0 || new > (hw_tcs - tclimit)) goto out_einval; vpe->ntcs = new; return len; out_einval: return -EINVAL; } static struct device_attribute vpe_class_attributes[] = { __ATTR(kill, S_IWUSR, NULL, store_kill), __ATTR(ntcs, S_IRUGO | S_IWUSR, show_ntcs, store_ntcs), {} }; static void vpe_device_release(struct device *cd) { printk(KERN_DEBUG "Using kfree to free vpe class device at %x\n", (unsigned int)cd); kfree(cd); } struct class vpe_class = { .name = "vpe", .owner = THIS_MODULE, .dev_release = vpe_device_release, .dev_attrs = vpe_class_attributes, }; struct device vpe_device; static int __init vpe_module_init(void) { unsigned int mtflags, vpflags; unsigned long flags, val; struct vpe *v = NULL; struct tc *t; int tc, err; if (!cpu_has_mipsmt) { printk("VPE loader: not a MIPS MT capable processor\n"); return -ENODEV; } if (vpelimit == 0) { #if defined(CONFIG_MIPS_MT_SMTC) || defined(MIPS_MT_SMP) printk(KERN_WARNING "No VPEs reserved for VPE loader.\n" "Pass maxvpes= argument as kernel argument\n"); return -ENODEV; #else vpelimit = 1; #endif } if (tclimit == 0) { #if defined(CONFIG_MIPS_MT_SMTC) || defined(MIPS_MT_SMP) printk(KERN_WARNING "No TCs reserved for AP/SP, not " "initializing VPE loader.\nPass maxtcs= argument as " "kernel argument\n"); return -ENODEV; #else tclimit = 1; #endif } major = register_chrdev(0, module_name, &vpe_fops); if (major < 0) { printk("VPE loader: unable to register character device\n"); return major; } err = class_register(&vpe_class); if (err) { printk(KERN_ERR "vpe_class registration failed\n"); goto out_chrdev; } xvpe_vector_set = 0; device_initialize(&vpe_device); vpe_device.class = &vpe_class, vpe_device.parent = NULL, dev_set_name(&vpe_device, "vpe1"); vpe_device.devt = MKDEV(major, minor); err = device_add(&vpe_device); if (err) { printk(KERN_ERR "Adding vpe_device failed\n"); goto out_class; } local_irq_save(flags); mtflags = dmt(); vpflags = dvpe(); /* Put MVPE's into 'configuration state' */ set_c0_mvpcontrol(MVPCONTROL_VPC); /* dump_mtregs(); */ val = read_c0_mvpconf0(); hw_tcs = (val & MVPCONF0_PTC) + 1; hw_vpes = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1; for (tc = tclimit; tc < hw_tcs; tc++) { /* * Must re-enable multithreading temporarily or in case we * reschedule send IPIs or similar we might hang. */ clear_c0_mvpcontrol(MVPCONTROL_VPC); evpe(vpflags); emt(mtflags); local_irq_restore(flags); t = alloc_tc(tc); if (!t) { err = -ENOMEM; goto out; } local_irq_save(flags); mtflags = dmt(); vpflags = dvpe(); set_c0_mvpcontrol(MVPCONTROL_VPC); /* VPE's */ if (tc < hw_tcs) { settc(tc); if ((v = alloc_vpe(tc)) == NULL) { printk(KERN_WARNING "VPE: unable to allocate VPE\n"); goto out_reenable; } v->ntcs = hw_tcs - tclimit; /* add the tc to the list of this vpe's tc's. */ list_add(&t->tc, &v->tc); /* deactivate all but vpe0 */ if (tc >= tclimit) { unsigned long tmp = read_vpe_c0_vpeconf0(); tmp &= ~VPECONF0_VPA; /* master VPE */ tmp |= VPECONF0_MVP; write_vpe_c0_vpeconf0(tmp); } /* disable multi-threading with TC's */ write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE); if (tc >= vpelimit) { /* * Set config to be the same as vpe0, * particularly kseg0 coherency alg */ write_vpe_c0_config(read_c0_config()); } } /* TC's */ t->pvpe = v; /* set the parent vpe */ if (tc >= tclimit) { unsigned long tmp; settc(tc); /* Any TC that is bound to VPE0 gets left as is - in case we are running SMTC on VPE0. A TC that is bound to any other VPE gets bound to VPE0, ideally I'd like to make it homeless but it doesn't appear to let me bind a TC to a non-existent VPE. Which is perfectly reasonable. The (un)bound state is visible to an EJTAG probe so may notify GDB... */ if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) { /* tc is bound >vpe0 */ write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE); t->pvpe = get_vpe(0); /* set the parent vpe */ } /* halt the TC */ write_tc_c0_tchalt(TCHALT_H); mips_ihb(); tmp = read_tc_c0_tcstatus(); /* mark not activated and not dynamically allocatable */ tmp &= ~(TCSTATUS_A | TCSTATUS_DA); tmp |= TCSTATUS_IXMT; /* interrupt exempt */ write_tc_c0_tcstatus(tmp); } } out_reenable: /* release config state */ clear_c0_mvpcontrol(MVPCONTROL_VPC); evpe(vpflags); emt(mtflags); local_irq_restore(flags); return 0; out_class: class_unregister(&vpe_class); out_chrdev: unregister_chrdev(major, module_name); out: return err; } static void __exit vpe_module_exit(void) { struct vpe *v, *n; device_del(&vpe_device); unregister_chrdev(major, module_name); /* No locking needed here */ list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) { if (v->state != VPE_STATE_UNUSED) release_vpe(v); } } module_init(vpe_module_init); module_exit(vpe_module_exit); MODULE_DESCRIPTION("MIPS VPE Loader"); MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc."); MODULE_LICENSE("GPL");