/* * q_red.c RED. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, * */ #include #include #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" #include "tc_red.h" static void explain(void) { fprintf(stderr, "Usage: ... red limit BYTES [min BYTES] [max BYTES] avpkt BYTES [burst PACKETS]\n"); fprintf(stderr, " [adaptive] [probability PROBABILITY] bandwidth KBPS\n"); fprintf(stderr, " [ecn] [harddrop]\n"); } static int red_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n) { struct tc_red_qopt opt; unsigned burst = 0; unsigned avpkt = 0; double probability = 0.02; unsigned rate = 0; int wlog; __u8 sbuf[256]; __u32 max_P; struct rtattr *tail; memset(&opt, 0, sizeof(opt)); while (argc > 0) { if (strcmp(*argv, "limit") == 0) { NEXT_ARG(); if (get_size(&opt.limit, *argv)) { fprintf(stderr, "Illegal \"limit\"\n"); return -1; } } else if (strcmp(*argv, "min") == 0) { NEXT_ARG(); if (get_size(&opt.qth_min, *argv)) { fprintf(stderr, "Illegal \"min\"\n"); return -1; } } else if (strcmp(*argv, "max") == 0) { NEXT_ARG(); if (get_size(&opt.qth_max, *argv)) { fprintf(stderr, "Illegal \"max\"\n"); return -1; } } else if (strcmp(*argv, "burst") == 0) { NEXT_ARG(); if (get_unsigned(&burst, *argv, 0)) { fprintf(stderr, "Illegal \"burst\"\n"); return -1; } } else if (strcmp(*argv, "avpkt") == 0) { NEXT_ARG(); if (get_size(&avpkt, *argv)) { fprintf(stderr, "Illegal \"avpkt\"\n"); return -1; } } else if (strcmp(*argv, "probability") == 0) { NEXT_ARG(); if (sscanf(*argv, "%lg", &probability) != 1) { fprintf(stderr, "Illegal \"probability\"\n"); return -1; } } else if (strcmp(*argv, "bandwidth") == 0) { NEXT_ARG(); if (get_rate(&rate, *argv)) { fprintf(stderr, "Illegal \"bandwidth\"\n"); return -1; } } else if (strcmp(*argv, "ecn") == 0) { opt.flags |= TC_RED_ECN; } else if (strcmp(*argv, "harddrop") == 0) { opt.flags |= TC_RED_HARDDROP; } else if (strcmp(*argv, "adaptative") == 0) { opt.flags |= TC_RED_ADAPTATIVE; } else if (strcmp(*argv, "adaptive") == 0) { opt.flags |= TC_RED_ADAPTATIVE; } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } if (rate == 0) get_rate(&rate, "10Mbit"); if (!opt.limit || !avpkt) { fprintf(stderr, "RED: Required parameter (limit, avpkt) is missing\n"); return -1; } /* Compute default min/max thresholds based on * Sally Floyd's recommendations: * http://www.icir.org/floyd/REDparameters.txt */ if (!opt.qth_max) opt.qth_max = opt.qth_min ? opt.qth_min * 3 : opt.limit / 4; if (!opt.qth_min) opt.qth_min = opt.qth_max / 3; if (!burst) burst = (2 * opt.qth_min + opt.qth_max) / (3 * avpkt); if ((wlog = tc_red_eval_ewma(opt.qth_min, burst, avpkt)) < 0) { fprintf(stderr, "RED: failed to calculate EWMA constant.\n"); return -1; } if (wlog >= 10) fprintf(stderr, "RED: WARNING. Burst %d seems to be too large.\n", burst); opt.Wlog = wlog; if ((wlog = tc_red_eval_P(opt.qth_min, opt.qth_max, probability)) < 0) { fprintf(stderr, "RED: failed to calculate probability.\n"); return -1; } opt.Plog = wlog; if ((wlog = tc_red_eval_idle_damping(opt.Wlog, avpkt, rate, sbuf)) < 0) { fprintf(stderr, "RED: failed to calculate idle damping table.\n"); return -1; } opt.Scell_log = wlog; tail = NLMSG_TAIL(n); addattr_l(n, 1024, TCA_OPTIONS, NULL, 0); addattr_l(n, 1024, TCA_RED_PARMS, &opt, sizeof(opt)); addattr_l(n, 1024, TCA_RED_STAB, sbuf, 256); max_P = probability * pow(2, 32); addattr_l(n, 1024, TCA_RED_MAX_P, &max_P, sizeof(max_P)); tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail; return 0; } static int red_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_RED_MAX + 1]; struct tc_red_qopt *qopt; __u32 max_P = 0; SPRINT_BUF(b1); SPRINT_BUF(b2); SPRINT_BUF(b3); if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_RED_MAX, opt); if (tb[TCA_RED_PARMS] == NULL) return -1; qopt = RTA_DATA(tb[TCA_RED_PARMS]); if (RTA_PAYLOAD(tb[TCA_RED_PARMS]) < sizeof(*qopt)) return -1; if (tb[TCA_RED_MAX_P] && RTA_PAYLOAD(tb[TCA_RED_MAX_P]) >= sizeof(__u32)) max_P = rta_getattr_u32(tb[TCA_RED_MAX_P]); fprintf(f, "limit %s min %s max %s ", sprint_size(qopt->limit, b1), sprint_size(qopt->qth_min, b2), sprint_size(qopt->qth_max, b3)); if (qopt->flags & TC_RED_ECN) fprintf(f, "ecn "); if (qopt->flags & TC_RED_HARDDROP) fprintf(f, "harddrop "); if (qopt->flags & TC_RED_ADAPTATIVE) fprintf(f, "adaptive "); if (show_details) { fprintf(f, "ewma %u ", qopt->Wlog); if (max_P) fprintf(f, "probability %lg ", max_P / pow(2, 32)); else fprintf(f, "Plog %u ", qopt->Plog); fprintf(f, "Scell_log %u", qopt->Scell_log); } return 0; } static int red_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { #ifdef TC_RED_ECN struct tc_red_xstats *st; if (xstats == NULL) return 0; if (RTA_PAYLOAD(xstats) < sizeof(*st)) return -1; st = RTA_DATA(xstats); fprintf(f, " marked %u early %u pdrop %u other %u", st->marked, st->early, st->pdrop, st->other); return 0; #endif return 0; } struct qdisc_util red_qdisc_util = { .id = "red", .parse_qopt = red_parse_opt, .print_qopt = red_print_opt, .print_xstats = red_print_xstats, };