/* * Marvell Wireless LAN device driver: WMM * * Copyright (C) 2011, Marvell International Ltd. * * This software file (the "File") is distributed by Marvell International * Ltd. under the terms of the GNU General Public License Version 2, June 1991 * (the "License"). You may use, redistribute and/or modify this File in * accordance with the terms and conditions of the License, a copy of which * is available by writing to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt. * * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE * ARE EXPRESSLY DISCLAIMED. The License provides additional details about * this warranty disclaimer. */ #include "decl.h" #include "ioctl.h" #include "util.h" #include "fw.h" #include "main.h" #include "wmm.h" #include "11n.h" /* Maximum value FW can accept for driver delay in packet transmission */ #define DRV_PKT_DELAY_TO_FW_MAX 512 #define WMM_QUEUED_PACKET_LOWER_LIMIT 180 #define WMM_QUEUED_PACKET_UPPER_LIMIT 200 /* Offset for TOS field in the IP header */ #define IPTOS_OFFSET 5 /* WMM information IE */ static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07, 0x00, 0x50, 0xf2, 0x02, 0x00, 0x01, 0x00 }; static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE, WMM_AC_BK, WMM_AC_VI, WMM_AC_VO }; static u8 tos_to_tid[] = { /* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */ 0x01, /* 0 1 0 AC_BK */ 0x02, /* 0 0 0 AC_BK */ 0x00, /* 0 0 1 AC_BE */ 0x03, /* 0 1 1 AC_BE */ 0x04, /* 1 0 0 AC_VI */ 0x05, /* 1 0 1 AC_VI */ 0x06, /* 1 1 0 AC_VO */ 0x07 /* 1 1 1 AC_VO */ }; /* * This table inverses the tos_to_tid operation to get a priority * which is in sequential order, and can be compared. * Use this to compare the priority of two different TIDs. */ static u8 tos_to_tid_inv[] = { 0x02, /* from tos_to_tid[2] = 0 */ 0x00, /* from tos_to_tid[0] = 1 */ 0x01, /* from tos_to_tid[1] = 2 */ 0x03, 0x04, 0x05, 0x06, 0x07}; static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} }; /* * This function debug prints the priority parameters for a WMM AC. */ static void mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param) { const char *ac_str[] = { "BK", "BE", "VI", "VO" }; pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, " "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n", ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5]], (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5, (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4, ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN, ac_param->ecw_bitmap & MWIFIEX_ECW_MIN, (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4, le16_to_cpu(ac_param->tx_op_limit)); } /* * This function allocates a route address list. * * The function also initializes the list with the provided RA. */ static struct mwifiex_ra_list_tbl * mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, u8 *ra) { struct mwifiex_ra_list_tbl *ra_list; ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC); if (!ra_list) return NULL; INIT_LIST_HEAD(&ra_list->list); skb_queue_head_init(&ra_list->skb_head); memcpy(ra_list->ra, ra, ETH_ALEN); ra_list->total_pkts_size = 0; dev_dbg(adapter->dev, "info: allocated ra_list %p\n", ra_list); return ra_list; } /* This function returns random no between 16 and 32 to be used as threshold * for no of packets after which BA setup is initiated. */ static u8 mwifiex_get_random_ba_threshold(void) { u32 sec, usec; struct timeval ba_tstamp; u8 ba_threshold; /* setup ba_packet_threshold here random number between * [BA_SETUP_PACKET_OFFSET, * BA_SETUP_PACKET_OFFSET+BA_SETUP_MAX_PACKET_THRESHOLD-1] */ do_gettimeofday(&ba_tstamp); sec = (ba_tstamp.tv_sec & 0xFFFF) + (ba_tstamp.tv_sec >> 16); usec = (ba_tstamp.tv_usec & 0xFFFF) + (ba_tstamp.tv_usec >> 16); ba_threshold = (((sec << 16) + usec) % BA_SETUP_MAX_PACKET_THRESHOLD) + BA_SETUP_PACKET_OFFSET; return ba_threshold; } /* * This function allocates and adds a RA list for all TIDs * with the given RA. */ void mwifiex_ralist_add(struct mwifiex_private *priv, u8 *ra) { int i; struct