/* * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. * Copyright (c) 2018, The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include "wil6210.h" #include "txrx.h" #include "wmi.h" #include "boot_loader.h" #define WAIT_FOR_HALP_VOTE_MS 100 #define WAIT_FOR_SCAN_ABORT_MS 1000 bool debug_fw; /* = false; */ module_param(debug_fw, bool, 0444); MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug"); static u8 oob_mode; module_param(oob_mode, byte, 0444); MODULE_PARM_DESC(oob_mode, " enable out of the box (OOB) mode in FW, for diagnostics and certification"); bool no_fw_recovery; module_param(no_fw_recovery, bool, 0644); MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery"); /* if not set via modparam, will be set to default value of 1/8 of * rx ring size during init flow */ unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT; module_param(rx_ring_overflow_thrsh, ushort, 0444); MODULE_PARM_DESC(rx_ring_overflow_thrsh, " RX ring overflow threshold in descriptors."); /* We allow allocation of more than 1 page buffers to support large packets. * It is suboptimal behavior performance wise in case MTU above page size. */ unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; static int mtu_max_set(const char *val, const struct kernel_param *kp) { int ret; /* sets mtu_max directly. no need to restore it in case of * illegal value since we assume this will fail insmod */ ret = param_set_uint(val, kp); if (ret) return ret; if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU) ret = -EINVAL; return ret; } static const struct kernel_param_ops mtu_max_ops = { .set = mtu_max_set, .get = param_get_uint, }; module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444); MODULE_PARM_DESC(mtu_max, " Max MTU value."); static uint rx_ring_order = WIL_RX_RING_SIZE_ORDER_DEFAULT; static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT; static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT; static int ring_order_set(const char *val, const struct kernel_param *kp) { int ret; uint x; ret = kstrtouint(val, 0, &x); if (ret) return ret; if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX)) return -EINVAL; *((uint *)kp->arg) = x; return 0; } static const struct kernel_param_ops ring_order_ops = { .set = ring_order_set, .get = param_get_uint, }; module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444); MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order"); module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444); MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order"); module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444); MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order"); #define RST_DELAY (20) /* msec, for loop in @wil_target_reset */ #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */ /* * Due to a hardware issue, * one has to read/write to/from NIC in 32-bit chunks; * regular memcpy_fromio and siblings will * not work on 64-bit platform - it uses 64-bit transactions * * Force 32-bit transactions to enable NIC on 64-bit platforms * * To avoid byte swap on big endian host, __raw_{read|write}l * should be used - {read|write}l would swap bytes to provide * little endian on PCI value in host endianness. */ void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src, size_t count) { u32 *d = dst; const volatile u32 __iomem *s = src; for (; count >= 4; count -= 4) *d++ = __raw_readl(s++); if (unlikely(count)) { /* count can be 1..3 */ u32 tmp = __raw_readl(s); memcpy(d, &tmp, count); } } void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src, size_t count) { volatile u32 __iomem *d = dst; const u32 *s = src; for (; count >= 4; count -= 4) __raw_writel(*s++, d++); if (unlikely(count)) { /* count can be 1..3 */ u32 tmp = 0; memcpy(&tmp, s, count); __raw_writel(tmp, d); } } static void wil_disconnect_cid(struct wil6210_priv *wil, int cid, u16 reason_code, bool from_event) __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock) { uint i; struct net_device *ndev = wil_to_ndev(wil); struct wireless_dev *wdev = wil->wdev; struct wil_sta_info *sta = &wil->sta[cid]; might_sleep(); wil_dbg_misc(wil, "disconnect_cid: CID %d, status %d\n", cid, sta->status); /* inform upper/lower layers */ if (sta->status != wil_sta_unused) { if (!from_event) { bool del_sta = (wdev->iftype == NL80211_IFTYPE_AP) ? disable_ap_sme : false; wmi_disconnect_sta(wil, sta->addr, reason_code, true, del_sta); } switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: /* AP-like interface */ cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL); break; default: