/* * Copyright IBM Corp. 2007, 2011 * Author(s): Martin Schwidefsky */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_64BIT #define ALLOC_ORDER 1 #define FRAG_MASK 0x0f #else #define ALLOC_ORDER 2 #define FRAG_MASK 0x03 #endif unsigned long *crst_table_alloc(struct mm_struct *mm) { struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER); if (!page) return NULL; return (unsigned long *) page_to_phys(page); } void crst_table_free(struct mm_struct *mm, unsigned long *table) { free_pages((unsigned long) table, ALLOC_ORDER); } #ifdef CONFIG_64BIT int crst_table_upgrade(struct mm_struct *mm, unsigned long limit) { unsigned long *table, *pgd; unsigned long entry; BUG_ON(limit > (1UL << 53)); repeat: table = crst_table_alloc(mm); if (!table) return -ENOMEM; spin_lock_bh(&mm->page_table_lock); if (mm->context.asce_limit < limit) { pgd = (unsigned long *) mm->pgd; if (mm->context.asce_limit <= (1UL << 31)) { entry = _REGION3_ENTRY_EMPTY; mm->context.asce_limit = 1UL << 42; mm->context.asce_bits = _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | _ASCE_TYPE_REGION3; } else { entry = _REGION2_ENTRY_EMPTY; mm->context.asce_limit = 1UL << 53; mm->context.asce_bits = _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | _ASCE_TYPE_REGION2; } crst_table_init(table, entry); pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd); mm->pgd = (pgd_t *) table; mm->task_size = mm->context.asce_limit; table = NULL; } spin_unlock_bh(&mm->page_table_lock); if (table) crst_table_free(mm, table); if (mm->context.asce_limit < limit) goto repeat; return 0; } void crst_table_downgrade(struct mm_struct *mm, unsigned long limit) { pgd_t *pgd; while (mm->context.asce_limit > limit) { pgd = mm->pgd; switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) { case _REGION_ENTRY_TYPE_R2: mm->context.asce_limit = 1UL << 42; mm->context.asce_bits = _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | _ASCE_TYPE_REGION3; break; case _REGION_ENTRY_TYPE_R3: mm->context.asce_limit = 1UL << 31; mm->context.asce_bits = _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | _ASCE_TYPE_SEGMENT; break; default: BUG(); } mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN); mm->task_size = mm->context.asce_limit; crst_table_free(mm, (unsigned long *) pgd); } } #endif #ifdef CONFIG_PGSTE /** * gmap_alloc - allocate a guest address space * @mm: pointer to the parent mm_struct * * Returns a guest address space structure. */ struct gmap *gmap_alloc(struct mm_struct *mm) { struct gmap *gmap; struct page *page; unsigned long *table; gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL); if (!gmap) goto out; INIT_LIST_HEAD(&gmap->crst_list); gmap->mm = mm; page = alloc_pages(GFP_KERNEL, ALLOC_ORDER); if (!page) goto out_free; list_add(&page->lru, &gmap->crst_list); table = (unsigned long *) page_to_phys(page); crst_table_init(table, _REGION1_ENTRY_EMPTY); gmap->table = table; gmap->asce = _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | __pa(table); list_add(&gmap->list, &mm->context.gmap_list); return gmap; out_free: kfree(gmap); out: return NULL; } EXPORT_SYMBOL_GPL(gmap_alloc); static int gmap_unlink_segment(struct gmap *gmap, unsigned long *table) { struct gmap_pgtable *mp; struct gmap_rmap *rmap; struct page *page; if (*table & _SEGMENT_ENTRY_INV) return 0; page = pfn_to_page(*table >> PAGE_SHIFT); mp = (struct gmap_pgtable *) page->index; list_for_each_entry(rmap, &mp->mapper, list) { if (rmap->entry != table) continue; list_del(&rmap->list); kfree(rmap); break; } *table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr; return 1; } static void gmap_flush_tlb(struct gmap *gmap) { if (MACHINE_HAS_IDTE) __tlb_flush_idte((unsigned long) gmap->table | _ASCE_TYPE_REGION1); else __tlb_flush_global(); } /** * gmap_free - free a guest address space * @gmap: pointer to the guest address space structure */ void gmap_free(struct gmap *gmap) { struct page *page, *next; unsigned long *table; int i; /* Flush tlb. */ if (MACHINE_HAS_IDTE) __tlb_flush_idte((unsigned long) gmap->table | _ASCE_TYPE_REGION1); else __tlb_flush_global(); /* Free all segment & region tables. */ down_read(&gmap->mm->mmap_sem); spin_lock(&gmap->mm->page_table_lock); list_for_each_entry_safe(page, next, &gmap->crst_list, lru) { table = (unsigned long *) page_to_phys(page); if ((*table & _REGION_ENTRY_TYPE_MASK) == 0) /* Remove gmap rmap structures for segment table. */ for (i = 0; i < PTRS_PER_PMD; i++, table++) gmap_unlink_segment(gmap, table); __free_pages(page, ALLOC_ORDER); } spin_unlock(&gmap->mm->page_table_lock); up_read(&gmap->mm->mmap_sem); list_del(&gmap->list); kfree(gmap); } EXPORT_SYMBOL_GPL(gmap_free); /** * gmap_enable - switch primary space to the guest address space * @gmap: pointer to the guest address space structure */ void gmap_enable(struct gmap *gmap) { S390_lowcore.gmap = (unsigned long) gmap; } EXPORT_SYMBOL_GPL(gmap_enable); /** * gmap_disable - switch back to the standard primary address space * @gmap: pointer to the guest address space structure */ void gmap_disable(struct gmap *gmap) { S390_lowcore.gmap = 0UL; } EXPORT_SYMBOL_GPL(gmap_disable); /* * gmap_alloc_table is assumed to be called with mmap_sem held */ static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, unsigned long init) { struct page *page; unsigned long *new; /* since we dont free the gmap table until gmap_free we can unlock */ spin_unlock(&gmap->mm->page_table_lock); page = alloc_pages(GFP_KERNEL, ALLOC_ORDER); spin_lock(&gmap->mm->page_table_lock); if (!page) return -ENOMEM; new = (unsigned long *) page_to_phys(page); crst_table_init(new, init); if (*table & _REGION_ENTRY_INV) { list_add(&page->lru, &gmap->crst_list); *table = (unsigned long) new | _REGION_ENTRY_LENGTH | (*table & _REGION_ENTRY_TYPE_MASK); } else __free_pages(page, ALLOC_ORDER); return 0; } /** * gmap_unmap_segment - unmap segment from the guest address space * @gmap: pointer to the guest address space structure * @addr: address in the guest address space * @len: length of the memory area to unmap * * Returns 0 if the unmap succeded, -EINVAL if not. */ int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) { unsigned long *table; unsigned long off; int flush; if ((to | len) & (PMD_SIZE - 1)) return -EINVAL; if (len == 0 || to + len < to) return -EINVAL; flush = 0; down_read(&gmap->mm->mmap_sem); spin_lock(&gmap->mm->page_table_lock); for (off = 0; off < len; off += PMD_SIZE) { /* Walk the guest addr space page table */ table = gmap->table + (((to + off) >> 53) & 0x7ff); if (*table & _REGION_ENTRY_INV) goto out; table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + (((to + off) >> 42) & 0x7ff); if (*table & _REGION_ENTRY_INV) goto out; table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + (((to + off) >> 31) & 0x7ff); if (*table & _REGION_ENTRY_INV) goto out; table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + (((to + off) >> 20) & 0x7ff); /* Clear segment table entry in guest address space. */ flush |= gmap_unlink_segment(gmap, table); *table = _SEGMENT_ENTRY_INV; } out: spin_unlock(&gmap->mm->page_table_lock); up_read(&gmap->mm->mmap_sem); if (flush) gmap_flush_tlb(gmap); return 0; } EXPORT_SYMBOL_GPL(gmap_unmap_segment); /** * gmap_mmap_segment - map a segment to the guest address space * @gmap: pointer to the guest address