/* * Copyright IBM Corp. 2012 * * Author(s): * Jan Glauber */ #include #include #include #include #include #include #include static struct kmem_cache *dma_region_table_cache; static struct kmem_cache *dma_page_table_cache; static unsigned long *dma_alloc_cpu_table(void) { unsigned long *table, *entry; table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC); if (!table) return NULL; for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++) *entry = ZPCI_TABLE_INVALID | ZPCI_TABLE_PROTECTED; return table; } static void dma_free_cpu_table(void *table) { kmem_cache_free(dma_region_table_cache, table); } static unsigned long *dma_alloc_page_table(void) { unsigned long *table, *entry; table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC); if (!table) return NULL; for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++) *entry = ZPCI_PTE_INVALID | ZPCI_TABLE_PROTECTED; return table; } static void dma_free_page_table(void *table) { kmem_cache_free(dma_page_table_cache, table); } static unsigned long *dma_get_seg_table_origin(unsigned long *entry) { unsigned long *sto; if (reg_entry_isvalid(*entry)) sto = get_rt_sto(*entry); else { sto = dma_alloc_cpu_table(); if (!sto) return NULL; set_rt_sto(entry, sto); validate_rt_entry(entry); entry_clr_protected(entry); } return sto; } static unsigned long *dma_get_page_table_origin(unsigned long *entry) { unsigned long *pto; if (reg_entry_isvalid(*entry)) pto = get_st_pto(*entry); else { pto = dma_alloc_page_table(); if (!pto) return NULL; set_st_pto(entry, pto); validate_st_entry(entry); entry_clr_protected(entry); } return pto; } static unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr) { unsigned long *sto, *pto; unsigned int rtx, sx, px; rtx = calc_rtx(dma_addr); sto = dma_get_seg_table_origin(&rto[rtx]); if (!sto) return NULL; sx = calc_sx(dma_addr); pto = dma_get_page_table_origin(&sto[sx]); if (!pto) return NULL; px = calc_px(dma_addr); return &pto[px]; } static void dma_update_cpu_trans(struct zpci_dev *zdev, void *page_addr, dma_addr_t dma_addr, int flags) { unsigned long *entry; entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr); if (!entry) { WARN_ON_ONCE(1); return; } if (flags & ZPCI_PTE_INVALID) { invalidate_pt_entry(entry); return; } else { set_pt_pfaa(entry, page_addr); validate_pt_entry(entry); } if (flags & ZPCI_TABLE_PROTECTED) entry_set_protected(entry); else entry_clr_protected(entry); } static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa, dma_addr_t dma_addr, size_t size, int flags) { unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; u8 *page_addr = (u8 *) (pa & PAGE_MASK); dma_addr_t start_dma_addr = dma_addr; unsigned long irq_flags; int i, rc = 0; if (!nr_pages) return -EINVAL; spin_lock_irqsave(&zdev->dma_table_lock, irq_flags); if (!zdev->dma_table) { dev_err(&zdev->pdev->dev, "Missing DMA table\n"); goto no_refresh; } for (i = 0; i < nr_pages; i++) { dma_update_cpu_trans(zdev, page_addr, dma_addr, flags); page_addr += PAGE_SIZE; dma_addr += PAGE_SIZE; } /* * rpcit is not required to establish new translations when previously * invalid translation-table entries are validated, however it is * required when altering previously valid entries. */ if (!zdev->tlb_refresh && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) /* * TODO: also need to check that the old entry is indeed INVALID * and not only for one page but for the whole range... * -> now we WARN_ON in that case but with lazy unmap that * needs to be redone! */ goto no_refresh; rc = s390pci_refresh_trans((u64) zdev->fh << 32, start_dma_addr, nr_pages * PAGE_SIZE); no_refresh: spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags); return rc; } static void dma_free_seg_table(unsigned long entry) { unsigned long *sto = get_rt_sto(entry); int sx; for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++) if (reg_entry_isvalid(sto[sx])) dma_free_page_table(get_st_pto(sto[sx])); dma_free_cpu_table(sto); } static void dma_cleanup_tables(struct zpci_dev *zdev) { unsigned long *table; int rtx; if (!zdev || !zdev->dma_table) return; table = zdev->dma_table; for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++) if (reg_entry_isvalid(table[rtx])) dma_free_seg_table(table[rtx]); dma_free_cpu_table(table); zdev->dma_table = NULL; } static unsigned long __dma_alloc_iommu(struct zpci_dev *zdev, unsigned long start, int size) { unsigned long boundary_size = 0x1000000; return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages, start, size, 0, boundary_size, 0); } static unsigned long dma_alloc_iommu(struct zpci_dev *zdev, int size) { unsigned long offset, flags; spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags); offset = __dma_alloc_iommu(zdev, zdev->next_bit, size); if (offset == -1) offset = __dma_alloc_iommu(zdev, 0, size); if (offset != -1) { zdev->next_bit = offset + size; if (zdev->next_bit >= zdev->iommu_pages) zdev->next_bit = 0; } spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); return offset; } static void dma_free_iommu(struct zpci_dev *zdev, unsigned long offset, int size) { unsigned long flags; spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags); if (!zdev->iommu_bitmap) goto out; bitmap_clear(zdev->iommu_bitmap, offset, size); if (offset >= zdev->next_bit) zdev->next_bit = offset + size; out: spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); } int dma_set_mask(struct device *dev, u64 mask) { if (!dev->dma_mask || !dma_supported(dev, mask)) return -EIO; *dev->dma_mask = mask; return 0; } EXPORT_SYMBOL_GPL(dma_set_mask); static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { struct zpci_dev *zdev = get_zdev(container_of(dev, struct pci_dev, dev)); unsigned long nr_pages, iommu_page_index; unsigned long pa = page_to_phys(page) + offset; int flags = ZPCI_PTE_VALID; dma_addr_t dma_addr; /* This rounds up number of pages based on size and offset */ nr_pages = iommu_num_pages(pa, size, PAGE_SIZE); iommu_page_index = dma_alloc_iommu(zdev, nr_pages); if (iommu_page_index == -1) goto out_err; /* Use rounded up size */ size = nr_pages * PAGE_SIZE; dma_addr = zdev->start_dma + iommu_page_index * PAGE_SIZE; if (dma_addr + size > zdev->end_dma) { dev_err(dev, "(dma_addr: 0x%16.16LX + size: 0x%16.16lx) > end_dma: 0x%16.16Lx\n", dma_addr, size, zdev->end_dma); goto out_free; } if (direction == DMA_NONE || direction == DMA_TO_DEVICE) flags |= ZPCI_TABLE_PROTECTED; if (!dma_update_trans(zdev, pa, dma_addr, size, flags)) { atomic64_add(nr_pages, (atomic64_t *) &zdev->fmb->mapped_pages); return dma_addr + (offset & ~PAGE_MASK); } out_free: dma_free_iommu(zdev, iommu_page_index, nr_pages); out_err: dev_err(dev, "Failed to map addr: %lx\n", pa); return DMA_ERROR_CODE; } static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { struct zpci_dev *zdev = get_zdev(container_of(dev, struct pci_dev, dev)); unsigned long iommu_page_index; int npages; npages = iommu_num_pages(dma_addr, size, PAGE_SIZE); dma_addr = dma_addr & PAGE_MASK; if (dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE, ZPCI_TABLE_PROTECTED | ZPCI_PTE_INVALID)) dev_err(dev, "Failed to unmap addr: %Lx\n", dma_addr); atomic64_add(npages, (atomic64_t *) &zdev->fmb->unmapped_pages); iommu_page_index = (dma_addr - zdev->start_dma) >> PAGE_SHIFT; dma_free_iommu(zdev, iommu_page_index, npages); } static void *s390_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, struct dma_attrs *attrs) { struct zpci_dev *zdev = get_zdev(container_of(dev, struct pci_dev, dev)); struct page *page; unsigned long pa; dma_addr_t map; size = PAGE_ALIGN(size); page = alloc_pages(flag, get_order(size)); if (!page) return NULL; atomic64_add(size / PAGE_SIZE, (atomic64_t *) &zdev->fmb->allocated_pages); pa = page_to_phys(page); memset((void *) pa, 0, size); map = s390_dma_map_pages(dev, page, pa % PAGE_SIZE, size, DMA_BIDIRECTIONAL, NULL); if (dma_mapping_error(dev, map)) { free_pages(pa, get_order(size)); return NULL; } if (dma_handle) *dma_handle = map; return (void *) pa; } static void s390_dma_free(struct device *dev, size_t size, void *pa, dma_addr_t dma_handle, struct dma_attrs *attrs) { s390_dma_unmap_pages(dev, dma_handle, PAGE_ALIGN(size), DMA_BIDIRECTIONAL, NULL); free_pages((unsigned long) pa, get_order(size)); } static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg, int nr_elements, enum dma_data_direction dir, struct dma_attrs *attrs) { int mapped_elements = 0; struct scatterlist *s; int i; for_each_sg(sg, s, nr_elements, i) { struct page *page = sg_page(s); s->dma_address = s390_dma_map_pages(dev, page, s->offset, s->length, dir, NULL); if (!dma_mapping_error(dev, s->dma_address)) { s->dma_length = s->length; mapped_elements++; } else goto unmap; } out: return mapped_elements; unmap: for_each_sg(sg, s, mapped_elements, i) { if (s->dma_address) s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, NULL); s->dma_address = 0; s->dma_length = 0; } mapped_elements = 0; goto out; } static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nr_elements, enum dma_data_direction dir, struct dma_attrs *attrs) { struct scatterlist *s; int i; for_each_sg(sg, s, nr_elements, i) { s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, NULL); s->dma_address = 0; s->dma_length = 0; } } int zpci_dma_init_device(struct zpci_dev *zdev) { unsigned int bitmap_order; int rc; spin_lock_init(&zdev->iommu_bitmap_lock); spin_lock_init(&zdev->dma_table_lock); zdev->dma_table = dma_alloc_cpu_table(); if (!zdev->dma_table) { rc = -ENOMEM; goto out; } zdev->iommu_size = (unsigned long) high_memory - PAGE_OFFSET; zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT; bitmap_order = get_order(zdev->iommu_pages / 8); pr_info("iommu_size: 0x%lx iommu_pages: 0x%lx bitmap_order: %i\n", zdev->iommu_size, zdev->iommu_pages, bitmap_order); zdev->iommu_bitmap = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, bitmap_order); if (!zdev->iommu_bitmap) { rc = -ENOMEM; goto free_dma_table; } rc = zpci_register_ioat(zdev, 0, zdev->start_dma + PAGE_OFFSET, zdev->start_dma + zdev->iommu_size - 1, (u64) zdev->dma_table); if (rc) goto free_bitmap; return 0; free_bitmap: vfree(zdev->iommu_bitmap); zdev->iommu_bitmap = NULL; free_dma_table: dma_free_cpu_table(zdev->dma_table); zdev->dma_table = NULL; out: return rc; } void zpci_dma_exit_device(struct zpci_dev *zdev) { zpci_unregister_ioat(zdev, 0); dma_cleanup_tables(zdev); free_pages((unsigned long) zdev->iommu_bitmap, get_order(zdev->iommu_pages / 8)); zdev->iommu_bitmap = NULL; zdev->next_bit = 0; } static int __init dma_alloc_cpu_table_caches(void) { dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables", ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN, 0, NULL); if (!dma_region_table_cache) return -ENOMEM; dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables", ZPCI_PT_SIZE, ZPCI_PT_ALIGN, 0, NULL); if (!dma_page_table_cache) { kmem_cache_destroy(dma_region_table_cache); return -ENOMEM; } return 0; } int __init zpci_dma_init(void) { return dma_alloc_cpu_table_caches(); } void zpci_dma_exit(void) { kmem_cache_destroy(dma_page_table_cache); kmem_cache_destroy(dma_region_table_cache); } #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) static int __init dma_debug_do_init(void) { dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); return 0; } fs_initcall(dma_debug_do_init); struct dma_map_ops s390_dma_ops = { .alloc = s390_dma_alloc, .free = s390_dma_free, .map_sg = s390_dma_map_sg, .unmap_sg = s390_dma_unmap_sg, .map_page = s390_dma_map_pages, .unmap_page = s390_dma_unmap_pages, /* if we support direct DMA this must be conditional */ .is_phys = 0, /* dma_supported is unconditionally true without a callback */ }; EXPORT_SYMBOL_GPL(s390_dma_ops);