break; } sta->status = wil_sta_unused; sta->fst_link_loss = false; } /* reorder buffers */ for (i = 0; i < WIL_STA_TID_NUM; i++) { struct wil_tid_ampdu_rx *r; spin_lock_bh(&sta->tid_rx_lock); r = sta->tid_rx[i]; sta->tid_rx[i] = NULL; wil_tid_ampdu_rx_free(wil, r); spin_unlock_bh(&sta->tid_rx_lock); } /* crypto context */ memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx)); memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx)); /* release vrings */ for (i = 0; i < ARRAY_SIZE(wil->vring_tx); i++) { if (wil->vring2cid_tid[i][0] == cid) wil_vring_fini_tx(wil, i); } /* statistics */ memset(&sta->stats, 0, sizeof(sta->stats)); } static bool wil_is_connected(struct wil6210_priv *wil) { int i; for (i = 0; i < ARRAY_SIZE(wil->sta); i++) { if (wil->sta[i].status == wil_sta_connected) return true; } return false; } static void _wil6210_disconnect(struct wil6210_priv *wil, const u8 *bssid, u16 reason_code, bool from_event) { int cid = -ENOENT; struct net_device *ndev = wil_to_ndev(wil); struct wireless_dev *wdev = wil->wdev; if (unlikely(!ndev)) return; might_sleep(); wil_info(wil, "bssid=%pM, reason=%d, ev%s\n", bssid, reason_code, from_event ? "+" : "-"); /* Cases are: * - disconnect single STA, still connected * - disconnect single STA, already disconnected * - disconnect all * * For "disconnect all", there are 3 options: * - bssid == NULL * - bssid is broadcast address (ff:ff:ff:ff:ff:ff) * - bssid is our MAC address */ if (bssid && !is_broadcast_ether_addr(bssid) && !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) { cid = wil_find_cid(wil, bssid); wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n", bssid, cid, reason_code); if (cid >= 0) /* disconnect 1 peer */ wil_disconnect_cid(wil, cid, reason_code, from_event); } else { /* all */ wil_dbg_misc(wil, "Disconnect all\n"); for (cid = 0; cid < WIL6210_MAX_CID; cid++) wil_disconnect_cid(wil, cid, reason_code, from_event); } /* link state */ switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: wil_bcast_fini(wil); wil_update_net_queues_bh(wil, NULL, true); netif_carrier_off(ndev); wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); if (test_bit(wil_status_fwconnected, wil->status)) { clear_bit(wil_status_fwconnected, wil->status); cfg80211_disconnected(ndev, reason_code, NULL, 0, wil->locally_generated_disc, GFP_KERNEL); wil->locally_generated_disc = false; } else if (test_bit(wil_status_fwconnecting, wil->status)) { cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0, WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL); wil->bss = NULL; } clear_bit(wil_status_fwconnecting, wil->status); break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: if (!wil_is_connected(wil)) { wil_update_net_queues_bh(wil, NULL, true); clear_bit(wil_status_fwconnected, wil->status); } else { wil_update_net_queues_bh(wil, NULL, false); } break; default: break; } } static void wil_disconnect_worker(struct work_struct *work) { struct wil6210_priv *wil = container_of(work, struct wil6210_priv, disconnect_worker); struct net_device *ndev = wil_to_ndev(wil); int rc; struct { struct wmi_cmd_hdr wmi; struct wmi_disconnect_event evt; } __packed reply; if (test_bit(wil_status_fwconnected, wil->status)) /* connect succeeded after all */ return; if (!test_bit(wil_status_fwconnecting, wil->status)) /* already disconnected */ return; rc = wmi_call(wil, WMI_DISCONNECT_CMDID, NULL, 0, WMI_DISCONNECT_EVENTID, &reply, sizeof(reply), WIL6210_DISCONNECT_TO_MS); if (rc) { wil_err(wil, "disconnect error %d\n", rc); return; } wil_update_net_queues_bh(wil, NULL, true); netif_carrier_off(ndev); cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0, WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL); clear_bit(wil_status_fwconnecting, wil->status); } static void wil_connect_timer_fn(ulong x) { struct wil6210_priv *wil = (void *)x; bool q; wil_err(wil, "Connect timeout detected, disconnect station\n"); /* reschedule to thread context - disconnect won't * run from atomic context. * queue on wmi_wq to prevent race with connect event. */ q = queue_work(wil->wmi_wq, &wil->disconnect_worker); wil_dbg_wmi(wil, "queue_work of disconnect_worker -> %d\n", q); } static void wil_scan_timer_fn(ulong x) { struct wil6210_priv *wil = (void *)x; clear_bit(wil_status_fwready, wil->status); wil_err(wil, "Scan timeout detected, start fw error recovery\n"); wil_fw_error_recovery(wil); } static int wil_wait_for_recovery(struct wil6210_priv *wil) { if (wait_event_interruptible(wil->wq, wil->recovery_state != fw_recovery_pending)) { wil_err(wil, "Interrupt, canceling