space structure * @from: source address in the parent address space * @to: target address in the guest address space * * Returns 0 if the mmap succeded, -EINVAL or -ENOMEM if not. */ int gmap_map_segment(struct gmap *gmap, unsigned long from, unsigned long to, unsigned long len) { unsigned long *table; unsigned long off; int flush; if ((from | to | len) & (PMD_SIZE - 1)) return -EINVAL; if (len == 0 || from + len > TASK_MAX_SIZE || from + len < from || to + len < to) return -EINVAL; flush = 0; down_read(&gmap->mm->mmap_sem); spin_lock(&gmap->mm->page_table_lock); for (off = 0; off < len; off += PMD_SIZE) { /* Walk the gmap address space page table */ table = gmap->table + (((to + off) >> 53) & 0x7ff); if ((*table & _REGION_ENTRY_INV) && gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY)) goto out_unmap; table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + (((to + off) >> 42) & 0x7ff); if ((*table & _REGION_ENTRY_INV) && gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY)) goto out_unmap; table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + (((to + off) >> 31) & 0x7ff); if ((*table & _REGION_ENTRY_INV) && gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY)) goto out_unmap; table = (unsigned long *) (*table & _REGION_ENTRY_ORIGIN); table = table + (((to + off) >> 20) & 0x7ff); /* Store 'from' address in an invalid segment table entry. */ flush |= gmap_unlink_segment(gmap, table); *table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | (from + off); } spin_unlock(&gmap->mm->page_table_lock); up_read(&gmap->mm->mmap_sem); if (flush) gmap_flush_tlb(gmap); return 0; out_unmap: spin_unlock(&gmap->mm->page_table_lock); up_read(&gmap->mm->mmap_sem); gmap_unmap_segment(gmap, to, len); return -ENOMEM; } EXPORT_SYMBOL_GPL(gmap_map_segment); static unsigned long *gmap_table_walk(unsigned long address, struct gmap *gmap) { unsigned long *table; table = gmap->table + ((address >> 53) & 0x7ff); if (unlikely(*table & _REGION_ENTRY_INV)) return ERR_PTR(-EFAULT); table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + ((address >> 42) & 0x7ff); if (unlikely(*table & _REGION_ENTRY_INV)) return ERR_PTR(-EFAULT); table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + ((address >> 31) & 0x7ff); if (unlikely(*table & _REGION_ENTRY_INV)) return ERR_PTR(-EFAULT); table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + ((address >> 20) & 0x7ff); return table; } /** * __gmap_translate - translate a guest address to a user space address * @address: guest address * @gmap: pointer to guest mapping meta data structure * * Returns user space address which corresponds to the guest address or * -EFAULT if no such mapping exists. * This function does not establish potentially missing page table entries. * The mmap_sem of the mm that belongs to the address space must be held * when this function gets called. */ unsigned long __gmap_translate(unsigned long address, struct gmap *gmap) { unsigned long *segment_ptr, vmaddr, segment; struct gmap_pgtable *mp; struct page *page; current->thread.gmap_addr = address; segment_ptr = gmap_table_walk(address, gmap); if (IS_ERR(segment_ptr)) return PTR_ERR(segment_ptr); /* Convert the gmap address to an mm address. */ segment = *segment_ptr; if (!