mwifiex_ra_list_tbl *ra_list; struct mwifiex_adapter *adapter = priv->adapter; struct mwifiex_sta_node *node; unsigned long flags; spin_lock_irqsave(&priv->sta_list_spinlock, flags); node = mwifiex_get_sta_entry(priv, ra); spin_unlock_irqrestore(&priv->sta_list_spinlock, flags); for (i = 0; i < MAX_NUM_TID; ++i) { ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra); dev_dbg(adapter->dev, "info: created ra_list %p\n", ra_list); if (!ra_list) break; ra_list->is_11n_enabled = 0; if (!mwifiex_queuing_ra_based(priv)) { ra_list->is_11n_enabled = IS_11N_ENABLED(priv); } else { ra_list->is_11n_enabled = mwifiex_is_sta_11n_enabled(priv, node); if (ra_list->is_11n_enabled) ra_list->max_amsdu = node->max_amsdu; } dev_dbg(adapter->dev, "data: ralist %p: is_11n_enabled=%d\n", ra_list, ra_list->is_11n_enabled); if (ra_list->is_11n_enabled) { ra_list->pkt_count = 0; ra_list->ba_packet_thr = mwifiex_get_random_ba_threshold(); } list_add_tail(&ra_list->list, &priv->wmm.tid_tbl_ptr[i].ra_list); } } /* * This function sets the WMM queue priorities to their default values. */ static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv) { /* Default queue priorities: VO->VI->BE->BK */ priv->wmm.queue_priority[0] = WMM_AC_VO; priv->wmm.queue_priority[1] = WMM_AC_VI; priv->wmm.queue_priority[2] = WMM_AC_BE; priv->wmm.queue_priority[3] = WMM_AC_BK; } /* * This function map ACs to TIDs. */ static void mwifiex_wmm_queue_priorities_tid(struct mwifiex_wmm_desc *wmm) { u8 *queue_priority = wmm->queue_priority; int i; for (i = 0; i < 4; ++i) { tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1]; tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0]; } for (i = 0; i < MAX_NUM_TID; ++i) tos_to_tid_inv[tos_to_tid[i]] = (u8)i; atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID); } /* * This function initializes WMM priority queues. */ void mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv, struct ieee_types_wmm_parameter *wmm_ie) { u16 cw_min, avg_back_off, tmp[4]; u32 i, j, num_ac; u8 ac_idx; if (!wmm_ie || !priv->wmm_enabled) { /* WMM is not enabled, just set the defaults and return */ mwifiex_wmm_default_queue_priorities(priv); return; } dev_dbg(priv->adapter->dev, "info: WMM Parameter IE: version=%d, " "qos_info Parameter Set Count=%d, Reserved=%#x\n", wmm_ie->vend_hdr.version, wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK, wmm_ie->reserved); for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) { u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap; u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap; cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1; avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN); ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5]; priv->wmm.queue_priority[ac_idx] = ac_idx; tmp[ac_idx] = avg_back_off; dev_dbg(priv->adapter->dev, "info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n", (1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1, cw_min, avg_back_off); mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]); } /* Bubble sort */ for (i = 0; i < num_ac; i++) { for (j = 1; j < num_ac - i; j++) { if (tmp[j - 1] > tmp[j]) { swap(tmp[j - 1], tmp[j]); swap(priv->wmm.queue_priority[j - 1], priv->wmm.queue_priority[j]); } else if (tmp[j - 1] == tmp[j]) { if (priv->wmm.queue_priority[j - 1] < priv->wmm.queue_priority[j]) swap(priv->wmm.queue_priority[j - 1], priv->wmm.queue_priority[j]); } } } mwifiex_wmm_queue_priorities_tid(&priv->wmm); } /* * This function evaluates whether or not an AC is to be downgraded. * * In case the AC is not enabled, the highest AC is returned that is * enabled and does not require admission control. */ static enum mwifiex_wmm_ac_e mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv, enum mwifiex_wmm_ac_e eval_ac) { int down_ac; enum mwifiex_wmm_ac_e ret_ac; struct mwifiex_wmm_ac_status *ac_status; ac_status = &priv->wmm.ac_status[eval_ac]; if (!ac_status->disabled) /* Okay to use this AC, its enabled */ return eval_ac; /* Setup a default