recovery\n"); return -ERESTARTSYS; } if (wil->recovery_state != fw_recovery_running) { wil_info(wil, "Recovery cancelled\n"); return -EINTR; } wil_info(wil, "Proceed with recovery\n"); return 0; } void wil_set_recovery_state(struct wil6210_priv *wil, int state) { wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n", wil->recovery_state, state); wil->recovery_state = state; wake_up_interruptible(&wil->wq); } bool wil_is_recovery_blocked(struct wil6210_priv *wil) { return no_fw_recovery && (wil->recovery_state == fw_recovery_pending); } static void wil_fw_error_worker(struct work_struct *work) { struct wil6210_priv *wil = container_of(work, struct wil6210_priv, fw_error_worker); struct wireless_dev *wdev = wil->wdev; struct net_device *ndev = wil_to_ndev(wil); int rc; wil_dbg_misc(wil, "fw error worker\n"); if (!(ndev->flags & IFF_UP)) { wil_info(wil, "No recovery - interface is down\n"); return; } /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO * passed since last recovery attempt */ if (time_is_after_jiffies(wil->last_fw_recovery + WIL6210_FW_RECOVERY_TO)) wil->recovery_count++; else wil->recovery_count = 1; /* fw was alive for a long time */ if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) { wil_err(wil, "too many recovery attempts (%d), giving up\n", wil->recovery_count); return; } wil->last_fw_recovery = jiffies; wil_info(wil, "fw error recovery requested (try %d)...\n", wil->recovery_count); if (!no_fw_recovery) wil->recovery_state = fw_recovery_running; if (wil_wait_for_recovery(wil) != 0) return; rtnl_lock(); mutex_lock(&wil->mutex); switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_MONITOR: /* silent recovery, upper layers will see disconnect */ __wil_down(wil); __wil_up(wil); break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: if (no_fw_recovery) /* upper layers do recovery */ break; /* upper layers will see down/up events */ wil_info(wil, "Recovery for AP-like interface - ifdown...\n"); mutex_unlock(&wil->mutex); /* protected by rtnl_lock */ dev_close(ndev); /* never returns error */ msleep(1000); wil_info(wil, "... ifup...\n"); rc = dev_open(ndev); if (rc) wil_err(wil, "dev_open: %d\n", rc); mutex_lock(&wil->mutex); wil_info(wil, "... completed\n"); break; default: wil_err(wil, "No recovery - unknown interface type %d\n", wdev->iftype); break; } mutex_unlock(&wil->mutex); rtnl_unlock(); } static int wil_find_free_vring(struct wil6210_priv *wil) { int i; for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) { if (!wil->vring_tx[i].va) return i; } return -EINVAL; } int wil_tx_init(struct wil6210_priv *wil, int cid) { int rc = -EINVAL, ringid; if (cid < 0) { wil_err(wil, "No connection pending\n"); goto out; } ringid = wil_find_free_vring(wil); if (ringid < 0) { wil_err(wil, "No free vring found\n"); goto out; } wil_dbg_wmi(wil, "Configure for connection CID %d vring %d\n", cid, ringid); rc = wil_vring_init_tx(wil, ringid, 1 << tx_ring_order, cid, 0); if (rc) wil_err(wil, "wil_vring_init_tx for CID %d vring %d failed\n", cid, ringid); out: return rc; } int wil_bcast_init(struct wil6210_priv *wil) { int ri = wil->bcast_vring, rc; if ((ri >= 0) && wil->vring_tx[ri].va) return 0; ri = wil_find_free_vring(wil); if (ri < 0) return ri; wil->bcast_vring = ri; rc = wil_vring_init_bcast(wil, ri, 1 << bcast_ring_order); if (rc) wil->bcast_vring = -1; return rc; } void wil_bcast_fini(struct wil6210_priv *wil) { int ri = wil->bcast_vring; if (ri < 0) return; wil->bcast_vring = -1; wil_vring_fini_tx(wil, ri); } int wil_priv_init(struct wil6210_priv *wil) { uint i; wil_dbg_misc(wil, "priv_init\n"); memset(wil->sta, 0, sizeof(wil->sta)); for (i = 0; i < WIL6210_MAX_CID; i++) spin_lock_init(&wil->sta[i].tid_rx_lock); for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) spin_lock_init(&wil->vring_tx_data[i].lock); mutex_init(&wil->mutex); mutex_init(&wil->wmi_mutex); mutex_init(&wil->probe_client_mutex); mutex_init(&wil->p2p_wdev_mutex); mutex_init(&wil->halp.lock); init_completion(&wil->wmi_ready); init_completion(&wil->wmi_call); init_completion(&wil->halp.comp); wil->bcast_vring = -1; setup_timer(&wil->connect_timer, wil_connect_timer_fn, (ulong)wil); setup_timer(&wil->scan_timer, wil_scan_timer_fn, (ulong)wil); setup_timer(&wil->p2p.discovery_timer, wil_p2p_discovery_timer_fn, (ulong)wil); INIT_WORK(&wil->disconnect_worker, wil_disconnect_worker); INIT_WORK(&wil->wmi_event_worker, wmi_event_worker); INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker); INIT_WORK(&wil->probe_client_worker, wil_probe_client_worker); INIT_WORK(&wil->p2p.delayed_listen_work, wil_p2p_delayed_listen_work); INIT_LIST_HEAD(&wil->pending_wmi_ev); INIT_LIST_HEAD(&wil->probe_client_pending); spin_lock_init(&wil->wmi_ev_lock); spin_lock_init(&wil->net_queue_lock); wil->net_queue_stopped = 1; init_waitqueue_head(&wil->wq); wil_ftm_init(wil); wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi"); if (!wil->wmi_wq) return -EAGAIN; wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service"); if (!wil->wq_service) goto out_wmi_wq; wil->last_fw_recovery = jiffies; wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT; wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT; wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT; wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT; if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT) rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT; wil->ps_profile = WMI_PS_PROFILE_TYPE_DEFAULT; wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST | WMI_WAKEUP_TRIGGER_BCAST; memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats)); wil->vring_idle_trsh = 16; return 0; out_wmi_wq: destroy_workqueue(wil->wmi_wq); return -EAGAIN; } void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps) { if (wil->platform_ops.bus_request) { wil->bus_request_kbps = kbps; wil->platform_ops.bus_request(wil->platform_handle, kbps); } } /** * wil6210_disconnect - disconnect one connection * @wil: driver context * @bssid: peer to disconnect, NULL to disconnect all * @reason_code: Reason code for the Disassociation frame * @from_event: whether is invoked from FW event handler * * Disconnect and release associated resources. If invoked not from the * FW event handler, issue WMI command(s) to trigger MAC disconnect. */ void wil6210_disconnect(struct wil6210_priv *wil, const u8 *bssid, u16 reason_code, bool from_event) { wil_dbg_misc(wil, "disconnect\n"); del_timer_sync(&wil->connect_timer); _wil6210_disconnect(wil, bssid, reason_code, from_event); } void wil_priv_deinit(struct wil6210_priv *wil) { wil_dbg_misc(wil, "priv_deinit\n"); wil_ftm_deinit(wil); wil_set_recovery_state(wil, fw_recovery_idle); del_timer_sync(&wil->scan_timer); del_timer_sync(&wil->p2p.discovery_timer); cancel_work_sync(&wil->disconnect_worker); cancel_work_sync(&wil->fw_error_worker); cancel_work_sync(&wil->p2p.discovery_expired_work); cancel_work_sync(&wil->p2p.delayed_listen_work); mutex_lock(&wil->mutex); wil6210_disconnect(wil, NULL, WLAN_REASON_DEAUTH_LEAVING, false); mutex_unlock(&wil->mutex); wmi_event_flush(wil); wil_probe_client_flush(wil); cancel_work_sync(&wil->probe_client_worker); destroy_workqueue(wil->wq_service); destroy_workqueue(wil->wmi_wq); kfree(wil->board_file); } static void wil_shutdown_bl(struct wil6210_priv *wil) { u32 val; wil_s(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD); usleep_range(100, 150); val = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_shutdown_handshake)); if (val & BL_SHUTDOWN_HS_RTD) { wil_dbg_misc(wil, "BL is ready for halt\n"); return; } wil_err(wil, "BL did not report ready for halt\n"); } /* this format is used by ARC embedded CPU for instruction memory */ static inline u32 ARC_me_imm32(u32 d) { return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16); } /* defines access to interrupt vectors for wil_freeze_bl */ #define ARC_IRQ_VECTOR_OFFSET(N) ((N) * 8) /* ARC long jump instruction */ #define ARC_JAL_INST (0x20200f80) static void wil_freeze_bl(struct wil6210_priv *wil) { u32 jal, upc, saved; u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3); jal = wil_r(wil, wil->iccm_base + ivt3); if (jal != ARC_me_imm32(ARC_JAL_INST)) { wil_dbg_misc(wil, "invalid IVT entry found, skipping\n"); return; } /* prevent the target from entering deep sleep * and disabling memory access */ saved = wil_r(wil, RGF_USER_USAGE_8); wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP); usleep_range(20, 25); /* let the BL process the bit */ /* redirect to endless loop in the INT_L1 context and let it trap */ wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3)); usleep_range(20, 25); /* let the BL get into the trap */ /* verify the BL is frozen */ upc = wil_r(wil, RGF_USER_CPU_PC); if (upc < ivt3 || (upc > (ivt3 + 8))) wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc); wil_w(wil, RGF_USER_USAGE_8, saved); } static void wil_bl_prepare_halt(struct wil6210_priv *wil) { u32 tmp, ver; /* before halting device CPU driver must make sure BL is not accessing * host memory. This is done differently depending on BL version: * 1. For very old BL versions the procedure is skipped * (not supported). * 2. For old BL version we use a special trick to freeze the BL * 3. For new BL versions we shutdown the BL using handshake procedure. */ tmp = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_struct_version)); if (!tmp) { wil_dbg_misc(wil, "old BL, skipping halt preperation\n"); return; } tmp = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_shutdown_handshake)); ver = BL_SHUTDOWN_HS_PROT_VER(tmp); if (ver > 0) wil_shutdown_bl(wil); else wil_freeze_bl(wil); } static inline void wil_halt_cpu(struct wil6210_priv *wil) { wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST); wil_w(wil, RGF_USER_MAC_CPU_0, BIT_USER_MAC_CPU_MAN_RST); } static inline void wil_release_cpu(struct wil6210_priv *wil) { /* Start CPU */ wil_w(wil, RGF_USER_USER_CPU_0, 1); } static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode) { wil_info(wil, "oob_mode to %d\n", mode); switch (mode) { case 0: wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE | BIT_USER_OOB_R2_MODE); break; case 1: wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE); wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE); break; case 2: wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE); wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE); break; default: wil_err(wil, "invalid oob_mode: %d\n", mode); } } static int wil_target_reset(struct wil6210_priv *wil, int no_flash) { int delay = 0; u32 x, x1 = 0; wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name); /* Clear MAC link up */ wil_s(wil, RGF_HP_CTRL, BIT(15)); wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_HPAL_PERST_FROM_PAD); wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST); wil_halt_cpu(wil); if (!no_flash) { /* clear all boot loader "ready" bits */ wil_w(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_ready), 0); /* this should be safe to write even with old BLs */ wil_w(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_shutdown_handshake), 0); } /* Clear Fw Download notification */ wil_c(wil, RGF_USER_USAGE_6, BIT(0)); wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN); /* XTAL stabilization should take about 3ms */ usleep_range(5000, 7000); x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS); if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) { wil_err(wil, "Xtal stabilization timeout\n" "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x); return -ETIME; } /* switch 10k to XTAL*/ wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF); /* 40 MHz */ wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xFE000000); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003F); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xFFE7FE00); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003); /* reset A2 PCIE AHB */ wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0); /* wait until device ready. typical time is 20..80 msec */ if (no_flash) do { msleep(RST_DELAY); x = wil_r(wil, USER_EXT_USER_PMU_3); if (delay++ > RST_COUNT) { wil_err(wil, "Reset not completed, PMU_3 0x%08x\n", x); return -ETIME; } } while ((x & BIT_PMU_DEVICE_RDY) == 0); else do { msleep(RST_DELAY); x = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_ready)); if (x1 != x) { wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n", x1, x); x1 = x; } if (delay++ > RST_COUNT) { wil_err(wil, "Reset not completed, bl.ready 0x%08x\n", x); return -ETIME; } } while (x != BL_READY); wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD); /* enable fix for HW bug related to the SA/DA swap in AP Rx */ wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN | BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC); if (no_flash) { /* Reset OTP HW vectors to fit 40MHz */ wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001); wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57); } wil_dbg_misc(wil, "Reset completed in %d ms\n", delay * RST_DELAY); return 0; } static void wil_collect_fw_info(struct wil6210_priv *wil) { struct wiphy *wiphy = wil_to_wiphy(wil); u8 retry_short; int rc; wil_refresh_fw_capabilities(wil); rc = wmi_get_mgmt_retry(wil, &retry_short); if (!rc) { wiphy->retry_short = retry_short; wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short); } } void wil_refresh_fw_capabilities(struct wil6210_priv *wil) { struct wiphy *wiphy = wil_to_wiphy(wil); int features; wil->keep_radio_on_during_sleep = test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND, wil->platform_capa) && test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities); wil_info(wil, "keep_radio_on_during_sleep (%d)\n", wil->keep_radio_on_during_sleep); if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; else wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC; if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) { wiphy->flags |= WIPHY_FLAG_SUPPORTS_SCHED_SCAN; wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM; wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM; wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN; wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM; } if (wil->platform_ops.set_features) { features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL, wil->fw_capabilities) && test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) ? BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0; wil->platform_ops.set_features(wil->platform_handle, features); } } void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r) { le32_to_cpus(&r->base); le16_to_cpus(&r->entry_size); le16_to_cpus(&r->size); le32_to_cpus(&r->tail); le32_to_cpus(&r->head); } static int wil_get_bl_info(struct wil6210_priv *wil) { struct net_device *ndev = wil_to_ndev(wil); struct wiphy *wiphy = wil_to_wiphy(wil); union { struct bl_dedicated_registers_v0 bl0; struct bl_dedicated_registers_v1 bl1; } bl; u32 bl_ver; u8 *mac; u16 rf_status; wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL), sizeof(bl)); bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version); mac = bl.bl0.mac_address; if (bl_ver == 0) { le32_to_cpus(&bl.bl0.rf_type); le32_to_cpus(&bl.bl0.baseband_type); rf_status = 0; /* actually, unknown */ wil_info(wil, "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n", bl_ver, mac, bl.bl0.rf_type, bl.bl0.baseband_type); wil_info(wil, "Boot Loader build unknown for struct v0\n"); } else { le16_to_cpus(&bl.bl1.rf_type); rf_status = le16_to_cpu(bl.bl1.rf_status); le32_to_cpus(&bl.bl1.baseband_type); le16_to_cpus(&bl.bl1.bl_version_subminor); le16_to_cpus(&bl.bl1.bl_version_build); wil_info(wil, "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n", bl_ver, mac, bl.bl1.rf_type, rf_status, bl.bl1.baseband_type); wil_info(wil, "Boot Loader build %d.%d.%d.%d\n", bl.bl1.bl_version_major, bl.bl1.bl_version_minor, bl.bl1.bl_version_subminor, bl.bl1.bl_version_build); } if (!is_valid_ether_addr(mac)) { wil_err(wil, "BL: Invalid MAC %pM\n", mac); return -EINVAL; } ether_addr_copy(ndev->perm_addr, mac); ether_addr_copy(wiphy->perm_addr, mac); if (!is_valid_ether_addr(ndev->dev_addr)) ether_addr_copy(ndev->dev_addr, mac); if (rf_status) {/* bad RF cable? */ wil_err(wil, "RF communication error 0x%04x", rf_status); return -EAGAIN; } return 0; } static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err) { u32 bl_assert_code, bl_assert_blink, bl_magic_number; u32 bl_ver = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_struct_version)); if (bl_ver < 2) return; bl_assert_code = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_assert_code)); bl_assert_blink = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_assert_blink)); bl_magic_number = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_magic_number)); if (is_err) { wil_err(wil, "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n", bl_assert_code, bl_assert_blink, bl_magic_number); } else { wil_dbg_misc(wil, "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n", bl_assert_code, bl_assert_blink, bl_magic_number); } } static int wil_get_otp_info(struct wil6210_priv *wil) { struct net_device *ndev = wil_to_ndev(wil); struct wiphy *wiphy = wil_to_wiphy(wil); u8 mac[8]; wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(RGF_OTP_MAC), sizeof(mac)); if (!is_valid_ether_addr(mac)) { wil_err(wil, "Invalid MAC %pM\n", mac); return -EINVAL; } ether_addr_copy(ndev->perm_addr, mac); ether_addr_copy(wiphy->perm_addr, mac); if (!is_valid_ether_addr(ndev->dev_addr)) ether_addr_copy(ndev->dev_addr, mac); return 0; } static int wil_wait_for_fw_ready(struct wil6210_priv *wil) { ulong to = msecs_to_jiffies(1000); ulong left = wait_for_completion_timeout(&wil->wmi_ready, to); if (0 == left) { wil_err(wil, "Firmware not ready\n"); return -ETIME; } else { wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n", jiffies_to_msecs(to-left), wil->hw_version); } return 0; } void wil_abort_scan(struct wil6210_priv *wil, bool sync) { int rc; lockdep_assert_held(&wil->p2p_wdev_mutex); if (!wil->scan_request) return; wil_dbg_misc(wil, "Abort scan_request 0x%p\n", wil->scan_request); del_timer_sync(&wil->scan_timer); mutex_unlock(&wil->p2p_wdev_mutex); rc = wmi_abort_scan(wil); if (!rc && sync) wait_event_interruptible_timeout(wil->wq, !wil->scan_request, msecs_to_jiffies( WAIT_FOR_SCAN_ABORT_MS)); mutex_lock(&wil->p2p_wdev_mutex); if (wil->scan_request) { cfg80211_scan_done(wil->scan_request, true); wil->scan_request = NULL; } } int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile) { int rc; if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) { wil_err(wil, "set_power_mgmt not supported\n"); return -EOPNOTSUPP; } rc = wmi_ps_dev_profile_cfg(wil, ps_profile); if (rc) wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc); else wil->ps_profile = ps_profile; return rc; } static void wil_pre_fw_config(struct wil6210_priv *wil) { /* Mark FW as loaded from host */ wil_s(wil, RGF_USER_USAGE_6, 1); /* clear any interrupts which on-card-firmware * may have set */ wil6210_clear_irq(wil); /* CAF_ICR - clear and mask */ /* it is W1C, clear by writing back same value */ wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0); wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0); /* clear PAL_UNIT_ICR (potential D0->D3 leftover) */ wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR), 0); if (wil->fw_calib_result > 0) { __le32 val = cpu_to_le32(wil->fw_calib_result | (CALIB_RESULT_SIGNATURE << 8)); wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val); } } /* * We reset all the structures, and we reset the UMAC. * After calling this routine, you're expected to reload * the firmware. */ int wil_reset(struct wil6210_priv *wil, bool load_fw) { int rc; unsigned long status_flags = BIT(wil_status_resetting); int no_flash; wil_dbg_misc(wil, "reset\n"); WARN_ON(!mutex_is_locked(&wil->mutex)); WARN_ON(test_bit(wil_status_napi_en, wil->status)); if (debug_fw) { static const u8 mac[ETH_ALEN] = { 0x00, 0xde, 0xad, 0x12, 0x34, 0x56, }; struct net_device *ndev = wil_to_ndev(wil); ether_addr_copy(ndev->perm_addr, mac); ether_addr_copy(ndev->dev_addr, ndev->perm_addr); return 0; } if (wil->hw_version == HW_VER_UNKNOWN) return -ENODEV; if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa)) { wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n"); wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0); } if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) { wil_dbg_misc(wil, "Notify FW on ext clock configuration\n"); wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK); } if (wil->platform_ops.notify) { rc = wil->platform_ops.notify(wil->platform_handle, WIL_PLATFORM_EVT_PRE_RESET); if (rc) wil_err(wil, "PRE_RESET platform notify failed, rc %d\n", rc); } set_bit(wil_status_resetting, wil->status); if (test_bit(wil_status_collecting_dumps, wil->status)) { /* Device collects crash dump, cancel the reset. * following crash dump collection, reset would take place. */ wil_dbg_misc(wil, "reject reset while collecting crash dump\n"); rc = -EBUSY; goto out; } cancel_work_sync(&wil->disconnect_worker); wil6210_disconnect(wil, NULL, WLAN_REASON_DEAUTH_LEAVING, false); wil_bcast_fini(wil); /* Disable device led before reset*/ wmi_led_cfg(wil, false); mutex_lock(&wil->p2p_wdev_mutex); wil_abort_scan(wil, false); mutex_unlock(&wil->p2p_wdev_mutex); /* prevent NAPI from being scheduled and prevent wmi commands */ mutex_lock(&wil->wmi_mutex); if (test_bit(wil_status_suspending, wil->status)) status_flags |= BIT(wil_status_suspending); bitmap_and(wil->status, wil->status, &status_flags, wil_status_last); wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status); mutex_unlock(&wil->wmi_mutex); wil_mask_irq(wil); wmi_event_flush(wil); flush_workqueue(wil->wq_service); flush_workqueue(wil->wmi_wq); no_flash = test_bit(hw_capa_no_flash, wil->hw_capa); if (!no_flash) wil_bl_crash_info(wil, false); wil_disable_irq(wil); rc = wil_target_reset(wil, no_flash); wil6210_clear_irq(wil); wil_enable_irq(wil); wil_rx_fini(wil); if (rc) { if (!no_flash) wil_bl_crash_info(wil, true); goto out; } if (no_flash) { rc = wil_get_otp_info(wil); } else { rc = wil_get_bl_info(wil); if (rc == -EAGAIN && !load_fw) /* ignore RF error if not going up */ rc = 0; } if (rc) goto out; wil_set_oob_mode(wil, oob_mode); if (load_fw) { wil_info(wil, "Use firmware <%s> + board <%s>\n", wil->wil_fw_name, wil_get_board_file(wil)); if (!no_flash) wil_bl_prepare_halt(wil); wil_halt_cpu(wil); memset(wil->fw_version, 0, sizeof(wil->fw_version)); /* Loading f/w from the file */ rc = wil_request_firmware(wil, wil->wil_fw_name, true); if (rc) goto out; if (wil->brd_file_addr) rc = wil_request_board(wil, WIL_BOARD_FILE_NAME); else rc = wil_request_firmware(wil, WIL_BOARD_FILE_NAME, true); if (rc) goto out; wil_pre_fw_config(wil); wil_release_cpu(wil); } /* init after reset */ wil->ap_isolate = 