(segment & _SEGMENT_ENTRY_INV)) { page = pfn_to_page(segment >> PAGE_SHIFT); mp = (struct gmap_pgtable *) page->index; return mp->vmaddr | (address & ~PMD_MASK); } else if (segment & _SEGMENT_ENTRY_RO) { vmaddr = segment & _SEGMENT_ENTRY_ORIGIN; return vmaddr | (address & ~PMD_MASK); } return -EFAULT; } EXPORT_SYMBOL_GPL(__gmap_translate); /** * gmap_translate - translate a guest address to a user space address * @address: guest address * @gmap: pointer to guest mapping meta data structure * * Returns user space address which corresponds to the guest address or * -EFAULT if no such mapping exists. * This function does not establish potentially missing page table entries. */ unsigned long gmap_translate(unsigned long address, struct gmap *gmap) { unsigned long rc; down_read(&gmap->mm->mmap_sem); rc = __gmap_translate(address, gmap); up_read(&gmap->mm->mmap_sem); return rc; } EXPORT_SYMBOL_GPL(gmap_translate); static int gmap_connect_pgtable(unsigned long address, unsigned long segment, unsigned long *segment_ptr, struct gmap *gmap) { unsigned long vmaddr; struct vm_area_struct *vma; struct gmap_pgtable *mp; struct gmap_rmap *rmap; struct mm_struct *mm; struct page *page; pgd_t *pgd; pud_t *pud; pmd_t *pmd; mm = gmap->mm; vmaddr = segment & _SEGMENT_ENTRY_ORIGIN; vma = find_vma(mm, vmaddr); if (!vma || vma->vm_start > vmaddr) return -EFAULT; /* Walk the parent mm page table */ pgd = pgd_offset(mm, vmaddr); pud = pud_alloc(mm, pgd, vmaddr); if (!pud) return -ENOMEM; pmd = pmd_alloc(mm, pud, vmaddr); if (!pmd) return -ENOMEM; if (!pmd_present(*pmd) && __pte_alloc(mm, vma, pmd, vmaddr)) return -ENOMEM; /* pmd now points to a valid segment table entry. */ rmap = kmalloc(sizeof(*rmap), GFP_KERNEL|__GFP_REPEAT); if (!rmap) return -ENOMEM; /* Link gmap segment table entry location to page table. */ page = pmd_page(*pmd); mp = (struct gmap_pgtable *) page->index; rmap->gmap = gmap; rmap->entry = segment_ptr; rmap->vmaddr = address & PMD_MASK; spin_lock(&mm->page_table_lock); if (*segment_ptr == segment) { list_add(&rmap->list, &mp->mapper); /* Set gmap segment table entry to page table. */ *segment_ptr = pmd_val(*pmd) & PAGE_MASK; rmap = NULL; } spin_unlock(&mm->page_table_lock); kfree(rmap); return 0; } static void gmap_disconnect_pgtable(struct mm_struct *mm, unsigned long *table) { struct gmap_rmap *rmap, *next; struct gmap_pgtable *mp; struct page *page; int flush; flush = 0; spin_lock(&mm->page_table_lock); page = pfn_to_page(__pa(table) >> PAGE_SHIFT); mp = (struct gmap_pgtable *) page->index; list_for_each_entry_safe(rmap, next, &mp->mapper, list) { *rmap->entry = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr; list_del(&rmap->list); kfree(rmap); flush = 1; } spin_unlock(&mm->page_table_lock); if (flush) __tlb_flush_global(); } /* * this function is assumed to be called with mmap_sem held */ unsigned long __gmap_fault(unsigned long address, struct gmap *gmap) { unsigned long *segment_ptr, segment; struct gmap_pgtable *mp; struct page *page; int rc; current->thread.gmap_addr = address; segment_ptr = gmap_table_walk(address, gmap); if (IS_ERR(segment_ptr)) return -EFAULT; /* Convert the gmap address to an mm address. */ while (1) { segment = *segment_ptr; if (!(segment & _SEGMENT_ENTRY_INV)) { /* Page table is present */ page = pfn_to_page(segment >> PAGE_SHIFT); mp = (struct gmap_pgtable *) page->index; return mp->vmaddr | (address & ~PMD_MASK); } if (!(segment & _SEGMENT_ENTRY_RO)) /* Nothing mapped in the gmap address space. */ break; rc = gmap_connect_pgtable(address, segment, segment_ptr, gmap); if (rc) return rc; } return -EFAULT; } unsigned long gmap_fault(unsigned long address, struct gmap *gmap) { unsigned long rc; down_read(&gmap->mm->mmap_sem); rc = __gmap_fault(address, gmap); up_read(&gmap->mm->mmap_sem); return rc; } EXPORT_SYMBOL_GPL(gmap_fault); void gmap_discard(unsigned long from, unsigned long to, struct gmap *gmap) { unsigned long *table, address, size; struct vm_area_struct *vma; struct gmap_pgtable *mp; struct page *page; down_read(&gmap->mm->mmap_sem); address = from; while (address < to) { /* Walk the gmap address space page table */ table = gmap->table + ((address >> 53) & 0x7ff); if (unlikely(*table & _REGION_ENTRY_INV)) { address = (address + PMD_SIZE) & PMD_MASK; continue; } table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + ((address >> 42) & 0x7ff); if (unlikely(*table & _REGION_ENTRY_INV)) { address = (address + PMD_SIZE) & PMD_MASK; continue; } table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + ((address >> 31) & 0x7ff); if (unlikely(*table & _REGION_ENTRY_INV)) { address = (address + PMD_SIZE) & PMD_MASK; continue; } table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); table = table + ((address >> 20) & 0x7ff); if (unlikely(*table & _SEGMENT_ENTRY_INV)) { address = (address + PMD_SIZE) & PMD_MASK; continue; } page = pfn_to_page(*table >> PAGE_SHIFT); mp = (struct gmap_pgtable *) page->index; vma = find_vma(gmap->mm, mp->vmaddr); size = min(to - address, PMD_SIZE - (address & ~PMD_MASK)); zap_page_range(vma, mp->vmaddr | (address & ~PMD_MASK), size, NULL); address = (address + PMD_SIZE) & PMD_MASK; } up_read(&gmap->mm->mmap_sem); } EXPORT_SYMBOL_GPL(gmap_discard); static LIST_HEAD(gmap_notifier_list); static DEFINE_SPINLOCK(gmap_notifier_lock); /** * gmap_register_ipte_notifier - register a pte invalidation callback * @nb: pointer to the gmap notifier block */ void gmap_register_ipte_notifier(struct gmap_notifier *nb) { spin_lock(&gmap_notifier_lock); list_add(&nb->list, &gmap_notifier_list); spin_unlock(&gmap_notifier_lock); } EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier); /** * gmap_unregister_ipte_notifier - remove a pte invalidation callback * @nb: pointer to the gmap notifier block */ void gmap_unregister_ipte_notifier(struct gmap_notifier *nb) { spin_lock(&gmap_notifier_lock); list_del_init(&nb->list); spin_unlock(&gmap_notifier_lock); } EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier); /** * gmap_ipte_notify - mark a range of ptes for invalidation notification * @gmap: pointer to guest mapping meta data structure * @address: virtual address in the guest address space * @len: size of area * * Returns 0 if for each page in the given range a gmap mapping exists and * the invalidation notification could be set. If the gmap mapping is missing * for one or more pages -EFAULT is returned. If no memory could be allocated * -ENOMEM is returned. This function establishes missing page table entries. */ int gmap_ipte_notify(struct gmap *gmap, unsigned long start, unsigned long len) { unsigned long addr; spinlock_t *ptl; pte_t *ptep, entry; pgste_t pgste; int rc = 0; if ((start & ~PAGE_MASK) || (len & ~PAGE_MASK)) return -EINVAL; down_read(&gmap->mm->mmap_sem); while (len) { /* Convert gmap address and connect the page tables */ addr = __gmap_fault(start, gmap); if (IS_ERR_VALUE(addr)) { rc = addr; break; } /* Get the page mapped */ if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) { rc = -EFAULT; break; } /* Walk the process page table, lock and get pte pointer */ ptep = get_locked_pte(gmap->mm, addr, &ptl); if (unlikely(!ptep)) continue; /* Set notification bit in the pgste of the pte */ entry = *ptep; if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_RO)) == 0) { pgste = pgste_get_lock(ptep); pgste_val(pgste) |= RCP_IN_BIT; pgste_set_unlock(ptep, pgste); start += PAGE_SIZE; len -= PAGE_SIZE; } spin_unlock(ptl); } up_read(&gmap->mm->mmap_sem); return rc; } EXPORT_SYMBOL_GPL(gmap_ipte_notify); /** * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte. * @mm: pointer to the process mm_struct * @addr: virtual address in the process address space * @pte: pointer to the page