return value of the lowest priority */ ret_ac = WMM_AC_BK; /* * Find the highest AC that is enabled and does not require * admission control. The spec disallows downgrading to an AC, * which is enabled due to a completed admission control. * Unadmitted traffic is not to be sent on an AC with admitted * traffic. */ for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) { ac_status = &priv->wmm.ac_status[down_ac]; if (!ac_status->disabled && !ac_status->flow_required) /* AC is enabled and does not require admission control */ ret_ac = (enum mwifiex_wmm_ac_e) down_ac; } return ret_ac; } /* * This function downgrades WMM priority queue. */ void mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv) { int ac_val; dev_dbg(priv->adapter->dev, "info: WMM: AC Priorities:" "BK(0), BE(1), VI(2), VO(3)\n"); if (!priv->wmm_enabled) { /* WMM is not enabled, default priorities */ for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) priv->wmm.ac_down_graded_vals[ac_val] = (enum mwifiex_wmm_ac_e) ac_val; } else { for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) { priv->wmm.ac_down_graded_vals[ac_val] = mwifiex_wmm_eval_downgrade_ac(priv, (enum mwifiex_wmm_ac_e) ac_val); dev_dbg(priv->adapter->dev, "info: WMM: AC PRIO %d maps to %d\n", ac_val, priv->wmm.ac_down_graded_vals[ac_val]); } } } /* * This function converts the IP TOS field to an WMM AC * Queue assignment. */ static enum mwifiex_wmm_ac_e mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos) { /* Map of TOS UP values to WMM AC */ const enum mwifiex_wmm_ac_e tos_to_ac[] = { WMM_AC_BE, WMM_AC_BK, WMM_AC_BK, WMM_AC_BE, WMM_AC_VI, WMM_AC_VI, WMM_AC_VO, WMM_AC_VO }; if (tos >= ARRAY_SIZE(tos_to_ac)) return WMM_AC_BE; return tos_to_ac[tos]; } /* * This function evaluates a given TID and downgrades it to a lower * TID if the WMM Parameter IE received from the AP indicates that the * AP is disabled (due to call admission control (ACM bit). Mapping * of TID to AC is taken care of internally. */ static u8 mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid) { enum mwifiex_wmm_ac_e ac, ac_down; u8 new_tid; ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid); ac_down = priv->wmm.ac_down_graded_vals[ac]; /* Send the index to tid array, picking from the array will be * taken care by dequeuing function */ new_tid = ac_to_tid[ac_down][tid % 2]; return new_tid; } /* * This function initializes the WMM state information and the * WMM data path queues. */ void mwifiex_wmm_init(struct mwifiex_adapter *adapter) { int i, j; struct mwifiex_private *priv; for (j = 0; j < adapter->priv_num; ++j) { priv = adapter->priv[j]; if (!priv) continue; for (i = 0; i < MAX_NUM_TID; ++i) { priv->aggr_prio_tbl[i].amsdu = tos_to_tid_inv[i]; priv->aggr_prio_tbl[i].ampdu_ap = tos_to_tid_inv[i]; priv->aggr_prio_tbl[i].ampdu_user = tos_to_tid_inv[i]; } priv->aggr_prio_tbl[6].amsdu = priv->aggr_prio_tbl[6].ampdu_ap = priv->aggr_prio_tbl[6].ampdu_user = BA_STREAM_NOT_ALLOWED; priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap = priv->aggr_prio_tbl[7].ampdu_user = BA_STREAM_NOT_ALLOWED; mwifiex_set_ba_params(priv); mwifiex_reset_11n_rx_seq_num(priv); atomic_set(&priv->wmm.tx_pkts_queued, 0); atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); } } /* * This function checks if WMM Tx queue is empty. */ int mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter) { int i; struct mwifiex_private *priv; for (i = 0; i < adapter->priv_num; ++i) { priv = adapter->priv[i]; if (priv && atomic_read(&priv->wmm.tx_pkts_queued)) return false; } return true; } /* * This function deletes all packets in an RA list node. * * The packet sent completion callback handler are called with * status failure, after they are dequeued to ensure proper * cleanup. The RA list node itself is freed at the end. */ static void mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ra_list) { struct mwifiex_adapter *adapter = priv->adapter; struct sk_buff *skb, *tmp; skb_queue_walk_safe(&ra_list->skb_head, skb, tmp) mwifiex_write_data_complete(adapter, skb, 