/* * caam - Freescale FSL CAAM support for crypto API * * Copyright 2008-2011 Freescale Semiconductor, Inc. * * Based on talitos crypto API driver. * * relationship of job descriptors to shared descriptors (SteveC Dec 10 2008): * * --------------- --------------- * | JobDesc #1 |-------------------->| ShareDesc | * | *(packet 1) | | (PDB) | * --------------- |------------->| (hashKey) | * . | | (cipherKey) | * . | |-------->| (operation) | * --------------- | | --------------- * | JobDesc #2 |------| | * | *(packet 2) | | * --------------- | * . | * . | * --------------- | * | JobDesc #3 |------------ * | *(packet 3) | * --------------- * * The SharedDesc never changes for a connection unless rekeyed, but * each packet will likely be in a different place. So all we need * to know to process the packet is where the input is, where the * output goes, and what context we want to process with. Context is * in the SharedDesc, packet references in the JobDesc. * * So, a job desc looks like: * * --------------------- * | Header | * | ShareDesc Pointer | * | SEQ_OUT_PTR | * | (output buffer) | * | (output length) | * | SEQ_IN_PTR | * | (input buffer) | * | (input length) | * --------------------- */ #include "compat.h" #include "regs.h" #include "intern.h" #include "desc_constr.h" #include "jr.h" #include "error.h" #include "sg_sw_sec4.h" #include "key_gen.h" /* * crypto alg */ #define CAAM_CRA_PRIORITY 3000 /* max key is sum of AES_MAX_KEY_SIZE, max split key size */ #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \ SHA512_DIGEST_SIZE * 2) /* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */ #define CAAM_MAX_IV_LENGTH 16 /* length of descriptors text */ #define DESC_JOB_IO_LEN (CAAM_CMD_SZ * 5 + CAAM_PTR_SZ * 3) #define DESC_AEAD_BASE (4 * CAAM_CMD_SZ) #define DESC_AEAD_ENC_LEN (DESC_AEAD_BASE + 16 * CAAM_CMD_SZ) #define DESC_AEAD_DEC_LEN (DESC_AEAD_BASE + 21 * CAAM_CMD_SZ) #define DESC_AEAD_GIVENC_LEN (DESC_AEAD_ENC_LEN + 7 * CAAM_CMD_SZ) #define DESC_ABLKCIPHER_BASE (3 * CAAM_CMD_SZ) #define DESC_ABLKCIPHER_ENC_LEN (DESC_ABLKCIPHER_BASE + \ 20 * CAAM_CMD_SZ) #define DESC_ABLKCIPHER_DEC_LEN (DESC_ABLKCIPHER_BASE + \ 15 * CAAM_CMD_SZ) #define DESC_MAX_USED_BYTES (DESC_AEAD_GIVENC_LEN + \ CAAM_MAX_KEY_SIZE) #define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ) #ifdef DEBUG /* for print_hex_dumps with line references */ #define xstr(s) str(s) #define str(s) #s #define debug(format, arg...) printk(format, arg) #else #define debug(format, arg...) #endif /* Set DK bit in class 1 operation if shared */ static inline void append_dec_op1(u32 *desc, u32 type) { u32 *jump_cmd, *uncond_jump_cmd; jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_SHRD); append_operation(desc, type | OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT); uncond_jump_cmd = append_jump(desc, JUMP_TEST_ALL); set_jump_tgt_here(desc, jump_cmd); append_operation(desc, type | OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_AAI_DK); set_jump_tgt_here(desc, uncond_jump_cmd); } /* * Wait for completion of class 1 key loading before allowing * error propagation */ static inline void append_dec_shr_done(u32 *desc) { u32 *jump_cmd; jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1 | JUMP_TEST_ALL); set_jump_tgt_here(desc, jump_cmd); append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD); } /* * For aead functions, read payload and write payload, * both of which are specified in req->src and req->dst */ static inline void aead_append_src_dst(u32 *desc, u32 msg_type) { append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH | KEY_VLF | msg_type | FIFOLD_TYPE_LASTBOTH); append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF); } /* * For aead encrypt and decrypt, read iv for both classes */ static inline void aead_append_ld_iv(u32 *desc, int ivsize) { append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT | LDST_CLASS_1_CCB | ivsize); append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize); } /* * For ablkcipher encrypt and decrypt, read from req->src and * write to req->dst */ static inline void ablkcipher_append_src_dst(u32 *desc) { append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ); append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ); append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | KEY_VLF | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1); append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF); } /* * If all data, including src (with assoc and iv) or dst (with iv only) are * contiguous */ #define GIV_SRC_CONTIG 1 #define GIV_DST_CONTIG (1 << 1) /* * per-session context */ struct caam_ctx { struct device *jrdev; u32 sh_desc_enc[DESC_MAX_USED_LEN]; u32 sh_desc_dec[DESC_MAX_USED_LEN]; u32 sh_desc_givenc[DESC_MAX_USED_LEN]; dma_addr_t sh_desc_enc_dma; dma_addr_t sh_desc_dec_dma; dma_addr_t sh_desc_givenc_dma; u32 class1_alg_type; u32 class2_alg_type; u32 alg_op; u8 key[CAAM_MAX_KEY_SIZE]; dma_addr_t key_dma; unsigned int enckeylen; unsigned int split_key_len; unsigned int split_key_pad_len; unsigned int authsize; }; static void append_key_aead(u32 *desc, struct caam_ctx *ctx, int keys_fit_inline) { if (keys_fit_inline) { append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len, ctx->split_key_len, CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC); append_key_as_imm(desc, (void *)ctx->key + ctx->split_key_pad_len, ctx->enckeylen, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); } else { append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC); append_key(desc, ctx->key_dma + ctx->split_key_pad_len, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); } } static void init_sh_desc_key_aead(u32 *desc, struct caam_ctx *ctx, int keys_fit_inline) { u32 *key_jump_cmd; init_sh_desc(desc, HDR_SHARE_SERIAL); /* Skip if already shared */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); append_key_aead(desc, ctx, keys_fit_inline); set_jump_tgt_here(desc, key_jump_cmd); /* Propagate errors from shared to job descriptor */ append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD); } static int aead_set_sh_desc(struct crypto_aead *aead) { struct aead_tfm *tfm = &aead->base.crt_aead; struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; bool keys_fit_inline = false; u32 *key_jump_cmd, *jump_cmd; u32 geniv, moveiv; u32 *desc; if (!ctx->enckeylen || !ctx->authsize) return 0; /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (DESC_AEAD_ENC_LEN + DESC_JOB_IO_LEN + ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) keys_fit_inline = true; /* aead_encrypt shared descriptor */ desc = ctx->sh_desc_enc; init_sh_desc_key_aead(desc, ctx, keys_fit_inline); /* Class 2 operation */ append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* cryptlen = seqoutlen - authsize */ append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize); /* assoclen + cryptlen = seqinlen - ivsize */ append_math_sub_imm_u32(desc, REG2, SEQINLEN, IMM, tfm->ivsize); /* assoclen + cryptlen = (assoclen + cryptlen) - cryptlen */ append_math_sub(desc, VARSEQINLEN, REG2, REG3, CAAM_CMD_SZ); /* read assoc before reading payload */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG | KEY_VLF); aead_append_ld_iv(desc, tfm->ivsize); /* Class 1 operation */ append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* Read and write cryptlen bytes */ append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ); append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ); aead_append_src_dst(desc, FIFOLD_TYPE_MSG1OUT2); /* Write ICV */ append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc, desc_bytes(desc), DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) { dev_err(jrdev, "unable to map shared descriptor\n"); return -ENOMEM; } #ifdef DEBUG print_hex_dump(KERN_ERR, "aead enc shdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (DESC_AEAD_DEC_LEN + DESC_JOB_IO_LEN + ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) keys_fit_inline = true; desc = ctx->sh_desc_dec; /* aead_decrypt shared descriptor */ init_sh_desc(desc, HDR_SHARE_SERIAL); /* Skip if already shared */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); append_key_aead(desc, ctx, keys_fit_inline); /* Only propagate error immediately if shared */ jump_cmd = append_jump(desc, JUMP_TEST_ALL); set_jump_tgt_here(desc, key_jump_cmd); append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD); set_jump_tgt_here(desc, jump_cmd); /* Class 2 operation */ append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON); /* assoclen + cryptlen = seqinlen - ivsize */ append_math_sub_imm_u32(desc, REG3, SEQINLEN, IMM, ctx->authsize + tfm->ivsize) /* assoclen = (assoclen + cryptlen) - cryptlen */ append_math_sub(desc, REG2, SEQOUTLEN, REG0, CAAM_CMD_SZ); append_math_sub(desc, VARSEQINLEN, REG3, REG2, CAAM_CMD_SZ); /* read assoc before reading payload */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG | KEY_VLF); aead_append_ld_iv(desc, tfm->ivsize); append_dec_op1(desc, ctx->class1_alg_type); /* Read and write cryptlen bytes */ append_math_add(desc, VARSEQINLEN, ZERO, REG2, CAAM_CMD_SZ); append_math_add(desc, VARSEQOUTLEN, ZERO, REG2, CAAM_CMD_SZ); aead_append_src_dst(desc, FIFOLD_TYPE_MSG); /* Load ICV */ append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV); append_dec_shr_done(desc); ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc, desc_bytes(desc), DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) { dev_err(jrdev, "unable to map shared descriptor\n"); return -ENOMEM; } #ifdef DEBUG print_hex_dump(KERN_ERR, "aead dec shdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (DESC_AEAD_GIVENC_LEN + DESC_JOB_IO_LEN + ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) keys_fit_inline = true; /* aead_givencrypt shared descriptor */ desc = ctx->sh_desc_givenc; init_sh_desc_key_aead(desc, ctx, keys_fit_inline); /* Generate IV */ geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO | NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_LC1 | NFIFOENTRY_PTYPE_RND | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT); append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB | LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM); append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO); append_move(desc, MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX | (tfm->ivsize << MOVE_LEN_SHIFT)); append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO); /* Copy IV to class 1 context */ append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO | (tfm->ivsize << MOVE_LEN_SHIFT)); /* Return to encryption */ append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* ivsize + cryptlen = seqoutlen - authsize */ append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize); /* assoclen = seqinlen - (ivsize + cryptlen) */ append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG3, CAAM_CMD_SZ); /* read assoc before reading payload */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG | KEY_VLF); /* Copy iv from class 1 ctx to class 2 fifo*/ moveiv = NFIFOENTRY_STYPE_OFIFO | NFIFOENTRY_DEST_CLASS2 | NFIFOENTRY_DTYPE_MSG | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT); append_load_imm_u32(desc, moveiv, LDST_CLASS_IND_CCB | LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM); append_load_imm_u32(desc, tfm->ivsize, LDST_CLASS_2_CCB | LDST_SRCDST_WORD_DATASZ_REG | LDST_IMM); /* Class 1 operation */ append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* Will write ivsize + cryptlen */ append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ); /* Not need to reload iv */ append_seq_fifo_load(desc, tfm->ivsize, FIFOLD_CLASS_SKIP); /* Will read cryptlen */ append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ); append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH | KEY_VLF | FIFOLD_TYPE_MSG1OUT2 | FIFOLD_TYPE_LASTBOTH); append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF); /* Write ICV */ append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); ctx->sh_desc_givenc_dma = dma_map_single(jrdev, desc, desc_bytes(desc), DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->sh_desc_givenc_dma)) { dev_err(jrdev, "unable to map shared descriptor\n"); return -ENOMEM; } #ifdef DEBUG print_hex_dump(KERN_ERR, "aead givenc shdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif return 0; } static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx(authenc); ctx->authsize = authsize; aead_set_sh_desc(authenc); return 0; } static u32 