/* * The file intends to implement the platform dependent EEH operations on pseries. * Actually, the pseries platform is built based on RTAS heavily. That means the * pseries platform dependent EEH operations will be built on RTAS calls. The functions * are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has * been done. * * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011. * Copyright IBM Corporation 2001, 2005, 2006 * Copyright Dave Engebretsen & Todd Inglett 2001 * Copyright Linas Vepstas 2005, 2006 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* RTAS tokens */ static int ibm_set_eeh_option; static int ibm_set_slot_reset; static int ibm_read_slot_reset_state; static int ibm_read_slot_reset_state2; static int ibm_slot_error_detail; static int ibm_get_config_addr_info; static int ibm_get_config_addr_info2; static int ibm_configure_bridge; static int ibm_configure_pe; /* * Buffer for reporting slot-error-detail rtas calls. Its here * in BSS, and not dynamically alloced, so that it ends up in * RMO where RTAS can access it. */ static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX]; static DEFINE_SPINLOCK(slot_errbuf_lock); static int eeh_error_buf_size; /** * pseries_eeh_init - EEH platform dependent initialization * * EEH platform dependent initialization on pseries. */ static int pseries_eeh_init(void) { /* figure out EEH RTAS function call tokens */ ibm_set_eeh_option = rtas_token("ibm,set-eeh-option"); ibm_set_slot_reset = rtas_token("ibm,set-slot-reset"); ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2"); ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state"); ibm_slot_error_detail = rtas_token("ibm,slot-error-detail"); ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2"); ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info"); ibm_configure_pe = rtas_token("ibm,configure-pe"); ibm_configure_bridge = rtas_token("ibm,configure-bridge"); /* * Necessary sanity check. We needn't check "get-config-addr-info" * and its variant since the old firmware probably support address * of domain/bus/slot/function for EEH RTAS operations. */ if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) { pr_warning("%s: RTAS service invalid\n", __func__); return -EINVAL; } else if (ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE) { pr_warning("%s: RTAS service invalid\n", __func__); return -EINVAL; } else if (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE && ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) { pr_warning("%s: RTAS service and " " invalid\n", __func__); return -EINVAL; } else if (ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE) { pr_warning("%s: RTAS service invalid\n", __func__); return -EINVAL; } else if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE && ibm_configure_bridge == RTAS_UNKNOWN_SERVICE) { pr_warning("%s: RTAS service and " " invalid\n", __func__); return -EINVAL; } /* Initialize error log lock and size */ spin_lock_init(&slot_errbuf_lock); eeh_error_buf_size = rtas_token("rtas-error-log-max"); if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) { pr_warning("%s: unknown EEH error log size\n", __func__); eeh_error_buf_size = 1024; } else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) { pr_warning("%s: EEH error log size %d exceeds the maximal %d\n", __func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX); eeh_error_buf_size = RTAS_ERROR_LOG_MAX; } /* Set EEH probe mode */ eeh_probe_mode_set(EEH_PROBE_MODE_DEVTREE); return 0; } /** * pseries_eeh_of_probe - EEH probe on the given device * @dn: OF node * @flag: Unused * * When EEH module is installed during system boot, all PCI devices * are checked one by one to see if it supports EEH. The function * is introduced for the purpose. */ static void *pseries_eeh_of_probe(struct device_node *dn, void *flag) { struct eeh_dev *edev; struct eeh_pe pe; const u32 *class_code, *vendor_id, *device_id; const u32 *regs; int enable = 0; int ret; /* Retrieve OF node and eeh device */ edev = of_node_to_eeh_dev(dn); if (!of_device_is_available(dn)) return NULL; /* Retrieve class/vendor/device IDs */ class_code = of_get_property(dn, "class-code", NULL); vendor_id = of_get_property(dn, "vendor-id", NULL); device_id = of_get_property(dn, "device-id", NULL); /* Skip for bad OF node or PCI-ISA bridge */ if (!class_code || !vendor_id || !device_id) return NULL; if (dn->type && !strcmp(dn->type, "isa")) return NULL; /* Update class code and mode of eeh device */ edev->class_code = *class_code; edev->mode = 0; /* Retrieve the device address */ regs = of_get_property(dn, "reg", NULL); if (!regs) { pr_warning("%s: OF node property %s::reg not found\n", __func__, dn->full_name); return NULL; } /* Initialize the fake PE */ memset(&pe, 0, sizeof(struct eeh_pe)); pe.phb = edev->phb; pe.config_addr = regs[0]; /* Enable EEH on the device */ ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE); if (!ret) { edev->config_addr = regs[0]; /* Retrieve PE address */ edev->pe_config_addr = eeh_ops->get_pe_addr(&pe); pe.addr = edev->pe_config_addr; /* Some older systems (Power4) allow the ibm,set-eeh-option * call to succeed even on nodes where EEH is not supported. * Verify support explicitly. */ ret = eeh_ops->get_state(&pe, NULL); if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT) enable = 1; if (enable) { eeh_subsystem_enabled = 1; eeh_add_to_parent_pe(edev); pr_debug("%s: EEH enabled on %s PHB#%d-PE#%x, config addr#%x\n", __func__, dn->full_name, pe.phb->global_number, pe.addr, pe.config_addr); } else if (dn->parent && of_node_to_eeh_dev(dn->parent) && (of_node_to_eeh_dev(dn->parent))->pe) { /* This device doesn't support EEH, but it may have an * EEH parent, in which case we mark it as supported. */ edev->config_addr = of_node_to_eeh_dev(dn->parent)->config_addr; edev->pe_config_addr = of_node_to_eeh_dev(dn->parent)->pe_config_addr; eeh_add_to_parent_pe(edev); } } /* Save memory bars */ eeh_save_bars(edev); return NULL; } /** * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable * @pe: EEH PE * @option: operation to be issued * * The function is used to control the EEH functionality globally. * Currently, following options are support according to PAPR: * Enable EEH, Disable EEH, Enable MMIO and Enable DMA */ static int pseries_eeh_set_option(struct eeh_pe *pe, int option) { int ret = 0; int config_addr; /* * When we're enabling or disabling EEH functioality on * the particular PE, the PE config address is possibly * unavailable. Therefore, we have to figure it out from * the FDT node. */ switch (option) { case EEH_OPT_DISABLE: case EEH_OPT_ENABLE: case EEH_OPT_THAW_MMIO: case EEH_OPT_THAW_DMA: config_addr = pe->config_addr; if (pe->addr) config_addr = pe->addr; break; default: pr_err("%s: Invalid option %d\n", __func__, option); return -EINVAL; } ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL, config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), option); return ret; } /** * pseries_eeh_get_pe_addr - Retrieve PE address * @pe: EEH PE * * Retrieve the assocated PE address. Actually, there're 2 RTAS * function calls dedicated for the purpose. We need implement * it through the new function and then the old one. Besides, * you should make sure the config address is figured out from * FDT node before calling the function. * * It's notable that zero'ed return value means invalid PE config * address. */ static int pseries_eeh_get_pe_addr(struct eeh_pe *pe) { int ret = 0; int rets[3]; if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) { /* * First of all, we need to make sure there has one PE * associated with the device. Otherwise, PE address is * meaningless. */ ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, pe->config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), 1); if (ret || (rets[0] == 0)) return 0; /* Retrieve the associated PE config address */ ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, pe->config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), 0); if (ret) { pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n", __func__, pe->phb->global_number, pe->config_addr); return 0; } return rets[0]; } if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) { ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets, pe->config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), 0); if (ret) { pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n", __func__, pe->phb->global_number, pe->config_addr); return 