0, -1); } /* * This function deletes all packets in an RA list. * * Each nodes in the RA list are freed individually first, and then * the RA list itself is freed. */ static void mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv, struct list_head *ra_list_head) { struct mwifiex_ra_list_tbl *ra_list; list_for_each_entry(ra_list, ra_list_head, list) mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list); } /* * This function deletes all packets in all RA lists. */ static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv) { int i; for (i = 0; i < MAX_NUM_TID; i++) mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i]. ra_list); atomic_set(&priv->wmm.tx_pkts_queued, 0); atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); } /* * This function deletes all route addresses from all RA lists. */ static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv) { struct mwifiex_ra_list_tbl *ra_list, *tmp_node; int i; for (i = 0; i < MAX_NUM_TID; ++i) { dev_dbg(priv->adapter->dev, "info: ra_list: freeing buf for tid %d\n", i); list_for_each_entry_safe(ra_list, tmp_node, &priv->wmm.tid_tbl_ptr[i].ra_list, list) { list_del(&ra_list->list); kfree(ra_list); } INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list); } } /* * This function cleans up the Tx and Rx queues. * * Cleanup includes - * - All packets in RA lists * - All entries in Rx reorder table * - All entries in Tx BA stream table * - MPA buffer (if required) * - All RA lists */ void mwifiex_clean_txrx(struct mwifiex_private *priv) { unsigned long flags; mwifiex_11n_cleanup_reorder_tbl(priv); spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags); mwifiex_wmm_cleanup_queues(priv); mwifiex_11n_delete_all_tx_ba_stream_tbl(priv); if (priv->adapter->if_ops.cleanup_mpa_buf) priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter); mwifiex_wmm_delete_all_ralist(priv); memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid)); if (priv->adapter->if_ops.clean_pcie_ring && !priv->adapter->surprise_removed) priv->adapter->if_ops.clean_pcie_ring(priv->adapter); spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags); } /* * This function retrieves a particular RA list node, matching with the * given TID and RA address. */ static struct mwifiex_ra_list_tbl * mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid, u8 *ra_addr) { struct mwifiex_ra_list_tbl *ra_list; list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list, list) { if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN)) return ra_list; } return NULL; } /* * This function retrieves an RA list node for a given TID and * RA address pair. * * If no such node is found, a new node is added first and then * retrieved. */ static struct mwifiex_ra_list_tbl * mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, u8 *ra_addr) { struct mwifiex_ra_list_tbl *ra_list; ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr); if (ra_list) return ra_list; mwifiex_ralist_add(priv, ra_addr); return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr); } /* * This function checks if a particular RA list node exists in a given TID * table index. */ int mwifiex_is_ralist_valid(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ra_list, int ptr_index) { struct mwifiex_ra_list_tbl *rlist; list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list, list) { if (rlist == ra_list) return true; } return false; } /* * This function adds a packet to WMM queue. * * In disconnected state the packet is immediately dropped and the * packet send completion callback is called with status failure. * * Otherwise, the correct RA list node is located and the packet * is queued at the list tail. */ void mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv, struct sk_buff *skb) { struct mwifiex_adapter *adapter = priv->adapter; u32 tid; struct mwifiex_ra_list_tbl *ra_list; u8 ra[ETH_ALEN], tid_down; unsigned long flags; if (!priv->media_connected && !mwifiex_is_skb_mgmt_frame(skb)) { dev_dbg(adapter->dev, "data: drop packet in disconnect\n"); mwifiex_write_data_complete(adapter, skb, 0, -1); return; } tid = skb->priority; spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags); tid_down = mwifiex_wmm_downgrade_tid(priv, tid); /* In case of infra as we have already created the list during association we just don't have to call get_queue_raptr, we will have only 1 raptr for a tid in case of infra */ if (!mwifiex_queuing_ra_based(priv) && !mwifiex_is_skb_mgmt_frame(skb)) { if (!list_empty(&priv->wmm.tid_tbl_ptr[tid_down].ra_list)) ra_list = list_first_entry( &priv->wmm.tid_tbl_ptr[tid_down].ra_list, struct mwifiex_ra_list_tbl, list); else ra_list = NULL; } else { memcpy(ra, skb->data, ETH_ALEN); if (ra[0] & 0x01 || mwifiex_is_skb_mgmt_frame(skb)) memset(ra, 0xff, ETH_ALEN); ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra); } if (!ra_list) { spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags); mwifiex_write_data_complete(adapter, skb, 0, -1); return; } skb_queue_tail(&ra_list->skb_head, skb); ra_list->total_pkts_size += skb->len; ra_list->pkt_count++; if (atomic_read(&priv->wmm.highest_queued_prio) < tos_to_tid_inv[tid_down]) atomic_set(&priv->wmm.highest_queued_prio, tos_to_tid_inv[tid_down]); atomic_inc(&priv->wmm.tx_pkts_queued); spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags); } /* * This function processes the get WMM status command response from firmware. * * The response may contain multiple TLVs - * - AC Queue status TLVs * - Current WMM Parameter IE TLV * - Admission Control action frame TLVs * * This function parses the TLVs and then calls further specific functions * to process any changes in the queue prioritize or state. */ int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv, const struct host_cmd_ds_command *resp) { u8 *curr = (u8 *) &resp->params.get_wmm_status; uint16_t resp_len = le16_to_cpu(resp->size), tlv_len; int valid = true; struct mwifiex_ie_types_data *tlv_hdr; struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus; struct ieee_types_wmm_parameter *wmm_param_ie = NULL; struct mwifiex_wmm_ac_status *ac_status; dev_dbg(priv->adapter->dev, "info: WMM: WMM_GET_STATUS cmdresp received: %d\n", resp_len); while ((resp_len >= sizeof(tlv_hdr->header)) && valid) { tlv_hdr = (struct mwifiex_ie_types_data *) curr; tlv_len = le16_to_cpu(tlv_hdr->header.len); switch (le16_to_cpu(tlv_hdr->header.type)) { case TLV_TYPE_WMMQSTATUS: tlv_wmm_qstatus = (struct mwifiex_ie_types_wmm_queue_status *) tlv_hdr; dev_dbg(priv->adapter->dev, "info: CMD_RESP: WMM_GET_STATUS:" " QSTATUS TLV: %d, %d, %d\n", tlv_wmm_qstatus->queue_index, tlv_wmm_qstatus->flow_required, tlv_wmm_qstatus->disabled); ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus-> queue_index]; ac_status->disabled = tlv_wmm_qstatus->disabled; ac_status->flow_required = tlv_wmm_qstatus->flow_required; ac_status->flow_created = tlv_wmm_qstatus->flow_created; break; case WLAN_EID_VENDOR_SPECIFIC: /* * Point the regular IEEE IE 2 bytes into the Marvell IE * and setup the IEEE IE type and length byte fields */ wmm_param_ie = (struct ieee_types_wmm_parameter *) (curr + 2); wmm_param_ie->vend_hdr.len = (u8) tlv_len; wmm_param_ie->vend_hdr.element_id = WLAN_EID_VENDOR_SPECIFIC; dev_dbg(priv->adapter->dev, "info: CMD_RESP: WMM_GET_STATUS:" " WMM Parameter Set Count: %d\n", wmm_param_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK); memcpy((u8 *) &priv->curr_bss_params.bss_descriptor. wmm_ie, wmm_param_ie, wmm_param_ie->vend_hdr.len + 2); break; default: valid = false; break; } curr += (tlv_len + sizeof(tlv_hdr->header)); resp_len -= (tlv_len + sizeof(tlv_hdr->header)); } mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie); mwifiex_wmm_setup_ac_downgrade(priv); return 0; } /* * Callback handler from the command module to allow insertion of a WMM TLV. * * If the BSS we are associating to supports WMM, this function adds the * required WMM Information IE to the association request command buffer in * the form of a Marvell extended IEEE IE. */ u32 mwifiex_wmm_process_association_req(struct mwifiex_private *priv, u8 **assoc_buf, struct ieee_types_wmm_parameter *wmm_ie, struct ieee80211_ht_cap *ht_cap) { struct mwifiex_ie_types_wmm_param_set *wmm_tlv; u32 ret_len = 0; /* Null checks */ if (!assoc_buf) return 0; if (!