table entry * * This function is assumed to be called with the page table lock held * for the pte to notify. */ void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long addr, pte_t *pte) { unsigned long segment_offset; struct gmap_notifier *nb; struct gmap_pgtable *mp; struct gmap_rmap *rmap; struct page *page; segment_offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); segment_offset = segment_offset * (4096 / sizeof(pte_t)); page = pfn_to_page(__pa(pte) >> PAGE_SHIFT); mp = (struct gmap_pgtable *) page->index; spin_lock(&gmap_notifier_lock); list_for_each_entry(rmap, &mp->mapper, list) { list_for_each_entry(nb, &gmap_notifier_list, list) nb->notifier_call(rmap->gmap, rmap->vmaddr + segment_offset); } spin_unlock(&gmap_notifier_lock); } static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm, unsigned long vmaddr) { struct page *page; unsigned long *table; struct gmap_pgtable *mp; page = alloc_page(GFP_KERNEL|__GFP_REPEAT); if (!page) return NULL; mp = kmalloc(sizeof(*mp), GFP_KERNEL|__GFP_REPEAT); if (!mp) { __free_page(page); return NULL; } pgtable_page_ctor(page); mp->vmaddr = vmaddr & PMD_MASK; INIT_LIST_HEAD(&mp->mapper); page->index = (unsigned long) mp; atomic_set(&page->_mapcount, 3); table = (unsigned long *) page_to_phys(page); clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE/2); clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2); return table; } static inline void page_table_free_pgste(unsigned long *table) { struct page *page; struct gmap_pgtable *mp; page = pfn_to_page(__pa(table) >> PAGE_SHIFT); mp = (struct gmap_pgtable *) page->index; BUG_ON(!list_empty(&mp->mapper)); pgtable_page_dtor(page); atomic_set(&page->_mapcount, -1); kfree(mp); __free_page(page); } #else /* CONFIG_PGSTE */ static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm, unsigned long vmaddr) { return NULL; } static inline void page_table_free_pgste(unsigned long *table) { } static inline void gmap_disconnect_pgtable(struct mm_struct *mm, unsigned long *table) { } #endif /* CONFIG_PGSTE */ static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) { unsigned int old, new; do { old = atomic_read(v); new = old ^ bits; } while (atomic_cmpxchg(v, old, new) != old); return new; } /* * page table entry allocation/free routines. */ unsigned long *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr) { unsigned long *uninitialized_var(table); struct page *uninitialized_var(page); unsigned int mask, bit; if (mm_has_pgste(mm)) return page_table_alloc_pgste(mm, vmaddr); /* Allocate fragments of a 4K page as 1K/2K page table */ spin_lock_bh(&mm->context.list_lock); mask = FRAG_MASK; if (!list_empty(&mm->context.pgtable_list)) { page = list_first_entry(&mm->context.pgtable_list, struct page, lru); table = (unsigned long *) page_to_phys(page); mask = atomic_read(&page->_mapcount); mask = mask | (mask >> 4); } if ((mask & FRAG_MASK) == FRAG_MASK) { spin_unlock_bh(&mm->context.list_lock); page = alloc_page(GFP_KERNEL|__GFP_REPEAT); if (!page) return NULL; pgtable_page_ctor(page); atomic_set(&page->_mapcount, 1); table = (unsigned long *) page_to_phys(page); clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE); spin_lock_bh(&mm->context.list_lock); list_add(&page->lru, &mm->context.pgtable_list); } else { for (bit = 1; mask & bit; bit <<= 1) table += PTRS_PER_PTE; mask = atomic_xor_bits(&page->_mapcount, bit); if ((mask & FRAG_MASK) == FRAG_MASK) list_del(&page->lru); } spin_unlock_bh(&mm->context.list_lock); return table; } void page_table_free(struct mm_struct *mm, unsigned long *table) { struct page *page; unsigned int bit, mask; if (mm_has_pgste(mm)) { gmap_disconnect_pgtable(mm, table); return