/* em28xx-i2c.c - driver for Empia EM2800/EM2820/2840 USB video capture devices Copyright (C) 2005 Ludovico Cavedon Markus Rechberger Mauro Carvalho Chehab Sascha Sommer Copyright (C) 2013 Frank Schäfer This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include "em28xx.h" #include "tuner-xc2028.h" #include #include /* ----------------------------------------------------------- */ static unsigned int i2c_scan; module_param(i2c_scan, int, 0444); MODULE_PARM_DESC(i2c_scan, "scan i2c bus at insmod time"); static unsigned int i2c_debug; module_param(i2c_debug, int, 0644); MODULE_PARM_DESC(i2c_debug, "enable debug messages [i2c]"); /* * em2800_i2c_send_bytes() * send up to 4 bytes to the em2800 i2c device */ static int em2800_i2c_send_bytes(struct em28xx *dev, u8 addr, u8 *buf, u16 len) { int ret; int write_timeout; u8 b2[6]; if (len < 1 || len > 4) return -EOPNOTSUPP; BUG_ON(len < 1 || len > 4); b2[5] = 0x80 + len - 1; b2[4] = addr; b2[3] = buf[0]; if (len > 1) b2[2] = buf[1]; if (len > 2) b2[1] = buf[2]; if (len > 3) b2[0] = buf[3]; /* trigger write */ ret = dev->em28xx_write_regs(dev, 4 - len, &b2[4 - len], 2 + len); if (ret != 2 + len) { em28xx_warn("failed to trigger write to i2c address 0x%x (error=%i)\n", addr, ret); return (ret < 0) ? ret : -EIO; } /* wait for completion */ for (write_timeout = EM2800_I2C_XFER_TIMEOUT; write_timeout > 0; write_timeout -= 5) { ret = dev->em28xx_read_reg(dev, 0x05); if (ret == 0x80 + len - 1) { return len; } else if (ret == 0x94 + len - 1) { return -ENODEV; } else if (ret < 0) { em28xx_warn("failed to get i2c transfer status from bridge register (error=%i)\n", ret); return ret; } msleep(5); } em28xx_warn("write to i2c device at 0x%x timed out\n", addr); return -EIO; } /* * em2800_i2c_recv_bytes() * read up to 4 bytes from the em2800 i2c device */ static int em2800_i2c_recv_bytes(struct em28xx *dev, u8 addr, u8 *buf, u16 len) { u8 buf2[4]; int ret; int read_timeout; int i; if (len < 1 || len > 4) return -EOPNOTSUPP; /* trigger read */ buf2[1] = 0x84 + len - 1; buf2[0] = addr; ret = dev->em28xx_write_regs(dev, 0x04, buf2, 2); if (ret != 2) { em28xx_warn("failed to trigger read from i2c address 0x%x (error=%i)\n", addr, ret); return (ret < 0) ? ret : -EIO; } /* wait for completion */ for (read_timeout = EM2800_I2C_XFER_TIMEOUT; read_timeout > 0; read_timeout -= 5) { ret = dev->em28xx_read_reg(dev, 0x05); if (ret == 0x84 + len - 1) { break; } else if (ret == 0x94 + len - 1) { return -ENODEV; } else if (ret < 0) { em28xx_warn("failed to get i2c transfer status from bridge register (error=%i)\n", ret); return ret; } msleep(5); } if (ret != 0x84 + len - 1) em28xx_warn("read from i2c device at 0x%x timed out\n", addr); /* get the received message */ ret = dev->em28xx_read_reg_req_len(dev, 0x00, 4-len, buf2, len); if (ret != len) { em28xx_warn("reading from i2c device at 0x%x failed: couldn't get the received message from the bridge (error=%i)\n", addr, ret); return (ret < 0) ? ret : -EIO; } for (i = 0; i < len; i++) buf[i] = buf2[len - 1 - i]; return ret; } /* * em2800_i2c_check_for_device() * check if there is an i2c device at the supplied address */ static int em2800_i2c_check_for_device(struct em28xx *dev, u8 addr) { u8 buf; int ret; ret = em2800_i2c_recv_bytes(dev, addr, &buf, 1); if (ret == 1) return 0; return (ret < 0) ? ret : -EIO; } /* * em28xx_i2c_send_bytes() */ static int em28xx_i2c_send_bytes(struct em28xx *dev, u16 addr, u8 *buf, u16 len, int stop) { int write_timeout, ret; if (len < 1 || len > 64) return -EOPNOTSUPP; /* * NOTE: limited by the USB ctrl message constraints * Zero length reads always succeed, even if no device is connected */ /* Write to i2c device */ ret = dev->em28xx_write_regs_req(dev, stop ? 