gen_split_aead_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen) { return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len, ctx->split_key_pad_len, key_in, authkeylen, ctx->alg_op); } static int aead_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */ static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 }; struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; struct rtattr *rta = (void *)key; struct crypto_authenc_key_param *param; unsigned int authkeylen; unsigned int enckeylen; int ret = 0; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < enckeylen) goto badkey; authkeylen = keylen - enckeylen; if (keylen > CAAM_MAX_KEY_SIZE) goto badkey; /* Pick class 2 key length from algorithm submask */ ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >> OP_ALG_ALGSEL_SHIFT] * 2; ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16); #ifdef DEBUG printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n", keylen, enckeylen, authkeylen); printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n", ctx->split_key_len, ctx->split_key_pad_len); print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); #endif ret = gen_split_aead_key(ctx, key, authkeylen); if (ret) { goto badkey; } /* postpend encryption key to auth split key */ memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen); ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len + enckeylen, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->key_dma)) { dev_err(jrdev, "unable to map key i/o memory\n"); return -ENOMEM; } #ifdef DEBUG print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, ctx->split_key_pad_len + enckeylen, 1); #endif ctx->enckeylen = enckeylen; ret = aead_set_sh_desc(aead); if (ret) { dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len + enckeylen, DMA_TO_DEVICE); } return ret; badkey: crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); struct ablkcipher_tfm *tfm = &ablkcipher->base.crt_ablkcipher; struct device *jrdev = ctx->jrdev; int ret = 0; u32 *key_jump_cmd, *jump_cmd; u32 *desc; #ifdef DEBUG print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); #endif memcpy(ctx->key, key, keylen); ctx->key_dma = dma_map_single(jrdev, ctx->key, keylen, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->key_dma)) { dev_err(jrdev, "unable to map key i/o memory\n"); return -ENOMEM; } ctx->enckeylen = keylen; /* ablkcipher_encrypt shared descriptor */ desc = ctx->sh_desc_enc; init_sh_desc(desc, HDR_SHARE_SERIAL); /* Skip if already shared */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); /* Load class1 key only */ append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); set_jump_tgt_here(desc, key_jump_cmd); /* Propagate errors from shared to job descriptor */ append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD); /* Load iv */ append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT | LDST_CLASS_1_CCB | tfm->ivsize); /* Load operation */ append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* Perform operation */ ablkcipher_append_src_dst(desc); ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc, desc_bytes(desc), DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) { dev_err(jrdev, "unable to map shared descriptor\n"); return -ENOMEM; } #ifdef DEBUG print_hex_dump(KERN_ERR, "ablkcipher enc shdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif /* ablkcipher_decrypt shared descriptor */ desc = ctx->sh_desc_dec; init_sh_desc(desc, HDR_SHARE_SERIAL); /* Skip if already shared */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); /* Load class1 key only */ append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); /* For aead, only propagate error immediately if shared */ jump_cmd = append_jump(desc, JUMP_TEST_ALL); set_jump_tgt_here(desc, key_jump_cmd); append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD); set_jump_tgt_here(desc, jump_cmd); /* load IV */ append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT | LDST_CLASS_1_CCB | tfm->ivsize); /* Choose operation */ append_dec_op1(desc, ctx->class1_alg_type); /* Perform operation */ ablkcipher_append_src_dst(desc); /* Wait for key to load before allowing propagating error */ append_dec_shr_done(desc); ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc, desc_bytes(desc), DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) { dev_err(jrdev, "unable to map shared descriptor\n"); return -ENOMEM; } #ifdef DEBUG print_hex_dump(KERN_ERR, "ablkcipher dec shdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif return ret; } /* * aead_edesc - s/w-extended aead descriptor * @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist * @assoc_chained: if source is chained * @src_nents: number of segments in input scatterlist * @src_chained: if source is chained * @dst_nents: number of segments in output scatterlist * @dst_chained: if destination is chained * @iv_dma: dma address of iv for checking continuity and link table * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE) * @sec4_sg_bytes: length of dma mapped sec4_sg space * @sec4_sg_dma: bus physical mapped address of h/w link table * @hw_desc: the h/w job descriptor followed by any referenced link tables */ struct aead_edesc { int assoc_nents; bool assoc_chained; int src_nents; bool src_chained; int dst_nents; bool dst_chained; dma_addr_t iv_dma; int sec4_sg_bytes; dma_addr_t sec4_sg_dma; struct sec4_sg_entry *sec4_sg; u32 hw_desc[0]; }; /* * ablkcipher_edesc - s/w-extended ablkcipher descriptor * @src_nents: number of segments in input scatterlist * @src_chained: if source is chained * @dst_nents: number of segments in output scatterlist * @dst_chained: if destination is chained * @iv_dma: dma address of iv for checking continuity and link table * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE) * @sec4_sg_bytes: length of dma mapped sec4_sg space * @sec4_sg_dma: bus physical mapped address of h/w link table * @hw_desc: the h/w job descriptor followed by any referenced link tables */ struct ablkcipher_edesc { int src_nents; bool src_chained; int dst_nents; bool dst_chained; dma_addr_t iv_dma; int sec4_sg_bytes; dma_addr_t sec4_sg_dma; struct sec4_sg_entry *sec4_sg; u32 hw_desc[0]; }; static void caam_unmap(struct device *dev, struct scatterlist *src, struct scatterlist *dst, int