page_table_free_pgste(table); } /* Free 1K/2K page table fragment of a 4K page */ page = pfn_to_page(__pa(table) >> PAGE_SHIFT); bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t))); spin_lock_bh(&mm->context.list_lock); if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK) list_del(&page->lru); mask = atomic_xor_bits(&page->_mapcount, bit); if (mask & FRAG_MASK) list_add(&page->lru, &mm->context.pgtable_list); spin_unlock_bh(&mm->context.list_lock); if (mask == 0) { pgtable_page_dtor(page); atomic_set(&page->_mapcount, -1); __free_page(page); } } static void __page_table_free_rcu(void *table, unsigned bit) { struct page *page; if (bit == FRAG_MASK) return page_table_free_pgste(table); /* Free 1K/2K page table fragment of a 4K page */ page = pfn_to_page(__pa(table) >> PAGE_SHIFT); if (atomic_xor_bits(&page->_mapcount, bit) == 0) { pgtable_page_dtor(page); atomic_set(&page->_mapcount, -1); __free_page(page); } } void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table) { struct mm_struct *mm; struct page *page; unsigned int bit, mask; mm = tlb->mm; if (mm_has_pgste(mm)) { gmap_disconnect_pgtable(mm, table); table = (unsigned long *) (__pa(table) | FRAG_MASK); tlb_remove_table(tlb, table); return; } bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t))); page = pfn_to_page(__pa(table) >> PAGE_SHIFT); spin_lock_bh(&mm->context.list_lock); if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK) list_del(&page->lru); mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4)); if (mask & FRAG_MASK) list_add_tail(&page->lru, &mm->context.pgtable_list); spin_unlock_bh(&mm->context.list_lock); table = (unsigned long *) (__pa(table) | (bit << 4)); tlb_remove_table(tlb, table); } void __tlb_remove_table(void *_table) { const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK; void *table = (void *)((unsigned long) _table & ~mask); unsigned type = (unsigned long) _table & mask; if (type) __page_table_free_rcu(table, type); else free_pages((unsigned long) table, ALLOC_ORDER); } static void tlb_remove_table_smp_sync(void *arg) { /* Simply deliver the interrupt */ } static void tlb_remove_table_one(void *table) { /* * This isn't an RCU grace period and hence the page-tables cannot be * assumed to be actually RCU-freed. * * It is however sufficient for software page-table walkers that rely * on IRQ disabling. See the comment near struct mmu_table_batch. */ smp_call_function(tlb_remove_table_smp_sync, NULL, 1); __tlb_remove_table(table); } static void tlb_remove_table_rcu(struct rcu_head *head) { struct mmu_table_batch *batch; int i; batch = container_of(head, struct mmu_table_batch, rcu); for (i = 0; i < batch->nr; i++) __tlb_remove_table(batch->tables[i]); free_page((unsigned long)batch); } void tlb_table_flush(struct mmu_gather *tlb) { struct mmu_table_batch **batch = &tlb->batch; if (*batch) { __tlb_flush_mm(tlb->mm); call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); *batch = NULL; } } void tlb_remove_table(struct mmu_gather *tlb, void *table) { struct mmu_table_batch **batch = &tlb->batch; if (*batch == NULL) { *batch = (struct mmu_table_batch *) __get_free_page(GFP_NOWAIT | __GFP_NOWARN); if (*batch == NULL) { __tlb_flush_mm(tlb->mm); tlb_remove_table_one(table); return; } (*batch)->nr = 0; } (*batch)->tables[(*batch)->nr++] = table; if ((*batch)->nr == MAX_TABLE_BATCH) tlb_table_flush(tlb); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE void thp_split_vma(struct vm_area_struct *vma) { unsigned long addr; struct page *page; for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) { page = follow_page(vma, addr, FOLL_SPLIT); } } void