(*assoc_buf)) return 0; if (!wmm_ie) return 0; dev_dbg(priv->adapter->dev, "info: WMM: process assoc req: bss->wmm_ie=%#x\n", wmm_ie->vend_hdr.element_id); if ((priv->wmm_required || (ht_cap && (priv->adapter->config_bands & BAND_GN || priv->adapter->config_bands & BAND_AN))) && wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) { wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf; wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]); wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]); memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2], le16_to_cpu(wmm_tlv->header.len)); if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD) memcpy((u8 *) (wmm_tlv->wmm_ie + le16_to_cpu(wmm_tlv->header.len) - sizeof(priv->wmm_qosinfo)), &priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo)); ret_len = sizeof(wmm_tlv->header) + le16_to_cpu(wmm_tlv->header.len); *assoc_buf += ret_len; } return ret_len; } /* * This function computes the time delay in the driver queues for a * given packet. * * When the packet is received at the OS/Driver interface, the current * time is set in the packet structure. The difference between the present * time and that received time is computed in this function and limited * based on pre-compiled limits in the driver. */ u8 mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv, const struct sk_buff *skb) { u8 ret_val; struct timeval out_tstamp, in_tstamp; u32 queue_delay; do_gettimeofday(&out_tstamp); in_tstamp = ktime_to_timeval(skb->tstamp); queue_delay = (out_tstamp.tv_sec - in_tstamp.tv_sec) * 1000; queue_delay += (out_tstamp.tv_usec - in_tstamp.tv_usec) / 1000; /* * Queue delay is passed as a uint8 in units of 2ms (ms shifted * by 1). Min value (other than 0) is therefore 2ms, max is 510ms. * * Pass max value if queue_delay is beyond the uint8 range */ ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1); dev_dbg(priv->adapter->dev, "data: WMM: Pkt Delay: %d ms," " %d ms sent to FW\n", queue_delay, ret_val); return ret_val; } /* * This function retrieves the highest priority RA list table pointer. */ static struct mwifiex_ra_list_tbl * mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter, struct mwifiex_private **priv, int *tid) { struct mwifiex_private *priv_tmp; struct mwifiex_ra_list_tbl *ptr; struct mwifiex_tid_tbl *tid_ptr; atomic_t *hqp; unsigned long flags_bss, flags_ra; int i, j; /* check the BSS with highest priority first */ for (j = adapter->priv_num - 1; j >= 0; --j) { spin_lock_irqsave(&adapter->bss_prio_tbl[j].bss_prio_lock, flags_bss); /* iterate over BSS with the equal priority */ list_for_each_entry(adapter->bss_prio_tbl[j].bss_prio_cur, &adapter->bss_prio_tbl[j].bss_prio_head, list) { priv_tmp = adapter->bss_prio_tbl[j].bss_prio_cur->priv; if (atomic_read(&priv_tmp->wmm.tx_pkts_queued) == 0) continue; /* iterate over the WMM queues of the BSS */ hqp = &priv_tmp->wmm.highest_queued_prio; for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) { spin_lock_irqsave(&priv_tmp->wmm. ra_list_spinlock, flags_ra); tid_ptr = &(priv_tmp)->wmm. tid_tbl_ptr[tos_to_tid[i]]; /* iterate over receiver addresses */ list_for_each_entry(ptr, &tid_ptr->ra_list, list) { if (!skb_queue_empty(&ptr->skb_head)) /* holds both locks */ goto found; } spin_unlock_irqrestore(&priv_tmp->wmm. ra_list_spinlock, flags_ra); } } spin_unlock_irqrestore(&adapter->bss_prio_tbl[j].bss_prio_lock, flags_bss); } return NULL; found: /* holds bss_prio_lock / ra_list_spinlock */ if (atomic_read(hqp) > i) atomic_set(hqp, i); spin_unlock_irqrestore(&priv_tmp->wmm.ra_list_spinlock, flags_ra); spin_unlock_irqrestore(&adapter->bss_prio_tbl[j].bss_prio_lock, flags_bss); *priv = priv_tmp; *tid = tos_to_tid[i]; return