0; } return rets[0]; } return ret; } /** * pseries_eeh_get_state - Retrieve PE state * @pe: EEH PE * @state: return value * * Retrieve the state of the specified PE. On RTAS compliant * pseries platform, there already has one dedicated RTAS function * for the purpose. It's notable that the associated PE config address * might be ready when calling the function. Therefore, endeavour to * use the PE config address if possible. Further more, there're 2 * RTAS calls for the purpose, we need to try the new one and back * to the old one if the new one couldn't work properly. */ static int pseries_eeh_get_state(struct eeh_pe *pe, int *state) { int config_addr; int ret; int rets[4]; int result; /* Figure out PE config address if possible */ config_addr = pe->config_addr; if (pe->addr) config_addr = pe->addr; if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) { ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets, config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid)); } else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) { /* Fake PE unavailable info */ rets[2] = 0; ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets, config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid)); } else { return EEH_STATE_NOT_SUPPORT; } if (ret) return ret; /* Parse the result out */ result = 0; if (rets[1]) { switch(rets[0]) { case 0: result &= ~EEH_STATE_RESET_ACTIVE; result |= EEH_STATE_MMIO_ACTIVE; result |= EEH_STATE_DMA_ACTIVE; break; case 1: result |= EEH_STATE_RESET_ACTIVE; result |= EEH_STATE_MMIO_ACTIVE; result |= EEH_STATE_DMA_ACTIVE; break; case 2: result &= ~EEH_STATE_RESET_ACTIVE; result &= ~EEH_STATE_MMIO_ACTIVE; result &= ~EEH_STATE_DMA_ACTIVE; break; case 4: result &= ~EEH_STATE_RESET_ACTIVE; result &= ~EEH_STATE_MMIO_ACTIVE; result &= ~EEH_STATE_DMA_ACTIVE; result |= EEH_STATE_MMIO_ENABLED; break; case 5: if (rets[2]) { if (state) *state = rets[2]; result = EEH_STATE_UNAVAILABLE; } else { result = EEH_STATE_NOT_SUPPORT; } break; default: result = EEH_STATE_NOT_SUPPORT; } } else { result = EEH_STATE_NOT_SUPPORT; } return result; } /** * pseries_eeh_reset - Reset the specified PE * @pe: EEH PE * @option: reset option * * Reset the specified PE */ static int pseries_eeh_reset(struct eeh_pe *pe, int option) { int config_addr; int ret; /* Figure out PE address */ config_addr = pe->config_addr; if (pe->addr) config_addr = pe->addr; /* Reset PE through RTAS call */ ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL, config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), option); /* If fundamental-reset not supported, try hot-reset */ if (option == EEH_RESET_FUNDAMENTAL && ret == -8) { ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL, config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), EEH_RESET_HOT); } return ret; } /** * pseries_eeh_wait_state - Wait for PE state * @pe: EEH PE * @max_wait: maximal period in microsecond * * Wait for the state of associated PE. It might take some time * to retrieve the PE's state. */ static int pseries_eeh_wait_state(struct eeh_pe *pe, int max_wait) { int ret; int mwait; /* * According to PAPR, the state of PE might be temporarily * unavailable. Under the circumstance, we have to wait * for indicated time determined by firmware. The maximal * wait time is 5 minutes, which is acquired from the original * EEH implementation. Also, the original implementation * also defined the minimal wait time as 1 second. */ #define EEH_STATE_MIN_WAIT_TIME (1000) #define EEH_STATE_MAX_WAIT_TIME (300 * 1000) while (1) { ret = pseries_eeh_get_state(pe, &mwait); /* * If the PE's state is temporarily unavailable, * we have to wait for the specified time. Otherwise, * the PE's state will be returned immediately. */ if (ret != EEH_STATE_UNAVAILABLE) return ret; if (max_wait <= 0) { pr_warning("%s: Timeout when getting PE's state (%d)\n", __func__, max_wait); return EEH_STATE_NOT_SUPPORT; } if (mwait <= 0) { pr_warning("%s: Firmware returned bad wait value %d\n", __func__, mwait); mwait = EEH_STATE_MIN_WAIT_TIME; } else if (mwait > EEH_STATE_MAX_WAIT_TIME) { pr_warning("%s: Firmware returned too long wait value %d\n", __func__, mwait); mwait = EEH_STATE_MAX_WAIT_TIME; } max_wait -= mwait; msleep(mwait); } return EEH_STATE_NOT_SUPPORT; } /** * pseries_eeh_get_log - Retrieve error log * @pe: EEH PE * @severity: temporary or permanent error log * @drv_log: driver log to be combined with retrieved error log * @len: length of driver log * * Retrieve the temporary or permanent error from the PE. * Actually, the error will be retrieved through the dedicated * RTAS call. */ static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len) { int config_addr; unsigned long flags; int ret; spin_lock_irqsave(&slot_errbuf_lock, flags); memset(slot_errbuf, 0, eeh_error_buf_size); /* Figure out the PE address */ config_addr = pe->config_addr; if (pe->addr) config_addr = pe->addr; ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), virt_to_phys(drv_log), len, virt_to_phys(slot_errbuf), eeh_error_buf_size, severity); if (!ret) log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0); spin_unlock_irqrestore(&slot_errbuf_lock, flags); return ret; } /** * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE * @pe: EEH PE * * The function will be called to reconfigure the bridges included * in the specified PE so that the mulfunctional PE would be recovered * again. */ static int pseries_eeh_configure_bridge(struct eeh_pe *pe) { int config_addr; int ret; /* Waiting 0.2s maximum before skipping configuration */ int max_wait = 200; /* Figure out the PE address */ config_addr = pe->config_addr; if (pe->addr) config_addr = pe->addr; while (max_wait > 0) { /* Use new configure-pe function, if supported */ if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE) { ret = rtas_call(ibm_configure_pe, 3, 1, NULL, config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid)); } else if (ibm_configure_bridge != RTAS_UNKNOWN_SERVICE) { ret = rtas_call(ibm_configure_bridge, 3, 1, NULL, config_addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid)); } else { return -EFAULT; } if (!ret) return ret; /* * If RTAS returns a delay value that's above 100ms, cut it * down to 100ms in case firmware made a mistake. For more * on how these delay values work see rtas_busy_delay_time */ if (ret > RTAS_EXTENDED_DELAY_MIN+2 && ret <= RTAS_EXTENDED_DELAY_MAX) ret = RTAS_EXTENDED_DELAY_MIN+2; max_wait -= rtas_busy_delay_time(ret); if (max_wait < 0) break; rtas_busy_delay(ret); } pr_warn("%s: Unable to configure bridge PHB#%d-PE#%x (%d)\n", __func__, pe->phb->global_number, pe->addr, ret); return ret; } /** * pseries_eeh_read_config - Read PCI config space * @dn: device node * @where: PCI address * @size: size to read * @val: return value * * Read config space from the speicifed device */ static int pseries_eeh_read_config(struct device_node *dn, int where, int size, u32 *val) { struct pci_dn *pdn; pdn = PCI_DN(dn); return rtas_read_config(pdn, where, size, val); } /** * pseries_eeh_write_config - Write PCI config space * @dn: device node * @where: PCI address * @size: size to write * @val: value to be written * * Write config space to the specified device */ static int pseries_eeh_write_config(struct device_node *dn, int where, int size, u32 val) { struct pci_dn *pdn; pdn = PCI_DN(dn); return rtas_write_config(pdn, where, size, val); } static struct eeh_ops pseries_eeh_ops = { .name = "pseries", .init = pseries_eeh_init, .of_probe = pseries_eeh_of_probe, .dev_probe = NULL, .set_option = pseries_eeh_set_option, .get_pe_addr = pseries_eeh_get_pe_addr, .get_state = pseries_eeh_get_state, .reset = pseries_eeh_reset, .wait_state = pseries_eeh_wait_state, .get_log = pseries_eeh_get_log, .configure_bridge = pseries_eeh_configure_bridge, .read_config = pseries_eeh_read_config, .write_config = pseries_eeh_write_config }; /** * eeh_pseries_init - Register platform dependent EEH operations * * EEH initialization on pseries platform. This function should be * called before any EEH related functions. */ static int __init eeh_pseries_init(void) { int ret = -EINVAL; if (!machine_is(pseries)) return ret; ret = eeh_ops_register(&pseries_eeh_ops); if (!ret) pr_info("EEH: pSeries platform initialized\n"); else pr_info("EEH: pSeries platform initialization failure (%d)\n", ret); return ret; } early_initcall(eeh_pseries_init);