/* * q_netem.c NETEM. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Stephen Hemminger * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" #include "tc_common.h" static void explain(void) { fprintf(stderr, "Usage: ... netem [ limit PACKETS ] \n" \ " [ delay TIME [ JITTER [CORRELATION]]]\n" \ " [ distribution {uniform|normal|pareto|paretonormal} ]\n" \ " [ corrupt PERCENT [CORRELATION]] \n" \ " [ duplicate PERCENT [CORRELATION]]\n" \ " [ loss random PERCENT [CORRELATION]]\n" \ " [ loss state P13 [P31 [P32 [P23 P14]]]\n" \ " [ loss gemodel PERCENT [R [1-H [1-K]]]\n" \ " [ ecn ]\n" \ " [ reorder PRECENT [CORRELATION] [ gap DISTANCE ]]\n" \ " [ rate RATE [PACKETOVERHEAD] [CELLSIZE] [CELLOVERHEAD]]\n"); } static void explain1(const char *arg) { fprintf(stderr, "Illegal \"%s\"\n", arg); } /* Upper bound on size of distribution * really (TCA_BUF_MAX - other headers) / sizeof (__s16) */ #define MAX_DIST (16*1024) static const double max_percent_value = 0xffffffff; /* scaled value used to percent of maximum. */ static void set_percent(__u32 *percent, double per) { *percent = (unsigned) rint(per * max_percent_value); } /* Parse either a fraction '.3' or percent '30% * return: 0 = ok, -1 = error, 1 = out of range */ static int parse_percent(double *val, const char *str) { char *p; *val = strtod(str, &p) / 100.; if (*p && strcmp(p, "%") ) return -1; return 0; } static int get_percent(__u32 *percent, const char *str) { double per; if (parse_percent(&per, str)) return -1; set_percent(percent, per); return 0; } static void print_percent(char *buf, int len, __u32 per) { snprintf(buf, len, "%g%%", 100. * (double) per / max_percent_value); } static char * sprint_percent(__u32 per, char *buf) { print_percent(buf, SPRINT_BSIZE-1, per); return buf; } /* * Simplistic file parser for distrbution data. * Format is: * # comment line(s) * data0 data1 ... */ static int get_distribution(const char *type, __s16 *data, int maxdata) { FILE *f; int n; long x; size_t len; char *line = NULL; char name[128]; snprintf(name, sizeof(name), "%s/%s.dist", get_tc_lib(), type); if ((f = fopen(name, "r")) == NULL) { fprintf(stderr, "No distribution data for %s (%s: %s)\n", type, name, strerror(errno)); return -1; } n = 0; while (getline(&line, &len, f) != -1) { char *p, *endp; if (*line == '\n' || *line == '#') continue; for (p = line; ; p = endp) { x = strtol(p, &endp, 0); if (endp == p) break; if (n >= maxdata) { fprintf(stderr, "%s: too much data\n", name); n = -1; goto error; } data[n++] = x; } } error: free(line); fclose(f); return n; } #define NEXT_IS_NUMBER() (NEXT_ARG_OK() && isdigit(argv[1][0])) #define NEXT_IS_SIGNED_NUMBER() \ (NEXT_ARG_OK() && (isdigit(argv[1][0]) || argv[1][0] == '-')) /* Adjust for the fact that psched_ticks aren't always usecs (based on kernel PSCHED_CLOCK configuration */ static int get_ticks(__u32 *ticks, const char *str) { unsigned t; if(get_time(&t, str)) return -1; if (tc_core_time2big(t)) { fprintf(stderr, "Illegal %u time (too large)\n", t); return -1; } *ticks = tc_core_time2tick(t); return 0; } static int netem_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n) { int dist_size = 0; struct rtattr *tail; struct tc_netem_qopt opt = { .limit = 1000 }; struct tc_netem_corr cor; struct tc_netem_reorder reorder; struct tc_netem_corrupt corrupt; struct tc_netem_gimodel gimodel; struct tc_netem_gemodel gemodel; struct tc_netem_rate rate; __s16 *dist_data = NULL; __u16 