ptr; } /* This functions rotates ra and bss lists so packets are picked round robin. * * After a packet is successfully transmitted, rotate the ra list, so the ra * next to the one transmitted, will come first in the list. This way we pick * the ra' in a round robin fashion. Same applies to bss nodes of equal * priority. * * Function also increments wmm.packets_out counter. */ void mwifiex_rotate_priolists(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ra, int tid) { struct mwifiex_adapter *adapter = priv->adapter; struct mwifiex_bss_prio_tbl *tbl = adapter->bss_prio_tbl; struct mwifiex_tid_tbl *tid_ptr = &priv->wmm.tid_tbl_ptr[tid]; unsigned long flags; spin_lock_irqsave(&tbl[priv->bss_priority].bss_prio_lock, flags); /* * dirty trick: we remove 'head' temporarily and reinsert it after * curr bss node. imagine list to stay fixed while head is moved */ list_move(&tbl[priv->bss_priority].bss_prio_head, &tbl[priv->bss_priority].bss_prio_cur->list); spin_unlock_irqrestore(&tbl[priv->bss_priority].bss_prio_lock, flags); spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags); if (mwifiex_is_ralist_valid(priv, ra, tid)) { priv->wmm.packets_out[tid]++; /* same as above */ list_move(&tid_ptr->ra_list, &ra->list); } spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags); } /* * This function checks if 11n aggregation is possible. */ static int mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ptr, int max_buf_size) { int count = 0, total_size = 0; struct sk_buff *skb, *tmp; int max_amsdu_size; if (priv->bss_role == MWIFIEX_BSS_ROLE_UAP && priv->ap_11n_enabled && ptr->is_11n_enabled) max_amsdu_size = min_t(int, ptr->max_amsdu, max_buf_size); else max_amsdu_size = max_buf_size; skb_queue_walk_safe(&ptr->skb_head, skb, tmp) { total_size += skb->len; if (total_size >= max_amsdu_size) break; if (++count >= MIN_NUM_AMSDU) return true; } return false; } /* * This function sends a single packet to firmware for transmission. */ static void mwifiex_send_single_packet(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ptr, int ptr_index, unsigned long ra_list_flags) __releases(&priv->wmm.ra_list_spinlock) { struct sk_buff *skb, *skb_next; struct mwifiex_tx_param tx_param; struct mwifiex_adapter *adapter = priv->adapter; struct mwifiex_txinfo *tx_info; if (skb_queue_empty(&ptr->skb_head)) { spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags); dev_dbg(adapter->dev, "data: nothing to send\n"); return; } skb = skb_dequeue(&ptr->skb_head); tx_info = MWIFIEX_SKB_TXCB(skb); dev_dbg(adapter->dev, "data: dequeuing the packet %p %p\n", ptr, skb); ptr->total_pkts_size -= skb->len; if (!skb_queue_empty(&ptr->skb_head)) skb_next = skb_peek(&ptr->skb_head); else skb_next = NULL; spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags); tx_param.next_pkt_len = ((skb_next) ? skb_next->len + sizeof(struct txpd) : 0); if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) { /* Queue the packet back at the head */ spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags); if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags); mwifiex_write_data_complete(adapter, skb, 0, -1); return; } skb_queue_tail(&ptr->skb_head, skb); ptr->total_pkts_size += skb->len; ptr->pkt_count++; tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags); } else { mwifiex_rotate_priolists(priv, ptr, ptr_index); atomic_dec(&priv->wmm.tx_pkts_queued); } } /* * This function checks if the first packet in the given RA list * is already processed or not. */ static int mwifiex_is_ptr_processed(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ptr) { struct sk_buff *skb; struct mwifiex_txinfo *tx_info; if (skb_queue_empty(&ptr->skb_head)) return false; skb = skb_peek(&ptr->skb_head); tx_info = MWIFIEX_SKB_TXCB(skb); if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT) return true; return false; } /* * This function sends a single processed packet to firmware for * transmission. */ static void mwifiex_send_processed_packet(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ptr, int