src_nents, bool src_chained, int dst_nents, bool dst_chained, dma_addr_t iv_dma, int ivsize, dma_addr_t sec4_sg_dma, int sec4_sg_bytes) { if (dst != src) { dma_unmap_sg_chained(dev, src, src_nents ? : 1, DMA_TO_DEVICE, src_chained); dma_unmap_sg_chained(dev, dst, dst_nents ? : 1, DMA_FROM_DEVICE, dst_chained); } else { dma_unmap_sg_chained(dev, src, src_nents ? : 1, DMA_BIDIRECTIONAL, src_chained); } if (iv_dma) dma_unmap_single(dev, iv_dma, ivsize, DMA_TO_DEVICE); if (sec4_sg_bytes) dma_unmap_single(dev, sec4_sg_dma, sec4_sg_bytes, DMA_TO_DEVICE); } static void aead_unmap(struct device *dev, struct aead_edesc *edesc, struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); int ivsize = crypto_aead_ivsize(aead); dma_unmap_sg_chained(dev, req->assoc, edesc->assoc_nents, DMA_TO_DEVICE, edesc->assoc_chained); caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->src_chained, edesc->dst_nents, edesc->dst_chained, edesc->iv_dma, ivsize, edesc->sec4_sg_dma, edesc->sec4_sg_bytes); } static void ablkcipher_unmap(struct device *dev, struct ablkcipher_edesc *edesc, struct ablkcipher_request *req) { struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); int ivsize = crypto_ablkcipher_ivsize(ablkcipher); caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->src_chained, edesc->dst_nents, edesc->dst_chained, edesc->iv_dma, ivsize, edesc->sec4_sg_dma, edesc->sec4_sg_bytes); } static void aead_encrypt_done(struct device *jrdev, u32 *desc, u32 err, void *context) { struct aead_request *req = context; struct aead_edesc *edesc; #ifdef DEBUG struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ivsize = crypto_aead_ivsize(aead); dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); #endif edesc = (struct aead_edesc *)((char *)desc - offsetof(struct aead_edesc, hw_desc)); if (err) { char tmp[CAAM_ERROR_STR_MAX]; dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err)); } aead_unmap(jrdev, edesc, req); #ifdef DEBUG print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc), req->assoclen , 1); print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src) - ivsize, edesc->src_nents ? 100 : ivsize, 1); print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src), edesc->src_nents ? 100 : req->cryptlen + ctx->authsize + 4, 1); #endif kfree(edesc); aead_request_complete(req, err); } static void aead_decrypt_done(struct device *jrdev, u32 *desc, u32 err, void *context) { struct aead_request *req = context; struct aead_edesc *edesc; #ifdef DEBUG struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ivsize = crypto_aead_ivsize(aead); dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); #endif edesc = (struct aead_edesc *)((char *)desc - offsetof(struct aead_edesc, hw_desc)); #ifdef DEBUG print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->iv, ivsize, 1); print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->dst), req->cryptlen, 1); #endif if (err) { char tmp[CAAM_ERROR_STR_MAX]; dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err)); } aead_unmap(jrdev, edesc, req); /* * verify hw auth check passed else return -EBADMSG */ if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK) err = -EBADMSG; #ifdef DEBUG print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, ((char *)sg_virt(req->assoc) - sizeof(struct iphdr)), sizeof(struct iphdr) + req->assoclen + ((req->cryptlen > 1500) ? 1500 : req->cryptlen) + ctx->authsize + 36, 1); if (!err && edesc->sec4_sg_bytes) { struct scatterlist *sg = sg_last(req->src, edesc->src_nents); print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg), sg->length + ctx->authsize + 16, 1); } #endif kfree(edesc); aead_request_complete(req, err); } static void ablkcipher_encrypt_done(struct device *jrdev, u32 *desc, u32 err, void *context) { struct ablkcipher_request *req = context; struct ablkcipher_edesc *edesc; #ifdef DEBUG struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); int ivsize = crypto_ablkcipher_ivsize(ablkcipher); dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); #endif edesc = (struct ablkcipher_edesc *)((char *)desc - offsetof(struct ablkcipher_edesc, hw_desc)); if (err) { char tmp[CAAM_ERROR_STR_MAX]; dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err)); } #ifdef DEBUG print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->info, edesc->src_nents > 1 ? 100 : ivsize, 1); print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src), edesc->dst_nents > 1 ? 100 : req->nbytes, 1); #endif ablkcipher_unmap(jrdev, edesc, req); kfree(edesc); ablkcipher_request_complete(req, err); } static void ablkcipher_decrypt_done(struct device *jrdev, u32 *desc, u32 err, void *context) { struct ablkcipher_request *req = context; struct ablkcipher_edesc *edesc; #ifdef DEBUG struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); int ivsize = crypto_ablkcipher_ivsize(ablkcipher); dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); #endif edesc = (struct ablkcipher_edesc *)((char *)desc - offsetof(struct ablkcipher_edesc, hw_desc)); if (err) { char tmp[CAAM_ERROR_STR_MAX]; dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err)); } #ifdef DEBUG print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->info, ivsize, 1); print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src), edesc->dst_nents > 1 ? 100 : req->nbytes, 1); #endif ablkcipher_unmap(jrdev, edesc, req); kfree(edesc); ablkcipher_request_complete(req, err); } /* * Fill in aead job descriptor */ static void init_aead_job(u32 *sh_desc, dma_addr_t ptr, struct aead_edesc *edesc, struct aead_request *req, bool all_contig, bool encrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ivsize = crypto_aead_ivsize(aead); int authsize = ctx->authsize; u32 *desc = edesc->hw_desc; u32 out_options = 0, in_options; dma_addr_t dst_dma, src_dma; int len, sec4_sg_index = 0; #ifdef DEBUG debug("assoclen %d cryptlen %d authsize %d\n", req->assoclen, req->cryptlen, authsize); print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc), req->assoclen , 1); print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->iv, edesc->src_nents ? 100 : ivsize, 1); print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src), edesc->src_nents ? 