2 : 3, addr, buf, len); if (ret != len) { if (ret < 0) { em28xx_warn("writing to i2c device at 0x%x failed (error=%i)\n", addr, ret); return ret; } else { em28xx_warn("%i bytes write to i2c device at 0x%x requested, but %i bytes written\n", len, addr, ret); return -EIO; } } /* Check success of the i2c operation */ for (write_timeout = EM2800_I2C_XFER_TIMEOUT; write_timeout > 0; write_timeout -= 5) { ret = dev->em28xx_read_reg(dev, 0x05); if (ret == 0) { /* success */ return len; } else if (ret == 0x10) { return -ENODEV; } else if (ret < 0) { em28xx_warn("failed to read i2c transfer status from bridge (error=%i)\n", ret); return ret; } msleep(5); /* * NOTE: do we really have to wait for success ? * Never seen anything else than 0x00 or 0x10 * (even with high payload) ... */ } em28xx_warn("write to i2c device at 0x%x timed out\n", addr); return -EIO; } /* * em28xx_i2c_recv_bytes() * read a byte from the i2c device */ static int em28xx_i2c_recv_bytes(struct em28xx *dev, u16 addr, u8 *buf, u16 len) { int ret; if (len < 1 || len > 64) return -EOPNOTSUPP; /* * NOTE: limited by the USB ctrl message constraints * Zero length reads always succeed, even if no device is connected */ /* Read data from i2c device */ ret = dev->em28xx_read_reg_req_len(dev, 2, addr, buf, len); if (ret < 0) { em28xx_warn("reading from i2c device at 0x%x failed (error=%i)\n", addr, ret); return ret; } /* * NOTE: some devices with two i2c busses have the bad habit to return 0 * bytes if we are on bus B AND there was no write attempt to the * specified slave address before AND no device is present at the * requested slave address. * Anyway, the next check will fail with -ENODEV in this case, so avoid * spamming the system log on device probing and do nothing here. */ /* Check success of the i2c operation */ ret = dev->em28xx_read_reg(dev, 0x05); if (ret < 0) { em28xx_warn("failed to read i2c transfer status from bridge (error=%i)\n", ret); return ret; } if (ret > 0) { if (ret == 0x10) { return -ENODEV; } else { em28xx_warn("unknown i2c error (status=%i)\n", ret); return -EIO; } } return len; } /* * em28xx_i2c_check_for_device() * check if there is a i2c_device at the supplied address */ static int em28xx_i2c_check_for_device(struct em28xx *dev, u16 addr) { int ret; u8 buf; ret = em28xx_i2c_recv_bytes(dev, addr, &buf, 1); if (ret == 1) return 0; return (ret < 0) ? ret : -EIO; } /* * em25xx_bus_B_send_bytes * write bytes to the i2c device */ static int em25xx_bus_B_send_bytes(struct em28xx *dev, u16 addr, u8 *buf, u16 len) { int ret; if (len < 1 || len > 64) return -EOPNOTSUPP; /* * NOTE: limited by the USB ctrl message constraints * Zero length reads always succeed, even if no device is connected */ /* Set register and write value */ ret = dev->em28xx_write_regs_req(dev, 0x06, addr, buf, len); if (ret != len) { if (ret < 0) { em28xx_warn("writing to i2c device at 0x%x failed (error=%i)\n", addr, ret); return ret; } else { em28xx_warn("%i bytes write to i2c device at 0x%x requested, but %i bytes written\n", len, addr, ret); return -EIO; } } /* Check success */ ret = dev->em28xx_read_reg_req(dev, 0x08, 0x0000); /* * NOTE: the only error we've seen so far is * 0x01 when the slave device is not present */ if (!ret) return len; else if (ret > 0) return -ENODEV; return ret; /* * NOTE: With chip types (other chip IDs) which actually don't support * this operation, it seems to succeed ALWAYS ! (even if there is no * slave device or even no second i2c bus provided) */ } /* * em25xx_bus_B_recv_bytes * read bytes from the i2c device */ static int