ptr_index, unsigned long ra_list_flags) __releases(&priv->wmm.ra_list_spinlock) { struct mwifiex_tx_param tx_param; struct mwifiex_adapter *adapter = priv->adapter; int ret = -1; struct sk_buff *skb, *skb_next; struct mwifiex_txinfo *tx_info; if (skb_queue_empty(&ptr->skb_head)) { spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags); return; } skb = skb_dequeue(&ptr->skb_head); if (!skb_queue_empty(&ptr->skb_head)) skb_next = skb_peek(&ptr->skb_head); else skb_next = NULL; tx_info = MWIFIEX_SKB_TXCB(skb); spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags); if (adapter->iface_type == MWIFIEX_USB) { adapter->data_sent = true; ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_USB_EP_DATA, skb, NULL); } else { tx_param.next_pkt_len = ((skb_next) ? skb_next->len + sizeof(struct txpd) : 0); ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA, skb, &tx_param); } switch (ret) { case -EBUSY: dev_dbg(adapter->dev, "data: -EBUSY is returned\n"); spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags); if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags); mwifiex_write_data_complete(adapter, skb, 0, -1); return; } skb_queue_tail(&ptr->skb_head, skb); tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags); break; case -1: if (adapter->iface_type != MWIFIEX_PCIE) adapter->data_sent = false; dev_err(adapter->dev, "host_to_card failed: %#x\n", ret); adapter->dbg.num_tx_host_to_card_failure++; mwifiex_write_data_complete(adapter, skb, 0, ret); break; case -EINPROGRESS: if (adapter->iface_type != MWIFIEX_PCIE) adapter->data_sent = false; default: break; } if (ret != -EBUSY) { mwifiex_rotate_priolists(priv, ptr, ptr_index); atomic_dec(&priv->wmm.tx_pkts_queued); } } /* * This function dequeues a packet from the highest priority list * and transmits it. */ static int mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter) { struct mwifiex_ra_list_tbl *ptr; struct mwifiex_private *priv = NULL; int ptr_index = 0; u8 ra[ETH_ALEN]; int tid_del = 0, tid = 0; unsigned long flags; ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index); if (!ptr) return -1; tid = mwifiex_get_tid(ptr); dev_dbg(adapter->dev, "data: tid=%d\n", tid); spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags); if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags); return -1; } if (mwifiex_is_ptr_processed(priv, ptr)) { mwifiex_send_processed_packet(priv, ptr, ptr_index, flags); /* ra_list_spinlock has been freed in mwifiex_send_processed_packet() */ return 0; } if (!ptr->is_11n_enabled || mwifiex_is_ba_stream_setup(priv, ptr, tid) || priv->wps.session_enable || ((priv->sec_info.wpa_enabled || priv->sec_info.wpa2_enabled) && !priv->wpa_is_gtk_set)) { mwifiex_send_single_packet(priv, ptr, ptr_index, flags); /* ra_list_spinlock has been freed in mwifiex_send_single_packet() */ } else { if (mwifiex_is_ampdu_allowed(priv, tid) && ptr->pkt_count > ptr->ba_packet_thr) { if (mwifiex_space_avail_for_new_ba_stream(adapter)) { mwifiex_create_ba_tbl(priv, ptr->ra, tid, BA_SETUP_INPROGRESS); mwifiex_send_addba(priv, tid, ptr->ra); } else if (mwifiex_find_stream_to_delete (priv, tid, &tid_del, ra)) { mwifiex_create_ba_tbl(priv, ptr->ra, tid, BA_SETUP_INPROGRESS); mwifiex_send_delba(priv, tid_del, ra, 1); } } if (mwifiex_is_amsdu_allowed(priv, tid) && mwifiex_is_11n_aggragation_possible(priv, ptr, adapter->tx_buf_size)) mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index, flags); /* ra_list_spinlock has been freed in mwifiex_11n_aggregate_pkt() */ else mwifiex_send_single_packet(priv, ptr, ptr_index, flags); /* ra_list_spinlock has been freed in mwifiex_send_single_packet() */ } return 0; } /* * This function transmits the highest priority packet awaiting in the * WMM Queues. */ void mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter) { do { /* Check if busy */ if (adapter->data_sent || adapter->tx_lock_flag) break; if (mwifiex_dequeue_tx_packet(adapter)) break; } while (!mwifiex_wmm_lists_empty(adapter)); }