100 : req->cryptlen, 1); print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sh_desc, desc_bytes(sh_desc), 1); #endif len = desc_len(sh_desc); init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE); if (all_contig) { src_dma = sg_dma_address(req->assoc); in_options = 0; } else { src_dma = edesc->sec4_sg_dma; sec4_sg_index += (edesc->assoc_nents ? : 1) + 1 + (edesc->src_nents ? : 1); in_options = LDST_SGF; } if (encrypt) append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize + req->cryptlen - authsize, in_options); else append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize + req->cryptlen, in_options); if (likely(req->src == req->dst)) { if (all_contig) { dst_dma = sg_dma_address(req->src); } else { dst_dma = src_dma + sizeof(struct sec4_sg_entry) * ((edesc->assoc_nents ? : 1) + 1); out_options = LDST_SGF; } } else { if (!edesc->dst_nents) { dst_dma = sg_dma_address(req->dst); } else { dst_dma = edesc->sec4_sg_dma + sec4_sg_index * sizeof(struct sec4_sg_entry); out_options = LDST_SGF; } } if (encrypt) append_seq_out_ptr(desc, dst_dma, req->cryptlen, out_options); else append_seq_out_ptr(desc, dst_dma, req->cryptlen - authsize, out_options); } /* * Fill in aead givencrypt job descriptor */ static void init_aead_giv_job(u32 *sh_desc, dma_addr_t ptr, struct aead_edesc *edesc, struct aead_request *req, int contig) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ivsize = crypto_aead_ivsize(aead); int authsize = ctx->authsize; u32 *desc = edesc->hw_desc; u32 out_options = 0, in_options; dma_addr_t dst_dma, src_dma; int len, sec4_sg_index = 0; #ifdef DEBUG debug("assoclen %d cryptlen %d authsize %d\n", req->assoclen, req->cryptlen, authsize); print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc), req->assoclen , 1); print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->iv, ivsize, 1); print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src), edesc->src_nents > 1 ? 100 : req->cryptlen, 1); print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sh_desc, desc_bytes(sh_desc), 1); #endif len = desc_len(sh_desc); init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE); if (contig & GIV_SRC_CONTIG) { src_dma = sg_dma_address(req->assoc); in_options = 0; } else { src_dma = edesc->sec4_sg_dma; sec4_sg_index += edesc->assoc_nents + 1 + edesc->src_nents; in_options = LDST_SGF; } append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize + req->cryptlen - authsize, in_options); if (contig & GIV_DST_CONTIG) { dst_dma = edesc->iv_dma; } else { if (likely(req->src == req->dst)) { dst_dma = src_dma + sizeof(struct sec4_sg_entry) * edesc->assoc_nents; out_options = LDST_SGF; } else { dst_dma = edesc->sec4_sg_dma + sec4_sg_index * sizeof(struct sec4_sg_entry); out_options = LDST_SGF; } } append_seq_out_ptr(desc, dst_dma, ivsize + req->cryptlen, out_options); } /* * Fill in ablkcipher job descriptor */ static void init_ablkcipher_job(u32 *sh_desc, dma_addr_t ptr, struct ablkcipher_edesc *edesc, struct ablkcipher_request *req, bool iv_contig) { struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); int ivsize = crypto_ablkcipher_ivsize(ablkcipher); u32 *desc = edesc->hw_desc; u32 out_options = 0, in_options; dma_addr_t dst_dma, src_dma; int len, sec4_sg_index = 0; #ifdef DEBUG print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->info, ivsize, 1); print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src), edesc->src_nents ? 100 : req->nbytes, 1); #endif len = desc_len(sh_desc); init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE); if (iv_contig) { src_dma = edesc->iv_dma; in_options = 0; } else { src_dma = edesc->sec4_sg_dma; sec4_sg_index += (iv_contig ? 0 : 1) + edesc->src_nents; in_options = LDST_SGF; } append_seq_in_ptr(desc, src_dma, req->nbytes + ivsize, in_options); if (likely(req->src == req->dst)) { if (!edesc->src_nents && iv_contig) { dst_dma = sg_dma_address(req->src); } else { dst_dma = edesc->sec4_sg_dma + sizeof(struct sec4_sg_entry); out_options = LDST_SGF; } } else { if (!edesc->dst_nents) { dst_dma = sg_dma_address(req->dst); } else { dst_dma = edesc->sec4_sg_dma + sec4_sg_index * sizeof(struct sec4_sg_entry); out_options = LDST_SGF; } } append_seq_out_ptr(desc, dst_dma, req->nbytes, out_options); } /* * allocate and map the aead extended descriptor */ static struct aead_edesc *aead_edesc_alloc(struct aead_request *req, int desc_bytes, bool *all_contig_ptr) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; int assoc_nents, src_nents, dst_nents = 0; struct aead_edesc *edesc; dma_addr_t iv_dma = 0; int sgc; bool all_contig = true; bool assoc_chained = false, src_chained = false, dst_chained = false; int ivsize = crypto_aead_ivsize(aead); int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; assoc_nents = sg_count(req->assoc, req->assoclen, &assoc_chained); src_nents = sg_count(req->src, req->cryptlen, &src_chained); if (unlikely(req->dst != req->src)) dst_nents = sg_count(req->dst, req->cryptlen, &dst_chained); sgc = dma_map_sg_chained(jrdev, req->assoc, assoc_nents ? : 1, DMA_TO_DEVICE, assoc_chained); if (likely(req->src == req->dst)) { sgc = dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_BIDIRECTIONAL, src_chained); } else { sgc = dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE, src_chained); sgc = dma_map_sg_chained(jrdev, req->dst, dst_nents ? : 1, DMA_FROM_DEVICE, dst_chained); } /* Check if data are contiguous */ iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE); if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen != iv_dma || src_nents || iv_dma + ivsize != sg_dma_address(req->src)) { all_contig = false; assoc_nents = assoc_nents ? : 1; src_nents = src_nents ? : 1; sec4_sg_len = assoc_nents + 1 + src_nents; } sec4_sg_len += dst_nents; sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); /* allocate space for base edesc and hw desc commands, link tables */ edesc = kmalloc(sizeof(struct aead_edesc) + desc_bytes + sec4_sg_bytes, GFP_DMA | flags); if (!edesc) { dev_err(jrdev, "could not allocate extended descriptor\n"); return ERR_PTR(-ENOMEM); } edesc->assoc_nents = assoc_nents; edesc->assoc_chained = assoc_chained; edesc->src_nents = src_nents; edesc->src_chained = src_chained; edesc->dst_nents = dst_nents; edesc->dst_chained = dst_chained; edesc->iv_dma = iv_dma; edesc->sec4_sg_bytes = sec4_sg_bytes; edesc->sec4_sg = (void *)edesc + sizeof(struct aead_edesc) + desc_bytes; edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, sec4_sg_bytes, DMA_TO_DEVICE); *all_contig_ptr = all_contig; sec4_sg_index = 0; if (!all_contig) { sg_to_sec4_sg(req->assoc, (assoc_nents ? : 1), edesc->sec4_sg + sec4_sg_index, 0); sec4_sg_index += assoc_nents ? : 1; dma_to_sec4_sg_one(edesc->sec4_sg + sec4_sg_index, iv_dma, ivsize, 0); sec4_sg_index += 1; sg_to_sec4_sg_last(req->src, (src_nents ? : 1), edesc->sec4_sg + sec4_sg_index, 0); sec4_sg_index += src_nents ? : 1; } if (dst_nents) { sg_to_sec4_sg_last(req->dst, dst_nents, edesc->sec4_sg + sec4_sg_index, 0); } return edesc; } static int aead_encrypt(struct aead_request *req) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; bool all_contig; u32 *desc; int ret = 0; req->cryptlen += ctx->authsize; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, DESC_JOB_IO_LEN * CAAM_CMD_SZ, &all_contig); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Create and submit job descriptor */ init_aead_job(ctx->sh_desc_enc, ctx->sh_desc_enc_dma, edesc, req, all_contig, true); #ifdef DEBUG print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc, desc_bytes(edesc->hw_desc), 1); #endif desc = edesc->hw_desc; ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req); if (!ret) { ret = -EINPROGRESS; } else { aead_unmap(jrdev, edesc, req); kfree(edesc); } return ret; } static int aead_decrypt(struct aead_request *req) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; bool all_contig; u32 *desc; int ret = 0; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, DESC_JOB_IO_LEN * CAAM_CMD_SZ, &all_contig); if (IS_ERR(edesc)) return PTR_ERR(edesc); #ifdef DEBUG print_hex_dump(KERN_ERR, "dec src@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src), req->cryptlen, 1); #endif /* Create and submit job descriptor*/ init_aead_job(ctx->sh_desc_dec, ctx->sh_desc_dec_dma, edesc, req, all_contig, false); #ifdef DEBUG print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc, desc_bytes(edesc->hw_desc), 1); #endif desc = edesc->hw_desc; ret = caam_jr_enqueue(jrdev, desc, aead_decrypt_done, req); if (!ret) { ret = -EINPROGRESS; } else { aead_unmap(jrdev, edesc, req); kfree(edesc); } return ret; } /* * allocate and map the aead extended descriptor for aead givencrypt */ static struct aead_edesc *aead_giv_edesc_alloc(struct aead_givcrypt_request *greq, int desc_bytes, u32 *contig_ptr) { struct aead_request *req = &greq->areq; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; int assoc_nents, src_nents, dst_nents = 0; struct aead_edesc *edesc; dma_addr_t iv_dma = 0; int sgc; u32 contig = GIV_SRC_CONTIG | GIV_DST_CONTIG; int ivsize = crypto_aead_ivsize(aead); bool assoc_chained = false, src_chained = false, dst_chained = false; int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; assoc_nents = sg_count(req->assoc, req->assoclen, &assoc_chained); src_nents = sg_count(req->src, req->cryptlen, &src_chained); if (unlikely(req->dst != req->src)) dst_nents = sg_count(req->dst, req->cryptlen, &dst_chained); sgc = dma_map_sg_chained(jrdev, req->assoc, assoc_nents ? : 1, DMA_TO_DEVICE, assoc_chained); if (likely(req->src == req->dst)) { sgc = dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_BIDIRECTIONAL, src_chained); } else { sgc = dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE, src_chained); sgc = dma_map_sg_chained(jrdev, req->dst, dst_nents ? : 1, DMA_FROM_DEVICE, dst_chained); } /* Check if data are contiguous */ iv_dma = dma_map_single(jrdev, greq->giv, ivsize, DMA_TO_DEVICE); if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen != iv_dma || src_nents || iv_dma + ivsize != sg_dma_address(req->src)) contig &= ~GIV_SRC_CONTIG; if (dst_nents || iv_dma + ivsize != sg_dma_address(req->dst)) contig &= ~GIV_DST_CONTIG; if (unlikely(req->src != req->dst)) { dst_nents = dst_nents ? : 1; sec4_sg_len += 1; } if (!(contig & GIV_SRC_CONTIG)) { assoc_nents = assoc_nents ? : 1; src_nents = src_nents ? : 1; sec4_sg_len += assoc_nents + 1 + src_nents; if (likely(req->src == req->dst)) contig &= ~GIV_DST_CONTIG; } sec4_sg_len += dst_nents; sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); /* allocate space for base edesc and hw desc commands, link tables */ edesc = kmalloc(sizeof(struct aead_edesc) + desc_bytes + sec4_sg_bytes, GFP_DMA | flags); if (!edesc) { dev_err(jrdev, "could not allocate extended descriptor\n"); return ERR_PTR(-ENOMEM); } edesc->assoc_nents = assoc_nents; edesc->assoc_chained = assoc_chained; edesc->src_nents = src_nents; edesc->src_chained = src_chained; edesc->dst_nents = dst_nents; edesc->dst_chained = dst_chained; edesc->iv_dma = iv_dma; edesc->sec4_sg_bytes = sec4_sg_bytes; edesc->sec4_sg = (void *)edesc + sizeof(struct aead_edesc) + desc_bytes; edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, sec4_sg_bytes, DMA_TO_DEVICE); *contig_ptr = contig; sec4_sg_index = 0; if (!(contig & GIV_SRC_CONTIG)) { sg_to_sec4_sg(req->assoc, assoc_nents, edesc->sec4_sg + sec4_sg_index, 0); sec4_sg_index += assoc_nents; dma_to_sec4_sg_one(edesc->sec4_sg + sec4_sg_index, iv_dma, ivsize, 0); sec4_sg_index += 1; sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg + sec4_sg_index, 0); sec4_sg_index += src_nents; } if (unlikely(req->src != req->dst && !(contig & GIV_DST_CONTIG))) { dma_to_sec4_sg_one(edesc->sec4_sg + sec4_sg_index, iv_dma, ivsize, 0); sec4_sg_index += 1; sg_to_sec4_sg_last(req->dst, dst_nents, edesc->sec4_sg + sec4_sg_index, 0); } return edesc; } static int aead_givencrypt(struct aead_givcrypt_request *areq) { struct aead_request *req = &areq->areq; struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; u32 contig; u32 *desc; int ret = 0; req->cryptlen += ctx->authsize; /* allocate extended descriptor */ edesc = aead_giv_edesc_alloc(areq, DESC_JOB_IO_LEN * CAAM_CMD_SZ, &contig); if (IS_ERR(edesc)) return PTR_ERR(edesc); #ifdef DEBUG print_hex_dump(KERN_ERR, "giv src@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src), req->cryptlen, 1); #endif /* Create and submit job descriptor*/ init_aead_giv_job(ctx->sh_desc_givenc, ctx->sh_desc_givenc_dma, edesc, req, contig); #ifdef DEBUG print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc, desc_bytes(edesc->hw_desc), 1); #endif desc = edesc->hw_desc; ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req); if (!ret) { ret = -EINPROGRESS; } else { aead_unmap(jrdev, edesc, req); kfree(edesc); } return ret; } /* * allocate and map the ablkcipher extended descriptor for ablkcipher */ static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request *req, int desc_bytes, bool *iv_contig_out) { struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); struct device *jrdev = ctx->jrdev; gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; int src_nents, dst_nents = 0, sec4_sg_bytes; struct ablkcipher_edesc *edesc; dma_addr_t iv_dma = 0; bool iv_contig = false; int sgc; int ivsize = crypto_ablkcipher_ivsize(ablkcipher); bool src_chained = false, dst_chained = false; int sec4_sg_index; src_nents = sg_count(req->src, req->nbytes, &src_chained); if (req->dst != req->src) dst_nents = sg_count(req->dst, req->nbytes, &dst_chained); if (likely(req->src == req->dst)) { sgc = dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_BIDIRECTIONAL, src_chained); } else { sgc = dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE, src_chained); sgc = dma_map_sg_chained(jrdev, req->dst, dst_nents ? : 1, DMA_FROM_DEVICE, dst_chained); } /* * Check if iv can be contiguous with source and destination. * If so, include it. If not, create scatterlist. */ iv_dma = dma_map_single(jrdev, req->info, ivsize, DMA_TO_DEVICE); if (!src_nents && iv_dma + ivsize == sg_dma_address(req->src)) iv_contig = true; else src_nents = src_nents ? : 1; sec4_sg_bytes = ((iv_contig ? 0 : 1) + src_nents + dst_nents) * sizeof(struct sec4_sg_entry); /* allocate space for base edesc and hw desc commands, link tables */ edesc = kmalloc(sizeof(struct ablkcipher_edesc) + desc_bytes + sec4_sg_bytes, GFP_DMA | flags); if (!edesc) { dev_err(jrdev, "could not allocate extended descriptor\n"); return ERR_PTR(-ENOMEM); } edesc->src_nents = src_nents; edesc->src_chained = src_chained; edesc->dst_nents = dst_nents; edesc->dst_chained = dst_chained; edesc->sec4_sg_bytes = sec4_sg_bytes; edesc->sec4_sg = (void *)edesc + sizeof(struct ablkcipher_edesc) + desc_bytes; sec4_sg_index = 0; if (!iv_contig) { dma_to_sec4_sg_one(edesc->sec4_sg, iv_dma, ivsize, 0); sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg + 1, 0); sec4_sg_index += 1 + src_nents; } if (dst_nents) { sg_to_sec4_sg_last(req->dst, dst_nents, edesc->sec4_sg + sec4_sg_index, 0); } edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, sec4_sg_bytes, DMA_TO_DEVICE); edesc->iv_dma = iv_dma; #ifdef DEBUG print_hex_dump(KERN_ERR, "ablkcipher sec4_sg@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg, sec4_sg_bytes, 1); #endif *iv_contig_out = iv_contig; return edesc; } static int ablkcipher_encrypt(struct ablkcipher_request *req) { struct ablkcipher_edesc *edesc; struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); struct device *jrdev = ctx->jrdev; bool iv_contig; u32 *desc; int ret = 0; /* allocate extended descriptor */ edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN * CAAM_CMD_SZ, &iv_contig); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Create and submit job descriptor*/ init_ablkcipher_job(ctx->sh_desc_enc, ctx->sh_desc_enc_dma, edesc, req, iv_contig); #ifdef DEBUG print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc, desc_bytes(edesc->hw_desc), 1); #endif desc = edesc->hw_desc; ret = caam_jr_enqueue(jrdev, desc, ablkcipher_encrypt_done, req); if (!ret) { ret = -EINPROGRESS; } else { ablkcipher_unmap(jrdev, edesc, req); kfree(edesc); } return ret; } static int ablkcipher_decrypt(struct ablkcipher_request *req) { struct ablkcipher_edesc *edesc; struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); struct device *jrdev = ctx->jrdev; bool iv_contig; u32 *desc; int ret = 0; /* allocate extended descriptor */ edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN * CAAM_CMD_SZ, &iv_contig); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Create and submit job descriptor*/ init_ablkcipher_job(ctx->sh_desc_dec, ctx->sh_desc_dec_dma, edesc, req, iv_contig); desc = edesc->hw_desc; #ifdef DEBUG print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc, desc_bytes(edesc->hw_desc), 1); #endif ret = caam_jr_enqueue(jrdev, desc, ablkcipher_decrypt_done, req); if (!ret) { ret = -EINPROGRESS; } else { ablkcipher_unmap(jrdev, edesc, req); kfree(edesc); } return ret; } #define template_aead template_u.aead #define template_ablkcipher template_u.ablkcipher struct caam_alg_template { char name[CRYPTO_MAX_ALG_NAME]; char driver_name[CRYPTO_MAX_ALG_NAME]; unsigned int blocksize; u32 type; union { struct ablkcipher_alg ablkcipher; struct aead_alg aead; struct blkcipher_alg blkcipher; struct cipher_alg cipher; struct compress_alg compress; struct rng_alg rng; } template_u; u32 class1_alg_type; u32 class2_alg_type; u32 alg_op; }; static struct caam_alg_template driver_algs[] = { /* single-pass ipsec_esp descriptor */ { .name = "authenc(hmac(md5),cbc(aes))", .driver_name = "authenc-hmac-md5-cbc-aes-caam", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha1),cbc(aes))", .driver_name = "authenc-hmac-sha1-cbc-aes-caam", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha224),cbc(aes))", .driver_name = "authenc-hmac-sha224-cbc-aes-caam", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha256),cbc(aes))", .driver_name = "authenc-hmac-sha256-cbc-aes-caam", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha384),cbc(aes))", .driver_name = "authenc-hmac-sha384-cbc-aes-caam", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha512),cbc(aes))", .driver_name = "authenc-hmac-sha512-cbc-aes-caam", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(md5),cbc(des3_ede))", .driver_name = "authenc-hmac-md5-cbc-des3_ede-caam", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha1),cbc(des3_ede))", .driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha224),cbc(des3_ede))", .driver_name = "authenc-hmac-sha224-cbc-des3_ede-caam", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha256),cbc(des3_ede))", .driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha384),cbc(des3_ede))", .driver_name = "authenc-hmac-sha384-cbc-des3_ede-caam", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha512),cbc(des3_ede))", .driver_name = "authenc-hmac-sha512-cbc-des3_ede-caam", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(md5),cbc(des))", .driver_name = "authenc-hmac-md5-cbc-des-caam", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha1),cbc(des))", .driver_name = "authenc-hmac-sha1-cbc-des-caam", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha224),cbc(des))", .driver_name = "authenc-hmac-sha224-cbc-des-caam", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha256),cbc(des))", .driver_name = "authenc-hmac-sha256-cbc-des-caam", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha384),cbc(des))", .driver_name = "authenc-hmac-sha384-cbc-des-caam", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha512),cbc(des))", .driver_name = "authenc-hmac-sha512-cbc-des-caam", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC, }, /* ablkcipher descriptor */ { .name = "cbc(aes)", .driver_name = "cbc-aes-caam", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .geniv = "eseqiv", .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, }, { .name = "cbc(des3_ede)", .driver_name = "cbc-3des-caam", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .geniv = "eseqiv", .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, }, { .name = "cbc(des)", .driver_name = "cbc-des-caam", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .geniv = "eseqiv", .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, } }; struct caam_crypto_alg { struct list_head entry; struct device *ctrldev; int class1_alg_type; int class2_alg_type; int alg_op; struct crypto_alg crypto_alg; }; static int caam_cra_init(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct caam_crypto_alg *caam_alg = container_of(alg, struct caam_crypto_alg, crypto_alg); struct caam_ctx *ctx = crypto_tfm_ctx(tfm); struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev); int tgt_jr = atomic_inc_return(&priv->tfm_count); /* * distribute tfms across job rings to ensure in-order * crypto request processing per tfm */ ctx->jrdev = priv->jrdev[(tgt_jr / 2) % priv->total_jobrs]; /* copy descriptor header template value */ ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type; ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type; ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op; return 0; } static void caam_cra_exit(struct crypto_tfm *tfm) { struct caam_ctx *ctx = crypto_tfm_ctx(tfm); if (ctx->sh_desc_enc_dma && !dma_mapping_error(ctx->jrdev, ctx->sh_desc_enc_dma)) dma_unmap_single(ctx->jrdev, ctx->sh_desc_enc_dma, desc_bytes(ctx->sh_desc_enc), DMA_TO_DEVICE); if (ctx->sh_desc_dec_dma && !dma_mapping_error(ctx->jrdev, ctx->sh_desc_dec_dma)) dma_unmap_single(ctx->jrdev, ctx->sh_desc_dec_dma, desc_bytes(ctx->sh_desc_dec), DMA_TO_DEVICE); if (ctx->sh_desc_givenc_dma && !dma_mapping_error(ctx->jrdev, ctx->sh_desc_givenc_dma)) dma_unmap_single(ctx->jrdev, ctx->sh_desc_givenc_dma, desc_bytes(ctx->sh_desc_givenc), DMA_TO_DEVICE); } static void __exit caam_algapi_exit(void) { struct device_node *dev_node; struct platform_device *pdev; struct device *ctrldev; struct caam_drv_private *priv; struct caam_crypto_alg *t_alg, *n; dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); if (!dev_node) { dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); if (!dev_node) return; } pdev = of_find_device_by_node(dev_node); if (!pdev) return; ctrldev = &pdev->dev; of_node_put(dev_node); priv = dev_get_drvdata(ctrldev); if (!priv->alg_list.next) return; list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) { crypto_unregister_alg(&t_alg->crypto_alg); list_del(&t_alg->entry); kfree(t_alg); } } static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev, struct caam_alg_template *template) { struct caam_crypto_alg *t_alg; struct crypto_alg *alg; t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL); if (!t_alg) { dev_err(ctrldev, "failed to allocate t_alg\n"); return ERR_PTR(-ENOMEM); } alg = &t_alg->crypto_alg; snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->driver_name); alg->cra_module = THIS_MODULE; alg->cra_init = caam_cra_init; alg->cra_exit = caam_cra_exit; alg->cra_priority = CAAM_CRA_PRIORITY; alg->cra_blocksize = template->blocksize; alg->cra_alignmask = 0; alg->cra_ctxsize = sizeof(struct caam_ctx); alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | template->type; switch (template->type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: alg->cra_type = &crypto_ablkcipher_type; alg->cra_ablkcipher = template->template_ablkcipher; break; case CRYPTO_ALG_TYPE_AEAD: alg->cra_type = &crypto_aead_type; alg->cra_aead = template->template_aead; break; } t_alg->class1_alg_type = template->class1_alg_type; t_alg->class2_alg_type = template->class2_alg_type; t_alg->alg_op = template->alg_op; t_alg->ctrldev = ctrldev; return t_alg; } static int __init caam_algapi_init(void) { struct device_node *dev_node; struct platform_device *pdev; struct device *ctrldev; struct caam_drv_private *priv; int i = 0, err = 0; dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); if (!dev_node) { dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); if (!dev_node) return -ENODEV; } pdev = of_find_device_by_node(dev_node); if (!pdev) return -ENODEV; ctrldev = &pdev->dev; priv = dev_get_drvdata(ctrldev); of_node_put(dev_node); INIT_LIST_HEAD(&priv->alg_list); atomic_set(&priv->tfm_count, -1); /* register crypto algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { /* TODO: check if h/w supports alg */ struct caam_crypto_alg *t_alg; t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]); if (IS_ERR(t_alg)) { err = PTR_ERR(t_alg); dev_warn(ctrldev, "%s alg allocation failed\n", driver_algs[i].driver_name); continue; } err = crypto_register_alg(&t_alg->crypto_alg); if (err) { dev_warn(ctrldev, "%s alg registration failed\n", t_alg->crypto_alg.cra_driver_name); kfree(t_alg); } else list_add_tail(&t_alg->entry, &priv->alg_list); } if (!list_empty(&priv->alg_list)) dev_info(ctrldev, "%s algorithms registered in /proc/crypto\n", (char *)of_get_property(dev_node, "compatible", NULL)); return err; } module_init(caam_algapi_init); module_exit(caam_algapi_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("FSL CAAM support for crypto API"); MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");