loss_type = NETEM_LOSS_UNSPEC; int present[__TCA_NETEM_MAX]; memset(&cor, 0, sizeof(cor)); memset(&reorder, 0, sizeof(reorder)); memset(&corrupt, 0, sizeof(corrupt)); memset(&rate, 0, sizeof(rate)); memset(present, 0, sizeof(present)); for( ; argc > 0; --argc, ++argv) { if (matches(*argv, "limit") == 0) { NEXT_ARG(); if (get_size(&opt.limit, *argv)) { explain1("limit"); return -1; } } else if (matches(*argv, "latency") == 0 || matches(*argv, "delay") == 0) { NEXT_ARG(); if (get_ticks(&opt.latency, *argv)) { explain1("latency"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); if (get_ticks(&opt.jitter, *argv)) { explain1("latency"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); ++present[TCA_NETEM_CORR]; if (get_percent(&cor.delay_corr, *argv)) { explain1("latency"); return -1; } } } } else if (matches(*argv, "loss") == 0 || matches(*argv, "drop") == 0) { if (opt.loss > 0 || loss_type != NETEM_LOSS_UNSPEC) { explain1("duplicate loss argument\n"); return -1; } NEXT_ARG(); /* Old (deprecated) random loss model syntax */ if (isdigit(argv[0][0])) goto random_loss_model; if (!strcmp(*argv, "random")) { NEXT_ARG(); random_loss_model: if (get_percent(&opt.loss, *argv)) { explain1("loss percent"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); ++present[TCA_NETEM_CORR]; if (get_percent(&cor.loss_corr, *argv)) { explain1("loss correllation"); return -1; } } } else if (!strcmp(*argv, "state")) { double p13; NEXT_ARG(); if (parse_percent(&p13, *argv)) { explain1("loss p13"); return -1; } /* set defaults */ set_percent(&gimodel.p13, p13); set_percent(&gimodel.p31, 1. - p13); set_percent(&gimodel.p32, 0); set_percent(&gimodel.p23, 1.); loss_type = NETEM_LOSS_GI; if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gimodel.p31, *argv)) { explain1("loss p31"); return -1; } if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gimodel.p32, *argv)) { explain1("loss p32"); return -1; } if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gimodel.p23, *argv)) { explain1("loss p23"); return -1; } } else if (!strcmp(*argv, "gemodel")) { NEXT_ARG(); if (get_percent(&gemodel.p, *argv)) { explain1("loss gemodel p"); return -1; } /* set defaults */ set_percent(&gemodel.r, 1.); set_percent(&gemodel.h, 0); set_percent(&gemodel.k1, 1.); loss_type = NETEM_LOSS_GE; if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gemodel.r, *argv)) { explain1("loss gemodel r"); return -1; } if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gemodel.h, *argv)) { explain1("loss gemodel h"); return -1; } if (!NEXT_IS_NUMBER()) continue; NEXT_ARG(); if (get_percent(&gemodel.k1, *argv)) { explain1("loss gemodel k"); return -1; } } else { fprintf(stderr, "Unknown loss parameter: %s\n", *argv); return -1; } } else if (matches(*argv, "ecn") == 0) { present[TCA_NETEM_ECN] = 1; } else if (matches(*argv, "reorder") == 0) { NEXT_ARG(); present[TCA_NETEM_REORDER] = 1; if (get_percent(&reorder.probability, *argv)) { explain1("reorder"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); ++present[TCA_NETEM_CORR]; if (get_percent(&reorder.correlation, *argv)) { explain1("reorder"); return -1; } } } else if (matches(*argv, "corrupt") == 0) { NEXT_ARG(); present[TCA_NETEM_CORRUPT] = 1; if (get_percent(&corrupt.probability, *argv)) { explain1("corrupt"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); ++present[TCA_NETEM_CORR]; if (get_percent(&corrupt.correlation, *argv)) { explain1("corrupt"); return -1; } } } else if (matches(*argv, "gap") == 0) { NEXT_ARG(); if (get_u32(&opt.gap, *argv, 0)) { explain1("gap"); return -1; } } else if (matches(*argv, "duplicate") == 0) { NEXT_ARG(); if (get_percent(&opt.duplicate, *argv)) { explain1("duplicate"); return -1; } if (NEXT_IS_NUMBER()) { NEXT_ARG(); if (get_percent(&cor.dup_corr, *argv)) { explain1("duplicate"); return -1; } } } else if (matches(*argv, "distribution") == 0) { NEXT_ARG(); dist_data = calloc(sizeof(dist_data[0]), MAX_DIST); dist_size = get_distribution(*argv, dist_data, MAX_DIST); if (dist_size <= 0) { free(dist_data); return -1; } } else if (matches(*argv, "rate") == 0) { ++present[TCA_NETEM_RATE]; NEXT_ARG(); if (get_rate(&rate.rate, *argv)) { explain1("rate"); return -1; } if (NEXT_IS_SIGNED_NUMBER()) { NEXT_ARG(); if (get_s32(&rate.packet_overhead, *argv, 0)) { explain1("rate"); return -1; } } if (NEXT_IS_NUMBER()) { NEXT_ARG(); if (get_u32(&rate.cell_size, *argv, 0)) { explain1("rate"); return -1; } } if (NEXT_IS_SIGNED_NUMBER()) { NEXT_ARG(); if (get_s32(&rate.cell_overhead, *argv, 0)) { explain1("rate"); return -1; } } } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } } tail = NLMSG_TAIL(n); if (reorder.probability) { if (opt.latency == 0) { fprintf(stderr, "reordering not possible without specifying some delay\n"); explain(); return -1; } if (opt.gap == 0) opt.gap = 1; } else if (opt.gap > 0) { fprintf(stderr, "gap specified without reorder probability\n"); explain(); return -1; } if (present[TCA_NETEM_ECN]) { if (opt.loss <= 0 && loss_type == NETEM_LOSS_UNSPEC) { fprintf(stderr, "ecn requested without loss model\n"); explain(); return -1; } } if (dist_data && (opt.latency == 0 || opt.jitter == 0)) { fprintf(stderr, "distribution specified but no latency and jitter values\n"); explain(); return -1; } if (addattr_l(n, 1024, TCA_OPTIONS, &opt, sizeof(opt)) < 0) return -1; if (present[TCA_NETEM_CORR] && addattr_l(n, 1024, TCA_NETEM_CORR, &cor, sizeof(cor)) < 0) return -1; if (present[TCA_NETEM_REORDER] && addattr_l(n, 1024, TCA_NETEM_REORDER, &reorder, sizeof(reorder)) < 0) return -1; if (present[TCA_NETEM_ECN] && addattr_l(n, 1024, TCA_NETEM_ECN, &present[TCA_NETEM_ECN], sizeof(present[TCA_NETEM_ECN])) < 0) return -1; if (present[TCA_NETEM_CORRUPT] && addattr_l(n, 1024, TCA_NETEM_CORRUPT, &corrupt, sizeof(corrupt)) < 0) return -1; if (loss_type != NETEM_LOSS_UNSPEC) { struct rtattr *start; start = addattr_nest(n, 1024, TCA_NETEM_LOSS | NLA_F_NESTED); if (loss_type == NETEM_LOSS_GI) { if (addattr_l(n, 1024, NETEM_LOSS_GI, &gimodel, sizeof(gimodel)) < 0) return -1; } else if (loss_type == NETEM_LOSS_GE) { if (addattr_l(n, 1024, NETEM_LOSS_GE, &gemodel, sizeof(gemodel)) < 0) return -1; } else { fprintf(stderr, "loss in the weeds!\n"); return -1; } addattr_nest_end(n, start); } if (present[TCA_NETEM_RATE] && addattr_l(n, 1024, TCA_NETEM_RATE, &rate, sizeof(rate)) < 0) return -1; if (dist_data) { if (addattr_l(n, MAX_DIST * sizeof(dist_data[0]), TCA_NETEM_DELAY_DIST, dist_data, dist_size * sizeof(dist_data[0])) < 0) return -1; free(dist_data); } tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail; return 0; } static int netem_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { const struct tc_netem_corr *cor = NULL; const struct tc_netem_reorder *reorder = NULL; const struct tc_netem_corrupt *corrupt = NULL; const struct tc_netem_gimodel *gimodel = NULL; const struct tc_netem_gemodel *gemodel = NULL; int *ecn = NULL; struct tc_netem_qopt qopt; const struct tc_netem_rate *rate = NULL; int len = RTA_PAYLOAD(opt) - sizeof(qopt); SPRINT_BUF(b1); if (opt == NULL) return 0; if (len < 0) { fprintf(stderr, "options size error\n"); return -1; } memcpy(&qopt, RTA_DATA(opt), sizeof(qopt)); if (len > 0) { struct rtattr *tb[TCA_NETEM_MAX+1]; parse_rtattr(tb, TCA_NETEM_MAX, RTA_DATA(opt) + sizeof(qopt), len); if (tb[TCA_NETEM_CORR]) { if (RTA_PAYLOAD(tb[TCA_NETEM_CORR]) < sizeof(*cor)) return -1; cor = RTA_DATA(tb[TCA_NETEM_CORR]); } if (tb[TCA_NETEM_REORDER]) { if (RTA_PAYLOAD(tb[TCA_NETEM_REORDER]) < sizeof(*reorder)) return -1; reorder = RTA_DATA(tb[TCA_NETEM_REORDER]); } if (tb[TCA_NETEM_CORRUPT]) { if (RTA_PAYLOAD(tb[TCA_NETEM_CORRUPT]) < sizeof(*corrupt)) return -1; corrupt = RTA_DATA(tb[TCA_NETEM_CORRUPT]); } if (tb[TCA_NETEM_LOSS]) { struct rtattr *lb[NETEM_LOSS_MAX + 1]; parse_rtattr_nested(lb, NETEM_LOSS_MAX, tb[TCA_NETEM_LOSS]); if (lb[NETEM_LOSS_GI]) gemodel = RTA_DATA(lb[NETEM_LOSS_GI]); if (lb[NETEM_LOSS_GE]) gemodel = RTA_DATA(lb[NETEM_LOSS_GE]); } if (tb[TCA_NETEM_RATE]) { if (RTA_PAYLOAD(tb[TCA_NETEM_RATE]) < sizeof(*rate)) return -1; rate = RTA_DATA(tb[TCA_NETEM_RATE]); } if (tb[TCA_NETEM_ECN]) { if (RTA_PAYLOAD(tb[TCA_NETEM_ECN]) < sizeof(*ecn)) return -1; ecn = RTA_DATA(tb[TCA_NETEM_ECN]); } } fprintf(f, "limit %d", qopt.limit); if (qopt.latency) { fprintf(f, " delay %s", sprint_ticks(qopt.latency, b1)); if (qopt.jitter) { fprintf(f, " %s", sprint_ticks(qopt.jitter, b1)); if (cor && cor->delay_corr) fprintf(f, " %s", sprint_percent(cor->delay_corr, b1)); } } if (qopt.loss) { fprintf(f, " loss %s", sprint_percent(qopt.loss, b1)); if (cor && cor->loss_corr) fprintf(f, " %s", sprint_percent(cor->loss_corr, b1)); } if (gimodel) { fprintf(f, " loss state p13 %s", sprint_percent(gimodel->p13, b1)); fprintf(f, " p31 %s", sprint_percent(gimodel->p31, b1)); fprintf(f, " p32 %s", sprint_percent(gimodel->p32, b1)); fprintf(f, " p23 %s", sprint_percent(gimodel->p23, b1)); fprintf(f, " p14 %s", sprint_percent(gimodel->p14, b1)); } if (gemodel) { fprintf(f, "loss gemodel p %s", sprint_percent(gemodel->p, b1)); fprintf(f, " r %s", sprint_percent(gemodel->r, b1)); fprintf(f, " 1-h %s", sprint_percent(gemodel->h, b1)); fprintf(f, " 1-k %s", sprint_percent(gemodel->k1, b1)); } if (qopt.duplicate) { fprintf(f, " duplicate %s", sprint_percent(qopt.duplicate, b1)); if (cor && cor->dup_corr) fprintf(f, " %s", sprint_percent(cor->dup_corr, b1)); } if (reorder && reorder->probability) { fprintf(f, " reorder %s", sprint_percent(reorder->probability, b1)); if (reorder->correlation) fprintf(f, " %s", sprint_percent(reorder->correlation, b1)); } if (corrupt && corrupt->probability) { fprintf(f, " corrupt %s", sprint_percent(corrupt->probability, b1)); if (corrupt->correlation) fprintf(f, " %s", sprint_percent(corrupt->correlation, b1)); } if (rate && rate->rate) { fprintf(f, " rate %s", sprint_rate(rate->rate, b1)); if (rate->packet_overhead) fprintf(f, " packetoverhead %d", rate->packet_overhead); if (rate->cell_size) fprintf(f, " cellsize %u", rate->cell_size); if (rate->cell_overhead) fprintf(f, " celloverhead %d", rate->cell_overhead); } if (ecn) fprintf(f, " ecn "); if (qopt.gap) fprintf(f, " gap %lu", (unsigned long)qopt.gap); return 0; } struct qdisc_util netem_qdisc_util = { .id = "netem", .parse_qopt = netem_parse_opt, .print_qopt = netem_print_opt, };