0; reinit_completion(&wil->wmi_ready); reinit_completion(&wil->wmi_call); reinit_completion(&wil->halp.comp); clear_bit(wil_status_resetting, wil->status); if (load_fw) { wil_configure_interrupt_moderation(wil); wil_unmask_irq(wil); /* we just started MAC, wait for FW ready */ rc = wil_wait_for_fw_ready(wil); if (rc) return rc; /* check FW is responsive */ rc = wmi_echo(wil); if (rc) { wil_err(wil, "wmi_echo failed, rc %d\n", rc); return rc; } wil_collect_fw_info(wil); if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT) wil_ps_update(wil, wil->ps_profile); if (wil->platform_ops.notify) { rc = wil->platform_ops.notify(wil->platform_handle, WIL_PLATFORM_EVT_FW_RDY); if (rc) { wil_err(wil, "FW_RDY notify failed, rc %d\n", rc); rc = 0; } } } return rc; out: clear_bit(wil_status_resetting, wil->status); return rc; } void wil_fw_error_recovery(struct wil6210_priv *wil) { wil_dbg_misc(wil, "starting fw error recovery\n"); if (test_bit(wil_status_resetting, wil->status)) { wil_info(wil, "Reset already in progress\n"); return; } wil->recovery_state = fw_recovery_pending; schedule_work(&wil->fw_error_worker); } int __wil_up(struct wil6210_priv *wil) { struct net_device *ndev = wil_to_ndev(wil); struct wireless_dev *wdev = wil->wdev; int rc; WARN_ON(!mutex_is_locked(&wil->mutex)); rc = wil_reset(wil, true); if (rc) return rc; /* Rx VRING. After MAC and beacon */ rc = wil_rx_init(wil, 1 << rx_ring_order); if (rc) return rc; switch (wdev->iftype) { case NL80211_IFTYPE_STATION: wil_dbg_misc(wil, "type: STATION\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_AP: wil_dbg_misc(wil, "type: AP\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_P2P_CLIENT: wil_dbg_misc(wil, "type: P2P_CLIENT\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_P2P_GO: wil_dbg_misc(wil, "type: P2P_GO\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_MONITOR: wil_dbg_misc(wil, "type: Monitor\n"); ndev->type = ARPHRD_IEEE80211_RADIOTAP; /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */ break; default: return -EOPNOTSUPP; } /* MAC address - pre-requisite for other commands */ wmi_set_mac_address(wil, ndev->dev_addr); wil_dbg_misc(wil, "NAPI enable\n"); napi_enable(&wil->napi_rx); napi_enable(&wil->napi_tx); set_bit(wil_status_napi_en, wil->status); wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); return 0; } int wil_up(struct wil6210_priv *wil) { int rc; wil_dbg_misc(wil, "up\n"); mutex_lock(&wil->mutex); rc = __wil_up(wil); mutex_unlock(&wil->mutex); return rc; } int __wil_down(struct wil6210_priv *wil) { WARN_ON(!mutex_is_locked(&wil->mutex)); set_bit(wil_status_resetting, wil->status); wil6210_bus_request(wil, 0); wil_disable_irq(wil); if (test_and_clear_bit(wil_status_napi_en, wil->status)) { napi_disable(&wil->napi_rx); napi_disable(&wil->napi_tx); wil_dbg_misc(wil, "NAPI disable\n"); } wil_enable_irq(wil); wil_ftm_stop_operations(wil); mutex_lock(&wil->p2p_wdev_mutex); wil_p2p_stop_radio_operations(wil); wil_abort_scan(wil, false); mutex_unlock(&wil->p2p_wdev_mutex); return wil_reset(wil, false); } int wil_down(struct wil6210_priv *wil) { int rc; wil_dbg_misc(wil, "down\n"); wil_set_recovery_state(wil, fw_recovery_idle); mutex_lock(&wil->mutex); rc = __wil_down(wil); mutex_unlock(&wil->mutex); return rc; } int wil_find_cid(struct wil6210_priv *wil, const u8 *mac) { int i; int rc = -ENOENT; for (i = 0; i < ARRAY_SIZE(wil->sta); i++) { if ((wil->sta[i].status != wil_sta_unused) && ether_addr_equal(wil->sta[i].addr, mac)) { rc = i; break; } } return rc; } void wil_halp_vote(struct wil6210_priv *wil) { unsigned long rc; unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS); mutex_lock(&wil->halp.lock); wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n", wil->halp.ref_cnt); if (++wil->halp.ref_cnt == 1) { reinit_completion(&wil->halp.comp); wil6210_set_halp(wil); rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies); if (!rc) { wil_err(wil, "HALP vote timed out\n"); /* Mask HALP as done in case the interrupt is raised */ wil6210_mask_halp(wil); } else { wil_dbg_irq(wil, "halp_vote: HALP vote completed after %d ms\n", jiffies_to_msecs(to_jiffies - rc)); } } wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n", wil->halp.ref_cnt); mutex_unlock(&wil->halp.lock); } void wil_halp_unvote(struct wil6210_priv *wil) { WARN_ON(wil->halp.ref_cnt == 0); mutex_lock(&wil->halp.lock); wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n", wil->halp.ref_cnt); if (--wil->halp.ref_cnt == 0) { wil6210_clear_halp(wil); wil_dbg_irq(wil, "HALP unvote\n"); } wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n", wil->halp.ref_cnt); mutex_unlock(&wil->halp.lock); }