em25xx_bus_B_recv_bytes(struct em28xx *dev, u16 addr, u8 *buf, u16 len) { int ret; if (len < 1 || len > 64) return -EOPNOTSUPP; /* * NOTE: limited by the USB ctrl message constraints * Zero length reads always succeed, even if no device is connected */ /* Read value */ ret = dev->em28xx_read_reg_req_len(dev, 0x06, addr, buf, len); if (ret < 0) { em28xx_warn("reading from i2c device at 0x%x failed (error=%i)\n", addr, ret); return ret; } /* * NOTE: some devices with two i2c busses have the bad habit to return 0 * bytes if we are on bus B AND there was no write attempt to the * specified slave address before AND no device is present at the * requested slave address. * Anyway, the next check will fail with -ENODEV in this case, so avoid * spamming the system log on device probing and do nothing here. */ /* Check success */ ret = dev->em28xx_read_reg_req(dev, 0x08, 0x0000); /* * NOTE: the only error we've seen so far is * 0x01 when the slave device is not present */ if (!ret) return len; else if (ret > 0) return -ENODEV; return ret; /* * NOTE: With chip types (other chip IDs) which actually don't support * this operation, it seems to succeed ALWAYS ! (even if there is no * slave device or even no second i2c bus provided) */ } /* * em25xx_bus_B_check_for_device() * check if there is a i2c device at the supplied address */ static int em25xx_bus_B_check_for_device(struct em28xx *dev, u16 addr) { u8 buf; int ret; ret = em25xx_bus_B_recv_bytes(dev, addr, &buf, 1); if (ret < 0) return ret; return 0; /* * NOTE: With chips which do not support this operation, * it seems to succeed ALWAYS ! (even if no device connected) */ } static inline int i2c_check_for_device(struct em28xx_i2c_bus *i2c_bus, u16 addr) { struct em28xx *dev = i2c_bus->dev; int rc = -EOPNOTSUPP; if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX) rc = em28xx_i2c_check_for_device(dev, addr); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800) rc = em2800_i2c_check_for_device(dev, addr); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B) rc = em25xx_bus_B_check_for_device(dev, addr); if (rc == -ENODEV) { if (i2c_debug) printk(" no device\n"); } return rc; } static inline int i2c_recv_bytes(struct em28xx_i2c_bus *i2c_bus, struct i2c_msg msg) { struct em28xx *dev = i2c_bus->dev; u16 addr = msg.addr << 1; int byte, rc = -EOPNOTSUPP; if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX) rc = em28xx_i2c_recv_bytes(dev, addr, msg.buf, msg.len); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800) rc = em2800_i2c_recv_bytes(dev, addr, msg.buf, msg.len); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B) rc = em25xx_bus_B_recv_bytes(dev, addr, msg.buf, msg.len); if (i2c_debug) { for (byte = 0; byte < msg.len; byte++) printk(" %02x", msg.buf[byte]); } return rc; } static inline int i2c_send_bytes(struct em28xx_i2c_bus *i2c_bus, struct i2c_msg msg, int stop) { struct em28xx *dev = i2c_bus->dev; u16 addr = msg.addr << 1; int byte, rc = -EOPNOTSUPP; if (i2c_debug) { for (byte = 0; byte < msg.len; byte++) printk(" %02x", msg.buf[byte]); } if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX) rc = em28xx_i2c_send_bytes(dev, addr, msg.buf, msg.len, stop); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800) rc = em2800_i2c_send_bytes(dev, addr, msg.buf, msg.len); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B) rc = em25xx_bus_B_send_bytes(dev, addr, msg.buf, msg.len); return rc; } /* * em28xx_i2c_xfer() * the main i2c transfer function */ static int em28xx_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[], int num) { struct em28xx_i2c_bus *i2c_bus = i2c_adap->algo_data; struct em28xx *dev = i2c_bus->dev; unsigned bus = i2c_bus->bus; int addr, rc, i; u8 reg; if (!rt_mutex_trylock(&dev->i2c_bus_lock)) return -EAGAIN; /* Switch I2C bus if needed */ if (bus != dev->cur_i2c_bus && i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX) { if (bus == 1) reg = EM2874_I2C_SECONDARY_BUS_SELECT; else reg = 0; em28xx_write_reg_bits(dev, EM28XX_R06_I2C_CLK, reg, EM2874_I2C_SECONDARY_BUS_SELECT); dev->cur_i2c_bus = bus; } if (num <= 0) { rt_mutex_unlock(&dev->i2c_bus_lock); return 0; } for (i = 0; i < num; i++) { addr = msgs[i].addr << 1; if (i2c_debug) printk(KERN_DEBUG "%s at %s: %s %s addr=%02x len=%d:", dev->name, __func__ , (msgs[i].flags & I2C_M_RD) ? "read" : "write", i == num - 1 ? "stop" : "nonstop", addr, msgs[i].len); if (!msgs[i].len) { /* no len: check only for device presence */ rc = i2c_check_for_device(i2c_bus, addr); if (rc == -ENODEV) { rt_mutex_unlock(&dev->i2c_bus_lock); return rc; } } else if (msgs[i].flags & I2C_M_RD) { /* read bytes */ rc = i2c_recv_bytes(i2c_bus, msgs[i]); } else { /* write bytes */ rc = i2c_send_bytes(i2c_bus, msgs[i], i == num - 1); } if (rc < 0) { if (i2c_debug) printk(" ERROR: %i\n", rc); rt_mutex_unlock(&dev->i2c_bus_lock); return rc; } if (i2c_debug) printk("\n"); } rt_mutex_unlock(&dev->i2c_bus_lock); return num; } /* * based on linux/sunrpc/svcauth.h and linux/hash.h * The original hash function returns a different value, if arch is x86_64 * or i386. */ static inline unsigned long em28xx_hash_mem(char *buf, int length, int bits) { unsigned long hash = 0; unsigned long l = 0; int len = 0; unsigned char c; do { if (len == length) { c = (char)len; len = -1; } else c = *buf++; l = (l << 8) | c; len++; if ((len & (32 / 8 - 1)) == 0) hash = ((hash^l) * 0x9e370001UL); } while (len); return (hash >> (32 - bits)) & 0xffffffffUL; } /* * Helper function to read data blocks from i2c clients with 8 or 16 bit * address width, 8 bit register width and auto incrementation been activated */ static int em28xx_i2c_read_block(struct em28xx *dev, unsigned bus, u16 addr, bool addr_w16, u16 len, u8 *data) { int remain = len, rsize, rsize_max, ret; u8 buf[2]; /* Sanity check */ if (addr + remain > (addr_w16 * 0xff00 + 0xff + 1)) return -EINVAL; /* Select address */ buf[0] = addr >> 8; buf[1] = addr & 0xff; ret = i2c_master_send(&dev->i2c_client[bus], buf + !addr_w16, 1 + addr_w16); if (ret < 0) return ret; /* Read data */ if (dev->board.is_em2800) rsize_max = 4; else rsize_max = 64; while (remain > 0) { if (remain > rsize_max) rsize = rsize_max; else rsize = remain; ret = i2c_master_recv(&dev->i2c_client[bus], data, rsize); if (ret < 0) return ret; remain -= rsize; data += rsize; } return len; } static int em28xx_i2c_eeprom(struct em28xx *dev, unsigned bus, u8 **eedata, u16 *eedata_len) { const u16 len = 256; /* * FIXME common length/size for bytes to read, to display, hash * calculation and returned device dataset. Simplifies the code a lot, * but we might have to deal with multiple sizes in the future ! */ int i, err; struct em28xx_eeprom *dev_config; u8 buf, *data; *eedata = NULL; *eedata_len = 0; /* EEPROM is always on i2c bus 0 on all known devices. */ dev->i2c_client[bus].addr = 0xa0 >> 1; /* Check if board has eeprom */ err = i2c_master_recv(&dev->i2c_client[bus], &buf, 0); if (err < 0) { em28xx_info("board has no eeprom\n"); return -ENODEV; } data = kzalloc(len, GFP_KERNEL); if (data == NULL) return -ENOMEM; /* Read EEPROM content */ err = em28xx_i2c_read_block(dev, bus, 0x0000, dev->eeprom_addrwidth_16bit, len, data); if (err != len) { em28xx_errdev("failed to read eeprom (err=%d)\n", err); goto error; } /* Display eeprom content */ for (i = 0; i < len; i++) { if (0 == (i % 16)) { if (dev->eeprom_addrwidth_16bit) em28xx_info("i2c eeprom %04x:", i); else em28xx_info("i2c eeprom %02x:", i); } printk(" %02x", data[i]); if (15 == (i % 16)) printk("\n"); } if (dev->eeprom_addrwidth_16bit) em28xx_info("i2c eeprom %04x: ... (skipped)\n", i); if (dev->eeprom_addrwidth_16bit && data[0] == 0x26 && data[3] == 0x00) { /* new eeprom format; size 4-64kb */ u16 mc_start; u16 hwconf_offset; dev->hash = em28xx_hash_mem(data, len, 32); mc_start = (data[1] << 8) + 4; /* usually 0x0004 */ em28xx_info("EEPROM ID = %02x %02x %02x %02x, EEPROM hash = 0x%08lx\n", data[0], data[1], data[2], data[3], dev->hash); em28xx_info("EEPROM info:\n"); em28xx_info("\tmicrocode start address = 0x%04x, boot configuration = 0x%02x\n", mc_start, data[2]); /* * boot configuration (address 0x0002): * [0] microcode download speed: 1 = 400 kHz; 0 = 100 kHz * [1] always selects 12 kb RAM * [2] USB device speed: 1 = force Full Speed; 0 = auto detect * [4] 1 = force fast mode and no suspend for device testing * [5:7] USB PHY tuning registers; determined by device * characterization */ /* * Read hardware config dataset offset from address * (microcode start + 46) */ err = em28xx_i2c_read_block(dev, bus, mc_start + 46, 1, 2, data); if (err != 2) { em28xx_errdev("failed to read hardware configuration data from eeprom (err=%d)\n", err); goto error; } /* Calculate hardware config dataset start address */ hwconf_offset = mc_start + data[0] + (data[1] << 8); /* Read hardware config dataset */ /* * NOTE: the microcode copy can be multiple pages long, but * we assume the hardware config dataset is the same as in * the old eeprom and not longer than 256 bytes. * tveeprom is currently also limited to 256 bytes. */ err = em28xx_i2c_read_block(dev, bus, hwconf_offset, 1, len, data); if (err != len) { em28xx_errdev("failed to read hardware configuration data from eeprom (err=%d)\n", err); goto error; } /* Verify hardware config dataset */ /* NOTE: not all devices provide this type of dataset */ if (data[0] != 0x1a || data[1] != 0xeb || data[2] != 0x67 || data[3] != 0x95) { em28xx_info("\tno hardware configuration dataset found in eeprom\n"); kfree(data); return 0; } /* TODO: decrypt eeprom data for camera bridges (em25xx, em276x+) */ } else if (!dev->eeprom_addrwidth_16bit && data[0] == 0x1a && data[1] == 0xeb && data[2] == 0x67 && data[3] == 0x95) { dev->hash = em28xx_hash_mem(data, len, 32); em28xx_info("EEPROM ID = %02x %02x %02x %02x, EEPROM hash = 0x%08lx\n", data[0], data[1], data[2], data[3], dev->hash); em28xx_info("EEPROM info:\n"); } else { em28xx_info("unknown eeprom format or eeprom corrupted !\n"); err = -ENODEV; goto error; } *eedata = data; *eedata_len = len; dev_config = (void *)*eedata; switch (le16_to_cpu(dev_config->chip_conf) >> 4 & 0x3) { case 0: em28xx_info("\tNo audio on board.\n"); break; case 1: em28xx_info("\tAC97 audio (5 sample rates)\n"); break; case 2: em28xx_info("\tI2S audio, sample rate=32k\n"); break; case 3: em28xx_info("\tI2S audio, 3 sample rates\n"); break; } if (le16_to_cpu(dev_config->chip_conf) & 1 << 3) em28xx_info("\tUSB Remote wakeup capable\n"); if (le16_to_cpu(dev_config->chip_conf) & 1 << 2) em28xx_info("\tUSB Self power capable\n"); switch (le16_to_cpu(dev_config->chip_conf) & 0x3) { case 0: em28xx_info("\t500mA max power\n"); break; case 1: em28xx_info("\t400mA max power\n"); break; case 2: em28xx_info("\t300mA max power\n"); break; case 3: em28xx_info("\t200mA max power\n"); break; } em28xx_info("\tTable at offset 0x%02x, strings=0x%04x, 0x%04x, 0x%04x\n", dev_config->string_idx_table, le16_to_cpu(dev_config->string1), le16_to_cpu(dev_config->string2), le16_to_cpu(dev_config->string3)); return 