thp_split_mm(struct mm_struct *mm) { struct vm_area_struct *vma = mm->mmap; while (vma != NULL) { thp_split_vma(vma); vma->vm_flags &= ~VM_HUGEPAGE; vma->vm_flags |= VM_NOHUGEPAGE; vma = vma->vm_next; } } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * switch on pgstes for its userspace process (for kvm) */ int s390_enable_sie(void) { struct task_struct *tsk = current; struct mm_struct *mm, *old_mm; /* Do we have switched amode? If no, we cannot do sie */ if (s390_user_mode == HOME_SPACE_MODE) return -EINVAL; /* Do we have pgstes? if yes, we are done */ if (mm_has_pgste(tsk->mm)) return 0; /* lets check if we are allowed to replace the mm */ task_lock(tsk); if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 || #ifdef CONFIG_AIO !hlist_empty(&tsk->mm->ioctx_list) || #endif tsk->mm != tsk->active_mm) { task_unlock(tsk); return -EINVAL; } task_unlock(tsk); /* we copy the mm and let dup_mm create the page tables with_pgstes */ tsk->mm->context.alloc_pgste = 1; /* make sure that both mms have a correct rss state */ sync_mm_rss(tsk->mm); mm = dup_mm(tsk); tsk->mm->context.alloc_pgste = 0; if (!mm) return -ENOMEM; #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* split thp mappings and disable thp for future mappings */ thp_split_mm(mm); mm->def_flags |= VM_NOHUGEPAGE; #endif /* Now lets check again if something happened */ task_lock(tsk); if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 || #ifdef CONFIG_AIO !hlist_empty(&tsk->mm->ioctx_list) || #endif tsk->mm != tsk->active_mm) { mmput(mm); task_unlock(tsk); return -EINVAL; } /* ok, we are alone. No ptrace, no threads, etc. */ old_mm = tsk->mm; tsk->mm = tsk->active_mm = mm; preempt_disable(); update_mm(mm, tsk); atomic_inc(&mm->context.attach_count); atomic_dec(&old_mm->context.attach_count); cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm)); preempt_enable(); task_unlock(tsk); mmput(old_mm); return 0; } EXPORT_SYMBOL_GPL(s390_enable_sie); #ifdef CONFIG_TRANSPARENT_HUGEPAGE int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { VM_BUG_ON(address & ~HPAGE_PMD_MASK); /* No need to flush TLB * On s390 reference bits are in storage key and never in TLB */ return pmdp_test_and_clear_young(vma, address, pmdp); } int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { VM_BUG_ON(address & ~HPAGE_PMD_MASK); if (pmd_same(*pmdp, entry)) return 0; pmdp_invalidate(vma, address, pmdp); set_pmd_at(vma->vm_mm, address, pmdp, entry); return 1; } static void pmdp_splitting_flush_sync(void *arg) { /* Simply deliver the interrupt */ } void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { VM_BUG_ON(address & ~HPAGE_PMD_MASK); if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT, (unsigned long *) pmdp)) { /* need to serialize against gup-fast (IRQ disabled) */ smp_call_function(pmdp_splitting_flush_sync, NULL, 1); } } void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable) { struct list_head *lh = (struct list_head *) pgtable; assert_spin_locked(&mm->page_table_lock); /* FIFO */ if (!mm->pmd_huge_pte) INIT_LIST_HEAD(lh); else list_add(lh, (struct list_head *) mm->pmd_huge_pte); mm->pmd_huge_pte = pgtable; } pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm) { struct list_head *lh; pgtable_t pgtable; pte_t *ptep; assert_spin_locked(&mm->page_table_lock); /* FIFO */ pgtable = mm->pmd_huge_pte; lh = (struct list_head *) pgtable; if (list_empty(lh)) mm->pmd_huge_pte = NULL; else { mm->pmd_huge_pte = (pgtable_t) lh->next; list_del(lh); } ptep = (pte_t *) pgtable; pte_val(*ptep) = _PAGE_TYPE_EMPTY; ptep++; pte_val(*ptep) = _PAGE_TYPE_EMPTY; return pgtable; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */