#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define bioslog(lvl, fmt, args...) do { \ nv_printk(init->bios, lvl, "0x%04x[%c]: "fmt, init->offset, \ init_exec(init) ? '0' + (init->nested - 1) : ' ', ##args); \ } while(0) #define cont(fmt, args...) do { \ if (nv_subdev(init->bios)->debug >= NV_DBG_TRACE) \ printk(fmt, ##args); \ } while(0) #define trace(fmt, args...) bioslog(TRACE, fmt, ##args) #define warn(fmt, args...) bioslog(WARN, fmt, ##args) #define error(fmt, args...) bioslog(ERROR, fmt, ##args) /****************************************************************************** * init parser control flow helpers *****************************************************************************/ static inline bool init_exec(struct nvbios_init *init) { return (init->execute == 1) || ((init->execute & 5) == 5); } static inline void init_exec_set(struct nvbios_init *init, bool exec) { if (exec) init->execute &= 0xfd; else init->execute |= 0x02; } static inline void init_exec_inv(struct nvbios_init *init) { init->execute ^= 0x02; } static inline void init_exec_force(struct nvbios_init *init, bool exec) { if (exec) init->execute |= 0x04; else init->execute &= 0xfb; } /****************************************************************************** * init parser wrappers for normal register/i2c/whatever accessors *****************************************************************************/ static inline int init_or(struct nvbios_init *init) { if (init_exec(init)) { if (init->outp) return ffs(init->outp->or) - 1; error("script needs OR!!\n"); } return 0; } static inline int init_link(struct nvbios_init *init) { if (init_exec(init)) { if (init->outp) return !(init->outp->sorconf.link & 1); error("script needs OR link\n"); } return 0; } static inline int init_crtc(struct nvbios_init *init) { if (init_exec(init)) { if (init->crtc >= 0) return init->crtc; error("script needs crtc\n"); } return 0; } static u8 init_conn(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 ver, len; u16 conn; if (init_exec(init)) { if (init->outp) { conn = init->outp->connector; conn = dcb_conn(bios, conn, &ver, &len); if (conn) return nv_ro08(bios, conn); } error("script needs connector type\n"); } return 0xff; } static inline u32 init_nvreg(struct nvbios_init *init, u32 reg) { /* C51 (at least) sometimes has the lower bits set which the VBIOS * interprets to mean that access needs to go through certain IO * ports instead. The NVIDIA binary driver has been seen to access * these through the NV register address, so lets assume we can * do the same */ reg &= ~0x00000003; /* GF8+ display scripts need register addresses mangled a bit to * select a specific CRTC/OR */ if (nv_device(init->bios)->card_type >= NV_50) { if (reg & 0x80000000) { reg += init_crtc(init) * 0x800; reg &= ~0x80000000; } if (reg & 0x40000000) { reg += init_or(init) * 0x800; reg &= ~0x40000000; if (reg & 0x20000000) { reg += init_link(init) * 0x80; reg &= ~0x20000000; } } } if (reg & ~0x00fffffc) warn("unknown bits in register 0x%08x\n", reg); return reg; } static u32 init_rd32(struct nvbios_init *init, u32 reg) { reg = init_nvreg(init, reg); if (init_exec(init)) return nv_rd32(init->subdev, reg); return 0x00000000; } static void init_wr32(struct nvbios_init *init, u32 reg, u32 val) { reg = init_nvreg(init, reg); if (init_exec(init)) nv_wr32(init->subdev, reg, val); } static u32 init_mask(struct nvbios_init *init, u32 reg, u32 mask, u32 val) { reg = init_nvreg(init, reg); if (init_exec(init)) { u32 tmp = nv_rd32(init->subdev, reg); nv_wr32(init->subdev, reg, (tmp & ~mask) | val); return tmp; } return 0x00000000; } static u8 init_rdport(struct nvbios_init *init, u16 port) { if (init_exec(init)) return nv_rdport(init->subdev, init->crtc, port); return 0x00; } static void init_wrport(struct nvbios_init *init, u16 port, u8 value) { if (init_exec(init)) nv_wrport(init->subdev, init->crtc, port, value); } static u8 init_rdvgai(struct nvbios_init *init, u16 port, u8 index) { struct nouveau_subdev *subdev = init->subdev; if (init_exec(init)) { int head = init->crtc < 0 ? 0 : init->crtc; return nv_rdvgai(subdev, head, port, index); } return 0x00; } static void init_wrvgai(struct nvbios_init *init, u16 port, u8 index, u8 value) { /* force head 0 for updates to cr44, it only exists on first head */ if (nv_device(init->subdev)->card_type < NV_50) { if (port == 0x03d4 && index == 0x44) init->crtc = 0; } if (init_exec(init)) { int head = init->crtc < 0 ? 0 : init->crtc; nv_wrvgai(init->subdev, head, port, index, value); } /* select head 1 if cr44 write selected it */ if (nv_device(init->subdev)->card_type < NV_50) { if (port == 0x03d4 && index == 0x44 && value == 3) init->crtc = 1; } } static struct nouveau_i2c_port * init_i2c(struct nvbios_init *init, int index) { struct nouveau_i2c *i2c = nouveau_i2c(init->bios); if (index == 0xff) { index = NV_I2C_DEFAULT(0); if (init->outp && init->outp->i2c_upper_default) index = NV_I2C_DEFAULT(1); } else if (index < 0) { if (!init->outp) { if (init_exec(init)) error("script needs output for i2c\n"); return NULL; } if (index == -2 && init->outp->location) { index = NV_I2C_TYPE_EXTAUX(init->outp->extdev); return i2c->find_type(i2c, index); } index = init->outp->i2c_index; } return i2c->find(i2c, index); } static int init_rdi2cr(struct nvbios_init *init, u8 index, u8 addr, u8 reg) { struct nouveau_i2c_port *port = init_i2c(init, index); if (port && init_exec(init)) return nv_rdi2cr(port, addr, reg); return -ENODEV; } static int init_wri2cr(struct nvbios_init *init, u8 index, u8 addr, u8 reg, u8 val) { struct nouveau_i2c_port *port = init_i2c(init, index); if (port && init_exec(init)) return nv_wri2cr(port, addr, reg, val); return -ENODEV; } static int init_rdauxr(struct nvbios_init *init, u32 addr) { struct nouveau_i2c_port *port = init_i2c(init, -2); u8 data; if (port && init_exec(init)) { int ret = nv_rdaux(port, addr, &data, 1); if (ret) return ret; return data; } return -ENODEV; } static int init_wrauxr(struct nvbios_init *init, u32 addr, u8 data) { struct nouveau_i2c_port *port = init_i2c(init, -2); if (port && init_exec(init)) return nv_wraux(port, addr, &data, 1); return -ENODEV; } static void init_prog_pll(struct nvbios_init *init, u32 id, u32 freq) { struct nouveau_clock *clk = nouveau_clock(init->bios); if (clk && clk->pll_set && init_exec(init)) { int ret = clk->pll_set(clk, id, freq); if (ret) warn("failed to prog pll 0x%08x to %dkHz\n", id, freq); } } /****************************************************************************** * parsing of bios structures that are required to execute init tables *****************************************************************************/ static u16 init_table(struct nouveau_bios *bios, u16 *len) { struct bit_entry bit_I; if (!bit_entry(bios, 'I', &bit_I)) { *len = bit_I.length; return bit_I.offset; } if (bmp_version(bios) >= 0x0510) { *len = 14; return bios->bmp_offset + 75; } return 0x0000; } static u16 init_table_(struct nvbios_init *init, u16 offset, const char *name) { struct nouveau_bios *bios = init->bios; u16 len, data = init_table(bios, &len); if (data) { if (len >= offset + 2) { data = nv_ro16(bios, data + offset); if (data) return data; warn("%s pointer invalid\n", name); return 0x0000; } warn("init data too short for %s pointer", name); return 0x0000; } warn("init data not found\n"); return 0x0000; } #define init_script_table(b) init_table_((b), 0x00, "script table") #define init_macro_index_table(b) init_table_((b), 0x02, "macro index table") #define init_macro_table(b) init_table_((b), 0x04, "macro table") #define init_condition_table(b) init_table_((b), 0x06, "condition table") #define init_io_condition_table(b) init_table_((b), 0x08, "io condition table") #define init_io_flag_condition_table(b) init_table_((b), 0x0a, "io flag conditon table") #define init_function_table(b) init_table_((b), 0x0c, "function table") #define init_xlat_table(b) init_table_((b), 0x10, "xlat table"); static u16 init_script(struct nouveau_bios *bios, int index) { struct nvbios_init init = { .bios = bios }; u16 bmp_ver = bmp_version(bios), data; if (bmp_ver && bmp_ver < 0x0510) { if (index > 1 || bmp_ver < 0x0100) return 0x0000; data = bios->bmp_offset + (bmp_ver < 0x0200 ? 14 : 18); return nv_ro16(bios, data + (index * 2)); } data = init_script_table(&init); if (data) return nv_ro16(bios, data + (index * 2)); return 0x0000; } static u16 init_unknown_script(struct nouveau_bios *bios) { u16 len, data = init_table(bios, &len); if (data && len >= 16) return nv_ro16(bios, data + 14); return 0x0000; } static u16 init_ram_restrict_table(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; struct bit_entry bit_M; u16 data = 0x0000; if (!bit_entry(bios, 'M', &bit_M)) { if (bit_M.version == 1 && bit_M.length >= 5) data = nv_ro16(bios, bit_M.offset + 3); if (bit_M.version == 2 && bit_M.length >= 3) data = nv_ro16(bios, bit_M.offset + 1); } if (data == 0x0000) warn("ram restrict table not found\n"); return data; } static u8 init_ram_restrict_group_count(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; struct bit_entry bit_M; if (!bit_entry(bios, 'M', &bit_M)) { if (bit_M.version == 1 && bit_M.length >= 5) return nv_ro08(bios, bit_M.offset + 2); if (bit_M.version == 2 && bit_M.length >= 3) return nv_ro08(bios, bit_M.offset + 0); } return 0x00; } static u8 init_ram_restrict_strap(struct nvbios_init *init) { /* This appears to be the behaviour of the VBIOS parser, and *is* * important to cache the NV_PEXTDEV_BOOT0 on later chipsets to * avoid fucking up the memory controller (somehow) by reading it * on every INIT_RAM_RESTRICT_ZM_GROUP opcode. * * Preserving the non-caching behaviour on earlier chipsets just * in case *not* re-reading the strap causes similar breakage. */ if (!init->ramcfg || init->bios->version.major < 0x70) init->ramcfg = init_rd32(init, 0x101000); return (init->ramcfg & 0x00000003c) >> 2; } static u8 init_ram_restrict(struct nvbios_init *init) { u8 strap = init_ram_restrict_strap(init); u16 table = init_ram_restrict_table(init); if (table) return nv_ro08(init->bios, table + strap); return 0x00; } static u8 init_xlat_(struct nvbios_init *init, u8 index, u8 offset) { struct nouveau_bios *bios = init->bios; u16 table = init_xlat_table(init); if (table) { u16 data = nv_ro16(bios, table + (index * 2)); if (data) return nv_ro08(bios, data + offset); warn("xlat table pointer %d invalid\n", index); } return 0x00; } /****************************************************************************** * utility functions used by various init opcode handlers *****************************************************************************/ static bool init_condition_met(struct nvbios_init *init, u8 cond) { struct nouveau_bios *bios = init->bios; u16 table = init_condition_table(init); if (table) { u32 reg = nv_ro32(bios, table + (cond * 12) + 0); u32 msk = nv_ro32(bios, table + (cond * 12) + 4); u32 val = nv_ro32(bios, table + (cond * 12) + 8); trace("\t[0x%02x] (R[0x%06x] & 0x%08x) == 0x%08x\n", cond, reg, msk, val); return (init_rd32(init, reg) & msk) == val; } return false; } static bool init_io_condition_met(struct nvbios_init *init, u8 cond) { struct nouveau_bios *bios = init->bios; u16 table = init_io_condition_table(init); if (table) { u16 port = nv_ro16(bios, table + (cond * 5) + 0); u8 index = nv_ro08(bios, table + (cond * 5) + 2); u8 mask = nv_ro08(bios, table + (cond * 5) + 3); u8 value = nv_ro08(bios, table + (cond * 5) + 4); trace("\t[0x%02x] (0x%04x[0x%02x] & 0x%02x) == 0x%02x\n", cond, port, index, mask, value); return (init_rdvgai(init, port, index) & mask) == value; } return false; } static bool init_io_flag_condition_met(struct nvbios_init *init, u8 cond) { struct nouveau_bios *bios = init->bios; u16 table = init_io_flag_condition_table(init); if (table) { u16 port = nv_ro16(bios, table + (cond * 9) + 0); u8 index = nv_ro08(bios, table + (cond * 9) + 2); u8 mask = nv_ro08(bios, table + (cond * 9) + 3); u8 shift = nv_ro08(bios, table + (cond * 9) + 4); u16 data = nv_ro16(bios, table + (cond * 9) + 5); u8 dmask = nv_ro08(bios, table + (cond * 9) + 7); u8 value = nv_ro08(bios, table + (cond * 9) + 8); u8 ioval = (init_rdvgai(init, port, index) & mask) >> shift; return (nv_ro08(bios, data + ioval) & dmask) == value; } return false; } static inline u32 init_shift(u32 data, u8 shift) { if (shift < 0x80) return data >> shift; return data << (0x100 - shift); } static u32 init_tmds_reg(struct nvbios_init *init, u8 tmds) { /* For mlv < 0x80, it is an index into a table of TMDS base addresses. * For mlv == 0x80 use the "or" value of the dcb_entry indexed by * CR58 for CR57 = 0 to index a table of offsets to the basic * 0x6808b0 address. * For mlv == 0x81 use the "or" value of the dcb_entry indexed by * CR58 for CR57 = 0 to index a table of offsets to the basic * 0x6808b0 address, and then flip the offset by 8. */ const int pramdac_offset[13] = { 0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 }; const u32 pramdac_table[4] = { 0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 }; if (tmds >= 0x80) { if (init->outp) { u32 dacoffset = pramdac_offset[init->outp->or]; if (tmds == 0x81) dacoffset ^= 8; return 0x6808b0 + dacoffset; } if (init_exec(init)) error("tmds opcodes need dcb\n"); } else { if (tmds < ARRAY_SIZE(pramdac_table)) return pramdac_table[tmds]; error("tmds selector 0x%02x unknown\n", tmds); } return 0; } /****************************************************************************** * init opcode handlers *****************************************************************************/ /** * init_reserved - stub for various unknown/unused single-byte opcodes * */ static void init_reserved(struct nvbios_init *init) { u8 opcode = nv_ro08(init->bios, init->offset); u8 length, i; switch (opcode) { case 0xaa: length = 4; break; default: length = 1; break; } trace("RESERVED 0x%02x\t", opcode); for (i = 1; i < length; i++) cont(" 0x%02x", nv_ro08(init->bios, init->offset + i)); cont("\n"); init->offset += length; } /** * INIT_DONE - opcode 0x71 * */ static void init_done(struct nvbios_init *init) { trace("DONE\n"); init->offset = 0x0000; } /** * INIT_IO_RESTRICT_PROG - opcode 0x32 * */ static void init_io_restrict_prog(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 port = nv_ro16(bios, init->offset + 1); u8 index = nv_ro08(bios, init->offset + 3); u8 mask = nv_ro08(bios, init->offset + 4); u8 shift = nv_ro08(bios, init->offset + 5); u8 count = nv_ro08(bios, init->offset + 6); u32 reg = nv_ro32(bios, init->offset + 7); u8 conf, i; trace("IO_RESTRICT_PROG\tR[0x%06x] = " "((0x%04x[0x%02x] & 0x%02x) >> %d) [{\n", reg, port, index, mask, shift); init->offset += 11; conf = (init_rdvgai(init, port, index) & mask) >> shift; for (i = 0; i < count; i++) { u32 data = nv_ro32(bios, init->offset); if (i == conf) { trace("\t0x%08x *\n", data); init_wr32(init, reg, data); } else { trace("\t0x%08x\n", data); } init->offset += 4; } trace("}]\n"); } /** * INIT_REPEAT - opcode 0x33 * */ static void init_repeat(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 count = nv_ro08(bios, init->offset + 1); u16 repeat = init->repeat; trace("REPEAT\t0x%02x\n", count); init->offset += 2; init->repeat = init->offset; init->repend = init->offset; while (count--) { init->offset = init->repeat; nvbios_exec(init); if (count) trace("REPEAT\t0x%02x\n", count); } init->offset = init->repend; init->repeat = repeat; } /** * INIT_IO_RESTRICT_PLL - opcode 0x34 * */ static void init_io_restrict_pll(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 port = nv_ro16(bios, init->offset + 1); u8 index = nv_ro08(bios, init->offset + 3); u8 mask = nv_ro08(bios, init->offset + 4); u8 shift = nv_ro08(bios, init->offset + 5); s8 iofc = nv_ro08(bios, init->offset + 6); u8 count = nv_ro08(bios, init->offset + 7); u32 reg = nv_ro32(bios, init->offset + 8); u8 conf, i; trace("IO_RESTRICT_PLL\tR[0x%06x] =PLL= " "((0x%04x[0x%02x] & 0x%02x) >> 0x%02x) IOFCOND 0x%02x [{\n", reg, port, index, mask, shift, iofc); init->offset += 12; conf = (init_rdvgai(init, port, index) & mask) >> shift; for (i = 0; i < count; i++) { u32 freq = nv_ro16(bios, init->offset) * 10; if (i == conf) { trace("\t%dkHz *\n", freq); if (iofc > 0 && init_io_flag_condition_met(init, iofc)) freq *= 2; init_prog_pll(init, reg, freq); } else { trace("\t%dkHz\n", freq); } init->offset += 2; } trace("}]\n"); } /** * INIT_END_REPEAT - opcode 0x36 * */ static void init_end_repeat(struct nvbios_init *init) { trace("END_REPEAT\n"); init->offset += 1; if (init->repeat) { init->repend = init->offset; init->offset = 0; } } /** * INIT_COPY - opcode 0x37 * */ static void init_copy(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 reg = nv_ro32(bios, init->offset + 1); u8 shift = nv_ro08(bios, init->offset + 5); u8 smask = nv_ro08(bios, init->offset + 6); u16 port = nv_ro16(bios, init->offset + 7); u8 index = nv_ro08(bios, init->offset + 9); u8 mask = nv_ro08(bios, init->offset + 10); u8 data; trace("COPY\t0x%04x[0x%02x] &= 0x%02x |= " "((R[0x%06x] %s 0x%02x) & 0x%02x)\n", port, index, mask, reg, (shift & 0x80) ? "<<" : ">>", (shift & 0x80) ? (0x100 - shift) : shift, smask); init->offset += 11; data = init_rdvgai(init, port, index) & mask; data |= init_shift(init_rd32(init, reg), shift) & smask; init_wrvgai(init, port, index, data); } /** * INIT_NOT - opcode 0x38 * */ static void init_not(struct nvbios_init *init) { trace("NOT\n"); init->offset += 1; init_exec_inv(init); } /** * INIT_IO_FLAG_CONDITION - opcode 0x39 * */ static void init_io_flag_condition(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 cond = nv_ro08(bios, init->offset + 1); trace("IO_FLAG_CONDITION\t0x%02x\n", cond); init->offset += 2; if (!init_io_flag_condition_met(init, cond)) init_exec_set(init, false); } /** * INIT_DP_CONDITION - opcode 0x3a * */ static void init_dp_condition(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; struct nvbios_dpout info; u8 cond = nv_ro08(bios, init->offset + 1); u8 unkn = nv_ro08(bios, init->offset + 2); u8 ver, hdr, cnt, len; u16 data; trace("DP_CONDITION\t0x%02x 0x%02x\n", cond, unkn); init->offset += 3; switch (cond) { case 0: if (init_conn(init) != DCB_CONNECTOR_eDP) init_exec_set(init, false); break; case 1: case 2: if ( init->outp && (data = nvbios_dpout_match(bios, DCB_OUTPUT_DP, (init->outp->or << 0) | (init->outp->sorconf.link << 6), &ver, &hdr, &cnt, &len, &info))) { if (!(info.flags & cond)) init_exec_set(init, false); break; } if (init_exec(init)) warn("script needs dp output table data\n"); break; case 5: if (!(init_rdauxr(init, 0x0d) & 1)) init_exec_set(init, false); break; default: warn("unknown dp condition 0x%02x\n", cond); break; } } /** * INIT_IO_MASK_OR - opcode 0x3b * */ static void init_io_mask_or(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 index = nv_ro08(bios, init->offset + 1); u8 or = init_or(init); u8 data; trace("IO_MASK_OR\t0x03d4[0x%02x] &= ~(1 << 0x%02x)\n", index, or); init->offset += 2; data = init_rdvgai(init, 0x03d4, index); init_wrvgai(init, 0x03d4, index, data &= ~(1 << or)); } /** * INIT_IO_OR - opcode 0x3c * */ static void init_io_or(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 index = nv_ro08(bios, init->offset + 1); u8 or = init_or(init); u8 data; trace("IO_OR\t0x03d4[0x%02x] |= (1 << 0x%02x)\n", index, or); init->offset += 2; data = init_rdvgai(init, 0x03d4, index); init_wrvgai(init, 0x03d4, index, data | (1 << or)); } /** * INIT_INDEX_ADDRESS_LATCHED - opcode 0x49 * */ static void init_idx_addr_latched(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 creg = nv_ro32(bios, init->offset + 1); u32 dreg = nv_ro32(bios, init->offset + 5); u32 mask = nv_ro32(bios, init->offset + 9); u32 data = nv_ro32(bios, init->offset + 13); u8 count = nv_ro08(bios, init->offset + 17); trace("INDEX_ADDRESS_LATCHED\t" "R[0x%06x] : R[0x%06x]\n\tCTRL &= 0x%08x |= 0x%08x\n", creg, dreg, mask, data); init->offset += 18; while (count--) { u8 iaddr = nv_ro08(bios, init->offset + 0); u8 idata = nv_ro08(bios, init->offset + 1); trace("\t[0x%02x] = 0x%02x\n", iaddr, idata); init->offset += 2; init_wr32(init, dreg, idata); init_mask(init, creg, ~mask, data | iaddr); } } /** * INIT_IO_RESTRICT_PLL2 - opcode 0x4a * */ static void init_io_restrict_pll2(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 port = nv_ro16(bios, init->offset + 1); u8 index = nv_ro08(bios, init->offset + 3); u8 mask = nv_ro08(bios, init->offset + 4); u8 shift = nv_ro08(bios, init->offset + 5); u8 count = nv_ro08(bios, init->offset + 6); u32 reg = nv_ro32(bios, init->offset + 7); u8 conf, i; trace("IO_RESTRICT_PLL2\t" "R[0x%06x] =PLL= ((0x%04x[0x%02x] & 0x%02x) >> 0x%02x) [{\n", reg, port, index, mask, shift); init->offset += 11; conf = (init_rdvgai(init, port, index) & mask) >> shift; for (i = 0; i < count; i++) { u32 freq = nv_ro32(bios, init->offset); if (i == conf) { trace("\t%dkHz *\n", freq); init_prog_pll(init, reg, freq); } else { trace("\t%dkHz\n", freq); } init->offset += 4; } trace("}]\n"); } /** * INIT_PLL2 - opcode 0x4b * */ static void init_pll2(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 reg = nv_ro32(bios, init->offset + 1); u32 freq = nv_ro32(bios, init->offset + 5); trace("PLL2\tR[0x%06x] =PLL= %dkHz\n", reg, freq); init->offset += 9; init_prog_pll(init, reg, freq); } /** * INIT_I2C_BYTE - opcode 0x4c * */ static void init_i2c_byte(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 index = nv_ro08(bios, init->offset + 1); u8 addr = nv_ro08(bios, init->offset + 2) >> 1; u8 count = nv_ro08(bios, init->offset + 3); trace("I2C_BYTE\tI2C[0x%02x][0x%02x]\n", index, addr); init->offset += 4; while (count--) { u8 reg = nv_ro08(bios, init->offset + 0); u8 mask = nv_ro08(bios, init->offset + 1); u8 data = nv_ro08(bios, init->offset + 2); int val; trace("\t[0x%02x] &= 0x%02x |= 0x%02x\n", reg, mask, data); init->offset += 3; val = init_rdi2cr(init, index, addr, reg); if (val < 0) continue; init_wri2cr(init, index, addr, reg, (val & mask) | data); } } /** * INIT_ZM_I2C_BYTE - opcode 0x4d * */ static void init_zm_i2c_byte(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 index = nv_ro08(bios, init->offset + 1); u8 addr = nv_ro08(bios, init->offset + 2) >> 1; u8 count = nv_ro08(bios, init->offset + 3); trace("ZM_I2C_BYTE\tI2C[0x%02x][0x%02x]\n", index, addr); init->offset += 4; while (count--) { u8 reg = nv_ro08(bios, init->offset + 0); u8 data = nv_ro08(bios, init->offset + 1); trace("\t[0x%02x] = 0x%02x\n", reg, data); init->offset += 2; init_wri2cr(init, index, addr, reg, data); } } /** * INIT_ZM_I2C - opcode 0x4e * */ static void init_zm_i2c(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 index = nv_ro08(bios, init->offset + 1); u8 addr = nv_ro08(bios, init->offset + 2) >> 1; u8 count = nv_ro08(bios, init->offset + 3); u8 data[256], i; trace("ZM_I2C\tI2C[0x%02x][0x%02x]\n", index, addr); init->offset += 4; for (i = 0; i < count; i++) { data[i] = nv_ro08(bios, init->offset); trace("\t0x%02x\n", data[i]); init->offset++; } if (init_exec(init)) { struct nouveau_i2c_port *port = init_i2c(init, index); struct i2c_msg msg = { .addr = addr, .flags = 0, .len = count, .buf = data, }; int ret; if (port && (ret = i2c_transfer(&port->adapter, &msg, 1)) != 1) warn("i2c wr failed, %d\n", ret); } } /** * INIT_TMDS - opcode 0x4f * */ static void init_tmds(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 tmds = nv_ro08(bios, init->offset + 1); u8 addr = nv_ro08(bios, init->offset + 2); u8 mask = nv_ro08(bios, init->offset + 3); u8 data = nv_ro08(bios, init->offset + 4); u32 reg = init_tmds_reg(init, tmds); trace("TMDS\tT[0x%02x][0x%02x] &= 0x%02x |= 0x%02x\n", tmds, addr, mask, data); init->offset += 5; if (reg == 0) return; init_wr32(init, reg + 0, addr | 0x00010000); init_wr32(init, reg + 4, data | (init_rd32(init, reg + 4) & mask)); init_wr32(init, reg + 0, addr); } /** * INIT_ZM_TMDS_GROUP - opcode 0x50 * */ static void init_zm_tmds_group(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 tmds = nv_ro08(bios, init->offset + 1); u8 count = nv_ro08(bios, init->offset + 2); u32 reg = init_tmds_reg(init, tmds); trace("TMDS_ZM_GROUP\tT[0x%02x]\n", tmds); init->offset += 3; while (count--) { u8 addr = nv_ro08(bios, init->offset + 0); u8 data = nv_ro08(bios, init->offset + 1); trace("\t[0x%02x] = 0x%02x\n", addr, data); init->offset += 2; init_wr32(init, reg + 4, data); init_wr32(init, reg + 0, addr); } } /** * INIT_CR_INDEX_ADDRESS_LATCHED - opcode 0x51 * */ static void init_cr_idx_adr_latch(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 addr0 = nv_ro08(bios, init->offset + 1); u8 addr1 = nv_ro08(bios, init->offset + 2); u8 base = nv_ro08(bios, init->offset + 3); u8 count = nv_ro08(bios, init->offset + 4); u8 save0; trace("CR_INDEX_ADDR C[%02x] C[%02x]\n", addr0, addr1); init->offset += 5; save0 = init_rdvgai(init, 0x03d4, addr0); while (count--) { u8 data = nv_ro08(bios, init->offset); trace("\t\t[0x%02x] = 0x%02x\n", base, data); init->offset += 1; init_wrvgai(init, 0x03d4, addr0, base++); init_wrvgai(init, 0x03d4, addr1, data); } init_wrvgai(init, 0x03d4, addr0, save0); } /** * INIT_CR - opcode 0x52 * */ static void init_cr(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 addr = nv_ro08(bios, init->offset + 1); u8 mask = nv_ro08(bios, init->offset + 2); u8 data = nv_ro08(bios, init->offset + 3); u8 val; trace("CR\t\tC[0x%02x] &= 0x%02x |= 0x%02x\n", addr, mask, data); init->offset += 4; val = init_rdvgai(init, 0x03d4, addr) & mask; init_wrvgai(init, 0x03d4, addr, val | data); } /** * INIT_ZM_CR - opcode 0x53 * */ static void init_zm_cr(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 addr = nv_ro08(bios, init->offset + 1); u8 data = nv_ro08(bios, init->offset + 2); trace("ZM_CR\tC[0x%02x] = 0x%02x\n", addr, data); init->offset += 3; init_wrvgai(init, 0x03d4, addr, data); } /** * INIT_ZM_CR_GROUP - opcode 0x54 * */ static void init_zm_cr_group(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 count = nv_ro08(bios, init->offset + 1); trace("ZM_CR_GROUP\n"); init->offset += 2; while (count--) { u8 addr = nv_ro08(bios, init->offset + 0); u8 data = nv_ro08(bios, init->offset + 1); trace("\t\tC[0x%02x] = 0x%02x\n", addr, data); init->offset += 2; init_wrvgai(init, 0x03d4, addr, data); } } /** * INIT_CONDITION_TIME - opcode 0x56 * */ static void init_condition_time(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 cond = nv_ro08(bios, init->offset + 1); u8 retry = nv_ro08(bios, init->offset + 2); u8 wait = min((u16)retry * 50, 100); trace("CONDITION_TIME\t0x%02x 0x%02x\n", cond, retry); init->offset += 3; if (!init_exec(init)) return; while (wait--) { if (init_condition_met(init, cond)) return; mdelay(20); } init_exec_set(init, false); } /** * INIT_LTIME - opcode 0x57 * */ static void init_ltime(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 msec = nv_ro16(bios, init->offset + 1); trace("LTIME\t0x%04x\n", msec); init->offset += 3; if (init_exec(init)) mdelay(msec); } /** * INIT_ZM_REG_SEQUENCE - opcode 0x58 * */ static void init_zm_reg_sequence(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 base = nv_ro32(bios, init->offset + 1); u8 count = nv_ro08(bios, init->offset + 5); trace("ZM_REG_SEQUENCE\t0x%02x\n", count); init->offset += 6; while (count--) { u32 data = nv_ro32(bios, init->offset); trace("\t\tR[0x%06x] = 0x%08x\n", base, data); init->offset += 4; init_wr32(init, base, data); base += 4; } } /** * INIT_SUB_DIRECT - opcode 0x5b * */ static void init_sub_direct(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 addr = nv_ro16(bios, init->offset + 1); u16 save; trace("SUB_DIRECT\t0x%04x\n", addr); if (init_exec(init)) { save = init->offset; init->offset = addr; if (nvbios_exec(init)) { error("error parsing sub-table\n"); return; } init->offset = save; } init->offset += 3; } /** * INIT_JUMP - opcode 0x5c * */ static void init_jump(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 offset = nv_ro16(bios, init->offset + 1); trace("JUMP\t0x%04x\n", offset); if (init_exec(init)) init->offset = offset; else init->offset += 3; } /** * INIT_I2C_IF - opcode 0x5e * */ static void init_i2c_if(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 index = nv_ro08(bios, init->offset + 1); u8 addr = nv_ro08(bios, init->offset + 2); u8 reg = nv_ro08(bios, init->offset + 3); u8 mask = nv_ro08(bios, init->offset + 4); u8 data = nv_ro08(bios, init->offset + 5); u8 value; trace("I2C_IF\tI2C[0x%02x][0x%02x][0x%02x] & 0x%02x == 0x%02x\n", index, addr, reg, mask, data); init->offset += 6; init_exec_force(init, true); value = init_rdi2cr(init, index, addr, reg); if ((value & mask) != data) init_exec_set(init, false); init_exec_force(init, false); } /** * INIT_COPY_NV_REG - opcode 0x5f * */ static void init_copy_nv_reg(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 sreg = nv_ro32(bios, init->offset + 1); u8 shift = nv_ro08(bios, init->offset + 5); u32 smask = nv_ro32(bios, init->offset + 6); u32 sxor = nv_ro32(bios, init->offset + 10); u32 dreg = nv_ro32(bios, init->offset + 14); u32 dmask = nv_ro32(bios, init->offset + 18); u32 data; trace("COPY_NV_REG\tR[0x%06x] &= 0x%08x |= " "((R[0x%06x] %s 0x%02x) & 0x%08x ^ 0x%08x)\n", dreg, dmask, sreg, (shift & 0x80) ? "<<" : ">>", (shift & 0x80) ? (0x100 - shift) : shift, smask, sxor); init->offset += 22; data = init_shift(init_rd32(init, sreg), shift); init_mask(init, dreg, ~dmask, (data & smask) ^ sxor); } /** * INIT_ZM_INDEX_IO - opcode 0x62 * */ static void init_zm_index_io(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 port = nv_ro16(bios, init->offset + 1); u8 index = nv_ro08(bios, init->offset + 3); u8 data = nv_ro08(bios, init->offset + 4); trace("ZM_INDEX_IO\tI[0x%04x][0x%02x] = 0x%02x\n", port, index, data); init->offset += 5; init_wrvgai(init, port, index, data); } /** * INIT_COMPUTE_MEM - opcode 0x63 * */ static void init_compute_mem(struct nvbios_init *init) { struct nouveau_devinit *devinit = nouveau_devinit(init->bios); trace("COMPUTE_MEM\n"); init->offset += 1; init_exec_force(init, true); if (init_exec(init) && devinit->meminit) devinit->meminit(devinit); init_exec_force(init, false); } /** * INIT_RESET - opcode 0x65 * */ static void init_reset(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 reg = nv_ro32(bios, init->offset + 1); u32 data1 = nv_ro32(bios, init->offset + 5); u32 data2 = nv_ro32(bios, init->offset + 9); u32 savepci19; trace("RESET\tR[0x%08x] = 0x%08x, 0x%08x", reg, data1, data2); init->offset += 13; init_exec_force(init, true); savepci19 = init_mask(init, 0x00184c, 0x00000f00, 0x00000000); init_wr32(init, reg, data1); udelay(10); init_wr32(init, reg, data2); init_wr32(init, 0x00184c, savepci19); init_mask(init, 0x001850, 0x00000001, 0x00000000); init_exec_force(init, false); } /** * INIT_CONFIGURE_MEM - opcode 0x66 * */ static u16 init_configure_mem_clk(struct nvbios_init *init) { u16 mdata = bmp_mem_init_table(init->bios); if (mdata) mdata += (init_rdvgai(init, 0x03d4, 0x3c) >> 4) * 66; return mdata; } static void init_configure_mem(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 mdata, sdata; u32 addr, data; trace("CONFIGURE_MEM\n"); init->offset += 1; if (bios->version.major > 2) { init_done(init); return; } init_exec_force(init, true); mdata = init_configure_mem_clk(init); sdata = bmp_sdr_seq_table(bios); if (nv_ro08(bios, mdata) & 0x01) sdata = bmp_ddr_seq_table(bios); mdata += 6; /* skip to data */ data = init_rdvgai(init, 0x03c4, 0x01); init_wrvgai(init, 0x03c4, 0x01, data | 0x20); while ((addr = nv_ro32(bios, sdata)) != 0xffffffff) { switch (addr) { case 0x10021c: /* CKE_NORMAL */ case 0x1002d0: /* CMD_REFRESH */ case 0x1002d4: /* CMD_PRECHARGE */ data = 0x00000001; break; default: data = nv_ro32(bios, mdata); mdata += 4; if (data == 0xffffffff) continue; break; } init_wr32(init, addr, data); } init_exec_force(init, false); } /** * INIT_CONFIGURE_CLK - opcode 0x67 * */ static void init_configure_clk(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 mdata, clock; trace("CONFIGURE_CLK\n"); init->offset += 1; if (bios->version.major > 2) { init_done(init); return; } init_exec_force(init, true); mdata = init_configure_mem_clk(init); /* NVPLL */ clock = nv_ro16(bios, mdata + 4) * 10; init_prog_pll(init, 0x680500, clock); /* MPLL */ clock = nv_ro16(bios, mdata + 2) * 10; if (nv_ro08(bios, mdata) & 0x01) clock *= 2; init_prog_pll(init, 0x680504, clock); init_exec_force(init, false); } /** * INIT_CONFIGURE_PREINIT - opcode 0x68 * */ static void init_configure_preinit(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 strap; trace("CONFIGURE_PREINIT\n"); init->offset += 1; if (bios->version.major > 2) { init_done(init); return; } init_exec_force(init, true); strap = init_rd32(init, 0x101000); strap = ((strap << 2) & 0xf0) | ((strap & 0x40) >> 6); init_wrvgai(init, 0x03d4, 0x3c, strap); init_exec_force(init, false); } /** * INIT_IO - opcode 0x69 * */ static void init_io(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 port = nv_ro16(bios, init->offset + 1); u8 mask = nv_ro16(bios, init->offset + 3); u8 data = nv_ro16(bios, init->offset + 4); u8 value; trace("IO\t\tI[0x%04x] &= 0x%02x |= 0x%02x\n", port, mask, data); init->offset += 5; /* ummm.. yes.. should really figure out wtf this is and why it's * needed some day.. it's almost certainly wrong, but, it also * somehow makes things work... */ if (nv_device(init->bios)->card_type >= NV_50 && port == 0x03c3 && data == 0x01) { init_mask(init, 0x614100, 0xf0800000, 0x00800000); init_mask(init, 0x00e18c, 0x00020000, 0x00020000); init_mask(init, 0x614900, 0xf0800000, 0x00800000); init_mask(init, 0x000200, 0x40000000, 0x00000000); mdelay(10); init_mask(init, 0x00e18c, 0x00020000, 0x00000000); init_mask(init, 0x000200, 0x40000000, 0x40000000); init_wr32(init, 0x614100, 0x00800018); init_wr32(init, 0x614900, 0x00800018); mdelay(10); init_wr32(init, 0x614100, 0x10000018); init_wr32(init, 0x614900, 0x10000018); } value = init_rdport(init, port) & mask; init_wrport(init, port, data | value); } /** * INIT_SUB - opcode 0x6b * */ static void init_sub(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 index = nv_ro08(bios, init->offset + 1); u16 addr, save; trace("SUB\t0x%02x\n", index); addr = init_script(bios, index); if (addr && init_exec(init)) { save = init->offset; init->offset = addr; if (nvbios_exec(init)) { error("error parsing sub-table\n"); return; } init->offset = save; } init->offset += 2; } /** * INIT_RAM_CONDITION - opcode 0x6d * */ static void init_ram_condition(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 mask = nv_ro08(bios, init->offset + 1); u8 value = nv_ro08(bios, init->offset + 2); trace("RAM_CONDITION\t" "(R[0x100000] & 0x%02x) == 0x%02x\n", mask, value); init->offset += 3; if ((init_rd32(init, 0x100000) & mask) != value) init_exec_set(init, false); } /** * INIT_NV_REG - opcode 0x6e * */ static void init_nv_reg(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 reg = nv_ro32(bios, init->offset + 1); u32 mask = nv_ro32(bios, init->offset + 5); u32 data = nv_ro32(bios, init->offset + 9); trace("NV_REG\tR[0x%06x] &= 0x%08x |= 0x%08x\n", reg, mask, data); init->offset += 13; init_mask(init, reg, ~mask, data); } /** * INIT_MACRO - opcode 0x6f * */ static void init_macro(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 macro = nv_ro08(bios, init->offset + 1); u16 table; trace("MACRO\t0x%02x\n", macro); table = init_macro_table(init); if (table) { u32 addr = nv_ro32(bios, table + (macro * 8) + 0); u32 data = nv_ro32(bios, table + (macro * 8) + 4); trace("\t\tR[0x%06x] = 0x%08x\n", addr, data); init_wr32(init, addr, data); } init->offset += 2; } /** * INIT_RESUME - opcode 0x72 * */ static void init_resume(struct nvbios_init *init) { trace("RESUME\n"); init->offset += 1; init_exec_set(init, true); } /** * INIT_TIME - opcode 0x74 * */ static void init_time(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 usec = nv_ro16(bios, init->offset + 1); trace("TIME\t0x%04x\n", usec); init->offset += 3; if (init_exec(init)) { if (usec < 1000) udelay(usec); else mdelay((usec + 900) / 1000); } } /** * INIT_CONDITION - opcode 0x75 * */ static void init_condition(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 cond = nv_ro08(bios, init->offset + 1); trace("CONDITION\t0x%02x\n", cond); init->offset += 2; if (!init_condition_met(init, cond)) init_exec_set(init, false); } /** * INIT_IO_CONDITION - opcode 0x76 * */ static void init_io_condition(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 cond = nv_ro08(bios, init->offset + 1); trace("IO_CONDITION\t0x%02x\n", cond); init->offset += 2; if (!init_io_condition_met(init, cond)) init_exec_set(init, false); } /** * INIT_INDEX_IO - opcode 0x78 * */ static void init_index_io(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u16 port = nv_ro16(bios, init->offset + 1); u8 index = nv_ro16(bios, init->offset + 3); u8 mask = nv_ro08(bios, init->offset + 4); u8 data = nv_ro08(bios, init->offset + 5); u8 value; trace("INDEX_IO\tI[0x%04x][0x%02x] &= 0x%02x |= 0x%02x\n", port, index, mask, data); init->offset += 6; value = init_rdvgai(init, port, index) & mask; init_wrvgai(init, port, index, data | value); } /** * INIT_PLL - opcode 0x79 * */ static void init_pll(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 reg = nv_ro32(bios, init->offset + 1); u32 freq = nv_ro16(bios, init->offset + 5) * 10; trace("PLL\tR[0x%06x] =PLL= %dkHz\n", reg, freq); init->offset += 7; init_prog_pll(init, reg, freq); } /** * INIT_ZM_REG - opcode 0x7a * */ static void init_zm_reg(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 addr = nv_ro32(bios, init->offset + 1); u32 data = nv_ro32(bios, init->offset + 5); trace("ZM_REG\tR[0x%06x] = 0x%08x\n", addr, data); init->offset += 9; if (addr == 0x000200) data |= 0x00000001; init_wr32(init, addr, data); } /** * INIT_RAM_RESTRICT_PLL - opcde 0x87 * */ static void init_ram_restrict_pll(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 type = nv_ro08(bios, init->offset + 1); u8 count = init_ram_restrict_group_count(init); u8 strap = init_ram_restrict(init); u8 cconf; trace("RAM_RESTRICT_PLL\t0x%02x\n", type); init->offset += 2; for (cconf = 0; cconf < count; cconf++) { u32 freq = nv_ro32(bios, init->offset); if (cconf == strap) { trace("%dkHz *\n", freq); init_prog_pll(init, type, freq); } else { trace("%dkHz\n", freq); } init->offset += 4; } } /** * INIT_GPIO - opcode 0x8e * */ static void init_gpio(struct nvbios_init *init) { struct nouveau_gpio *gpio = nouveau_gpio(init->bios); trace("GPIO\n"); init->offset += 1; if (init_exec(init) && gpio && gpio->reset) gpio->reset(gpio, DCB_GPIO_UNUSED); } /** * INIT_RAM_RESTRICT_ZM_GROUP - opcode 0x8f * */ static void init_ram_restrict_zm_reg_group(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 addr = nv_ro32(bios, init->offset + 1); u8 incr = nv_ro08(bios, init->offset + 5); u8 num = nv_ro08(bios, init->offset + 6); u8 count = init_ram_restrict_group_count(init); u8 index = init_ram_restrict(init); u8 i, j; trace("RAM_RESTRICT_ZM_REG_GROUP\t" "R[0x%08x] 0x%02x 0x%02x\n", addr, incr, num); init->offset += 7; for (i = 0; i < num; i++) { trace("\tR[0x%06x] = {\n", addr); for (j = 0; j < count; j++) { u32 data = nv_ro32(bios, init->offset); if (j == index) { trace("\t\t0x%08x *\n", data); init_wr32(init, addr, data); } else { trace("\t\t0x%08x\n", data); } init->offset += 4; } trace("\t}\n"); addr += incr; } } /** * INIT_COPY_ZM_REG - opcode 0x90 * */ static void init_copy_zm_reg(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 sreg = nv_ro32(bios, init->offset + 1); u32 dreg = nv_ro32(bios, init->offset + 5); trace("COPY_ZM_REG\tR[0x%06x] = R[0x%06x]\n", dreg, sreg); init->offset += 9; init_wr32(init, dreg, init_rd32(init, sreg)); } /** * INIT_ZM_REG_GROUP - opcode 0x91 * */ static void init_zm_reg_group(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 addr = nv_ro32(bios, init->offset + 1); u8 count = nv_ro08(bios, init->offset + 5); trace("ZM_REG_GROUP\tR[0x%06x] =\n", addr); init->offset += 6; while (count--) { u32 data = nv_ro32(bios, init->offset); trace("\t0x%08x\n", data); init_wr32(init, addr, data); init->offset += 4; } } /** * INIT_XLAT - opcode 0x96 * */ static void init_xlat(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 saddr = nv_ro32(bios, init->offset + 1); u8 sshift = nv_ro08(bios, init->offset + 5); u8 smask = nv_ro08(bios, init->offset + 6); u8 index = nv_ro08(bios, init->offset + 7); u32 daddr = nv_ro32(bios, init->offset + 8); u32 dmask = nv_ro32(bios, init->offset + 12); u8 shift = nv_ro08(bios, init->offset + 16); u32 data; trace("INIT_XLAT\tR[0x%06x] &= 0x%08x |= " "(X%02x((R[0x%06x] %s 0x%02x) & 0x%02x) << 0x%02x)\n", daddr, dmask, index, saddr, (sshift & 0x80) ? "<<" : ">>", (sshift & 0x80) ? (0x100 - sshift) : sshift, smask, shift); init->offset += 17; data = init_shift(init_rd32(init, saddr), sshift) & smask; data = init_xlat_(init, index, data) << shift; init_mask(init, daddr, ~dmask, data); } /** * INIT_ZM_MASK_ADD - opcode 0x97 * */ static void init_zm_mask_add(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 addr = nv_ro32(bios, init->offset + 1); u32 mask = nv_ro32(bios, init->offset + 5); u32 add = nv_ro32(bios, init->offset + 9); u32 data; trace("ZM_MASK_ADD\tR[0x%06x] &= 0x%08x += 0x%08x\n", addr, mask, add); init->offset += 13; data = init_rd32(init, addr); data = (data & mask) | ((data + add) & ~mask); init_wr32(init, addr, data); } /** * INIT_AUXCH - opcode 0x98 * */ static void init_auxch(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 addr = nv_ro32(bios, init->offset + 1); u8 count = nv_ro08(bios, init->offset + 5); trace("AUXCH\tAUX[0x%08x] 0x%02x\n", addr, count); init->offset += 6; while (count--) { u8 mask = nv_ro08(bios, init->offset + 0); u8 data = nv_ro08(bios, init->offset + 1); trace("\tAUX[0x%08x] &= 0x%02x |= 0x%02x\n", addr, mask, data); mask = init_rdauxr(init, addr) & mask; init_wrauxr(init, addr, mask | data); init->offset += 2; } } /** * INIT_AUXCH - opcode 0x99 * */ static void init_zm_auxch(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u32 addr = nv_ro32(bios, init->offset + 1); u8 count = nv_ro08(bios, init->offset + 5); trace("ZM_AUXCH\tAUX[0x%08x] 0x%02x\n", addr, count); init->offset += 6; while (count--) { u8 data = nv_ro08(bios, init->offset + 0); trace("\tAUX[0x%08x] = 0x%02x\n", addr, data); init_wrauxr(init, addr, data); init->offset += 1; } } /** * INIT_I2C_LONG_IF - opcode 0x9a * */ static void init_i2c_long_if(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; u8 index = nv_ro08(bios, init->offset + 1); u8 addr = nv_ro08(bios, init->offset + 2) >> 1; u8 reglo = nv_ro08(bios, init->offset + 3); u8 reghi = nv_ro08(bios, init->offset + 4); u8 mask = nv_ro08(bios, init->offset + 5); u8 data = nv_ro08(bios, init->offset + 6); struct nouveau_i2c_port *port; trace("I2C_LONG_IF\t" "I2C[0x%02x][0x%02x][0x%02x%02x] & 0x%02x == 0x%02x\n", index, addr, reglo, reghi, mask, data); init->offset += 7; port = init_i2c(init, index); if (port) { u8 i[2] = { reghi, reglo }; u8 o[1] = {}; struct i2c_msg msg[] = { { .addr = addr, .flags = 0, .len = 2, .buf = i }, { .addr = addr, .flags = I2C_M_RD, .len = 1, .buf = o } }; int ret; ret = i2c_transfer(&port->adapter, msg, 2); if (ret == 2 && ((o[0] & mask) == data)) return; } init_exec_set(init, false); } /** * INIT_GPIO_NE - opcode 0xa9 * */ static void init_gpio_ne(struct nvbios_init *init) { struct nouveau_bios *bios = init->bios; struct nouveau_gpio *gpio = nouveau_gpio(bios); struct dcb_gpio_func func; u8 count = nv_ro08(bios, init->offset + 1); u8 idx = 0, ver, len; u16 data, i; trace("GPIO_NE\t"); init->offset += 2; for (i = init->offset; i < init->offset + count; i++) cont("0x%02x ", nv_ro08(bios, i)); cont("\n"); while ((data = dcb_gpio_parse(bios, 0, idx++, &ver, &len, &func))) { if (func.func != DCB_GPIO_UNUSED) { for (i = init->offset; i < init->offset + count; i++) { if (func.func == nv_ro08(bios, i)) break; } trace("\tFUNC[0x%02x]", func.func); if (i == (init->offset + count)) { cont(" *"); if (init_exec(init) && gpio && gpio->reset) gpio->reset(gpio, func.func); } cont("\n"); } } init->offset += count; } static struct nvbios_init_opcode { void (*exec)(struct nvbios_init *); } init_opcode[] = { [0x32] = { init_io_restrict_prog }, [0x33] = { init_repeat }, [0x34] = { init_io_restrict_pll }, [0x36] = { init_end_repeat }, [0x37] = { init_copy }, [0x38] = { init_not }, [0x39] = { init_io_flag_condition }, [0x3a] = { init_dp_condition }, [0x3b] = { init_io_mask_or }, [0x3c] = { init_io_or }, [0x49] = { init_idx_addr_latched }, [0x4a] = { init_io_restrict_pll2 }, [0x4b] = { init_pll2 }, [0x4c] = { init_i2c_byte }, [0x4d] = { init_zm_i2c_byte }, [0x4e] = { init_zm_i2c }, [0x4f] = { init_tmds }, [0x50] = { init_zm_tmds_group }, [0x51] = { init_cr_idx_adr_latch }, [0x52] = { init_cr }, [0x53] = { init_zm_cr }, [0x54] = { init_zm_cr_group }, [0x56] = { init_condition_time }, [0x57] = { init_ltime }, [0x58] = { init_zm_reg_sequence }, [0x5b] = { init_sub_direct }, [0x5c] = { init_jump }, [0x5e] = { init_i2c_if }, [0x5f] = { init_copy_nv_reg }, [0x62] = { init_zm_index_io }, [0x63] = { init_compute_mem }, [0x65] = { init_reset }, [0x66] = { init_configure_mem }, [0x67] = { init_configure_clk }, [0x68] = { init_configure_preinit }, [0x69] = { init_io }, [0x6b] = { init_sub }, [0x6d] = { init_ram_condition }, [0x6e] = { init_nv_reg }, [0x6f] = { init_macro }, [0x71] = { init_done }, [0x72] = { init_resume }, [0x74] = { init_time }, [0x75] = { init_condition }, [0x76] = { init_io_condition }, [0x78] = { init_index_io }, [0x79] = { init_pll }, [0x7a] = { init_zm_reg }, [0x87] = { init_ram_restrict_pll }, [0x8c] = { init_reserved }, [0x8d] = { init_reserved }, [0x8e] = { init_gpio }, [0x8f] = { init_ram_restrict_zm_reg_group }, [0x90] = { init_copy_zm_reg }, [0x91] = { init_zm_reg_group }, [0x92] = { init_reserved }, [0x96] = { init_xlat }, [0x97] = { init_zm_mask_add }, [0x98] = { init_auxch }, [0x99] = { init_zm_auxch }, [0x9a] = { init_i2c_long_if }, [0xa9] = { init_gpio_ne }, [0xaa] = { init_reserved }, }; #define init_opcode_nr (sizeof(init_opcode) / sizeof(init_opcode[0])) int nvbios_exec(struct nvbios_init *init) { init->nested++; while (init->offset) { u8 opcode = nv_ro08(init->bios, init->offset); if (opcode >= init_opcode_nr || !init_opcode[opcode].exec) { error("unknown opcode 0x%02x\n", opcode); return -EINVAL; } init_opcode[opcode].exec(init); } init->nested--; return 0; } int nvbios_init(struct nouveau_subdev *subdev, bool execute) { struct nouveau_bios *bios = nouveau_bios(subdev); int ret = 0; int i = -1; u16 data; if (execute) nv_info(bios, "running init tables\n"); while (!ret && (data = (init_script(bios, ++i)))) { struct nvbios_init init = { .subdev = subdev, .bios = bios, .offset = data, .outp = NULL, .crtc = -1, .execute = execute ? 1 : 0, }; ret = nvbios_exec(&init); } /* the vbios parser will run this right after the normal init * tables, whereas the binary driver appears to run it later. */ if (!ret && (data = init_unknown_script(bios))) { struct nvbios_init init = { .subdev = subdev, .bios = bios, .offset = data, .outp = NULL, .crtc = -1, .execute = execute ? 1 : 0, }; ret = nvbios_exec(&init); } return 0; }