0; error: kfree(data); return err; } /* ----------------------------------------------------------- */ /* * functionality() */ static u32 functionality(struct i2c_adapter *i2c_adap) { struct em28xx_i2c_bus *i2c_bus = i2c_adap->algo_data; if ((i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX) || (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B)) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800) { return (I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL) & ~I2C_FUNC_SMBUS_WRITE_BLOCK_DATA; } WARN(1, "Unknown i2c bus algorithm.\n"); return 0; } static struct i2c_algorithm em28xx_algo = { .master_xfer = em28xx_i2c_xfer, .functionality = functionality, }; static struct i2c_adapter em28xx_adap_template = { .owner = THIS_MODULE, .name = "em28xx", .algo = &em28xx_algo, }; static struct i2c_client em28xx_client_template = { .name = "em28xx internal", }; /* ----------------------------------------------------------- */ /* * i2c_devs * incomplete list of known devices */ static char *i2c_devs[128] = { [0x3e >> 1] = "remote IR sensor", [0x4a >> 1] = "saa7113h", [0x52 >> 1] = "drxk", [0x60 >> 1] = "remote IR sensor", [0x8e >> 1] = "remote IR sensor", [0x86 >> 1] = "tda9887", [0x80 >> 1] = "msp34xx", [0x88 >> 1] = "msp34xx", [0xa0 >> 1] = "eeprom", [0xb0 >> 1] = "tda9874", [0xb8 >> 1] = "tvp5150a", [0xba >> 1] = "webcam sensor or tvp5150a", [0xc0 >> 1] = "tuner (analog)", [0xc2 >> 1] = "tuner (analog)", [0xc4 >> 1] = "tuner (analog)", [0xc6 >> 1] = "tuner (analog)", }; /* * do_i2c_scan() * check i2c address range for devices */ void em28xx_do_i2c_scan(struct em28xx *dev, unsigned bus) { u8 i2c_devicelist[128]; unsigned char buf; int i, rc; memset(i2c_devicelist, 0, ARRAY_SIZE(i2c_devicelist)); for (i = 0; i < ARRAY_SIZE(i2c_devs); i++) { dev->i2c_client[bus].addr = i; rc = i2c_master_recv(&dev->i2c_client[bus], &buf, 0); if (rc < 0) continue; i2c_devicelist[i] = i; em28xx_info("found i2c device @ 0x%x on bus %d [%s]\n", i << 1, bus, i2c_devs[i] ? i2c_devs[i] : "???"); } if (bus == dev->def_i2c_bus) dev->i2c_hash = em28xx_hash_mem(i2c_devicelist, ARRAY_SIZE(i2c_devicelist), 32); } /* * em28xx_i2c_register() * register i2c bus */ int em28xx_i2c_register(struct em28xx *dev, unsigned bus, enum em28xx_i2c_algo_type algo_type) { int retval; BUG_ON(!dev->em28xx_write_regs || !dev->em28xx_read_reg); BUG_ON(!dev->em28xx_write_regs_req || !dev->em28xx_read_reg_req); if (bus >= NUM_I2C_BUSES) return -ENODEV; dev->i2c_adap[bus] = em28xx_adap_template; dev->i2c_adap[bus].dev.parent = &dev->udev->dev; strcpy(dev->i2c_adap[bus].name, dev->name); dev->i2c_bus[bus].bus = bus; dev->i2c_bus[bus].algo_type = algo_type; dev->i2c_bus[bus].dev = dev; dev->i2c_adap[bus].algo_data = &dev->i2c_bus[bus]; i2c_set_adapdata(&dev->i2c_adap[bus], &dev->v4l2_dev); retval = i2c_add_adapter(&dev->i2c_adap[bus]); if (retval < 0) { em28xx_errdev("%s: i2c_add_adapter failed! retval [%d]\n", __func__, retval); return retval; } dev->i2c_client[bus] = em28xx_client_template; dev->i2c_client[bus].adapter = &dev->i2c_adap[bus]; /* Up to now, all eeproms are at bus 0 */ if (!bus) { retval = em28xx_i2c_eeprom(dev, bus, &dev->eedata, &dev->eedata_len); if ((retval < 0) && (retval != -ENODEV)) { em28xx_errdev("%s: em28xx_i2_eeprom failed! retval [%d]\n", __func__, retval); return retval; } } if (i2c_scan) em28xx_do_i2c_scan(dev, bus); return 0; } /* * em28xx_i2c_unregister() * unregister i2c_bus */ int em28xx_i2c_unregister(struct em28xx *dev, unsigned bus) { if (bus >= NUM_I2C_BUSES) return -ENODEV; i2c_del_adapter(&dev->i2c_adap[bus]); return 0; }