#ifndef _LINUX_SLUB_DEF_H #define _LINUX_SLUB_DEF_H /* * SLUB : A Slab allocator without object queues. * * (C) 2007 SGI, Christoph Lameter */ #include #include #include #include #include #include enum stat_item { ALLOC_FASTPATH, /* Allocation from cpu slab */ ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ FREE_FASTPATH, /* Free to cpu slub */ FREE_SLOWPATH, /* Freeing not to cpu slab */ FREE_FROZEN, /* Freeing to frozen slab */ FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ FREE_REMOVE_PARTIAL, /* Freeing removes last object */ ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ ALLOC_SLAB, /* Cpu slab acquired from page allocator */ ALLOC_REFILL, /* Refill cpu slab from slab freelist */ ALLOC_NODE_MISMATCH, /* Switching cpu slab */ FREE_SLAB, /* Slab freed to the page allocator */ CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ DEACTIVATE_BYPASS, /* Implicit deactivation */ ORDER_FALLBACK, /* Number of times fallback was necessary */ CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */ CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ CPU_PARTIAL_FREE, /* Refill cpu partial on free */ CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ NR_SLUB_STAT_ITEMS }; struct kmem_cache_cpu { void **freelist; /* Pointer to next available object */ unsigned long tid; /* Globally unique transaction id */ struct page *page; /* The slab from which we are allocating */ struct page *partial; /* Partially allocated frozen slabs */ #ifdef CONFIG_SLUB_STATS unsigned stat[NR_SLUB_STAT_ITEMS]; #endif }; /* * Word size structure that can be atomically updated or read and that * contains both the order and the number of objects that a slab of the * given order would contain. */ struct kmem_cache_order_objects { unsigned long x; }; /* * Slab cache management. */ struct kmem_cache { struct kmem_cache_cpu __percpu *cpu_slab; /* Used for retriving partial slabs etc */ unsigned long flags; unsigned long min_partial; int size; /* The size of an object including meta data */ int object_size; /* The size of an object without meta data */ int offset; /* Free pointer offset. */ int cpu_partial; /* Number of per cpu partial objects to keep around */ struct kmem_cache_order_objects oo; /* Allocation and freeing of slabs */ struct kmem_cache_order_objects max; struct kmem_cache_order_objects min; gfp_t allocflags; /* gfp flags to use on each alloc */ int refcount; /* Refcount for slab cache destroy */ void (*ctor)(void *); int inuse; /* Offset to metadata */ int align; /* Alignment */ int reserved; /* Reserved bytes at the end of slabs */ const char *name; /* Name (only for display!) */ struct list_head list; /* List of slab caches */ #ifdef CONFIG_SYSFS struct kobject kobj; /* For sysfs */ #endif #ifdef CONFIG_MEMCG_KMEM struct memcg_cache_params *memcg_params; int max_attr_size; /* for propagation, maximum size of a stored attr */ #endif #ifdef CONFIG_NUMA /* * Defragmentation by allocating from a remote node. */ int remote_node_defrag_ratio; #endif struct kmem_cache_node *node[MAX_NUMNODES]; }; void *kmem_cache_alloc(struct kmem_cache *, gfp_t); void *__kmalloc(size_t size, gfp_t flags); static __always_inline void * kmalloc_order(size_t size, gfp_t flags, unsigned int order) { void *ret; flags |= (__GFP_COMP | __GFP_KMEMCG); ret = (void *) __get_free_pages(flags, order); kmemleak_alloc(ret, size, 1, flags); return ret; } /** * Calling this on allocated memory will check that the memory * is expected to be in use, and print warnings if not. */ #ifdef CONFIG_SLUB_DEBUG extern bool verify_mem_not_deleted(const void *x); #else static inline bool verify_mem_not_deleted(const void *x) { return true; } #endif #ifdef CONFIG_TRACING extern void * kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size); extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); #else static __always_inline void * kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size __maybe_unused) { return kmem_cache_alloc(s, gfpflags); } static __always_inline void * kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { return kmalloc_order(size, flags, order); } #endif static __always_inline void *kmalloc_large(size_t size, gfp_t flags) { unsigned int order = get_order(size); return kmalloc_order_trace(size, flags, order); } static __always_inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) { if (size > KMALLOC_MAX_CACHE_SIZE) return kmalloc_large(size, flags); if (!(flags & GFP_DMA)) { int index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_trace(kmalloc_caches[index], flags, size); } } return __kmalloc(size, flags); } #ifdef CONFIG_NUMA void *__kmalloc_node(size_t size, gfp_t flags, int node); void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); #ifdef CONFIG_TRACING extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size); #else static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { return kmem_cache_alloc_node(s, gfpflags, node); } #endif static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) { if (__builtin_constant_p(size) && size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { int index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_node_trace(kmalloc_caches[index], flags, node, size); } return __kmalloc_node(size, flags, node); } #endif #endif /* _LINUX_SLUB_DEF_H */