/* * linux/arch/alpha/kernel/smp.c * * 2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com) * Renamed modified smp_call_function to smp_call_function_on_cpu() * Created an function that conforms to the old calling convention * of smp_call_function(). * * This is helpful for DCPI. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __KERNEL_SYSCALLS__ #include #include "proto.h" #include "irq_impl.h" #define DEBUG_SMP 0 #if DEBUG_SMP #define DBGS(args) printk args #else #define DBGS(args) #endif /* A collection of per-processor data. */ struct cpuinfo_alpha cpu_data[NR_CPUS]; /* A collection of single bit ipi messages. */ static struct { unsigned long bits ____cacheline_aligned; } ipi_data[NR_CPUS] __cacheline_aligned; enum ipi_message_type { IPI_RESCHEDULE, IPI_CALL_FUNC, IPI_CPU_STOP, }; spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED; /* Set to a secondary's cpuid when it comes online. */ static unsigned long smp_secondary_alive; /* Which cpus ids came online. */ unsigned long cpu_present_mask; /* cpus reported in the hwrpb */ static unsigned long hwrpb_cpu_present_mask __initdata = 0; static int max_cpus = -1; /* Command-line limitation. */ int smp_num_probed; /* Internal processor count */ int smp_num_cpus = 1; /* Number that came online. */ int smp_threads_ready; /* True once the per process idle is forked. */ cycles_t cacheflush_time; int __cpu_number_map[NR_CPUS]; int __cpu_logical_map[NR_CPUS]; extern void calibrate_delay(void); extern asmlinkage void entInt(void); static int __init nosmp(char *str) { max_cpus = 0; return 1; } __setup("nosmp", nosmp); static int __init maxcpus(char *str) { get_option(&str, &max_cpus); return 1; } __setup("maxcpus", maxcpus); /* * Called by both boot and secondaries to move global data into * per-processor storage. */ static inline void __init smp_store_cpu_info(int cpuid) { cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy; cpu_data[cpuid].last_asn = ASN_FIRST_VERSION; cpu_data[cpuid].need_new_asn = 0; cpu_data[cpuid].asn_lock = 0; local_irq_count(cpuid) = 0; local_bh_count(cpuid) = 0; } /* * Ideally sets up per-cpu profiling hooks. Doesn't do much now... */ static inline void __init smp_setup_percpu_timer(int cpuid) { cpu_data[cpuid].prof_counter = 1; cpu_data[cpuid].prof_multiplier = 1; } static void __init wait_boot_cpu_to_stop(int cpuid) { long stop = jiffies + 10*HZ; while (time_before(jiffies, stop)) { if (!smp_secondary_alive) return; barrier(); } printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid); for (;;) barrier(); } /* * Where secondaries begin a life of C. */ void __init smp_callin(void) { int cpuid = hard_smp_processor_id(); if (current != init_tasks[cpu_number_map(cpuid)]) { printk("BUG: smp_calling: cpu %d current %p init_tasks[cpu_number_map(cpuid)] %p\n", cpuid, current, init_tasks[cpu_number_map(cpuid)]); } DBGS(("CALLIN %d state 0x%lx\n", cpuid, current->state)); /* Turn on machine checks. */ wrmces(7); /* Set trap vectors. */ trap_init(); /* Set interrupt vector. */ wrent(entInt, 0); /* Get our local ticker going. */ smp_setup_percpu_timer(cpuid); /* Must have completely accurate bogos. */ __sti(); /* * Wait boot CPU to stop with irq enabled before * running calibrate_delay(). */ wait_boot_cpu_to_stop(cpuid); mb(); calibrate_delay(); smp_store_cpu_info(cpuid); /* * Allow master to continue only after we written * the loops_per_jiffy. */ wmb(); smp_secondary_alive = 1; /* Wait for the go code. */ while (!smp_threads_ready) barrier(); DBGS(("smp_callin: commencing CPU %d current %p\n", cpuid, current)); /* Setup the scheduler for this processor. */ init_idle(); /* ??? This should be in init_idle. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; /* Do nothing. */ cpu_idle(); } /* * Rough estimation for SMP scheduling, this is the number of cycles it * takes for a fully memory-limited process to flush the SMP-local cache. * * We are not told how much cache there is, so we have to guess. */ static void __init smp_tune_scheduling (int cpuid) { struct percpu_struct *cpu; unsigned long on_chip_cache; unsigned long freq; cpu = (struct percpu_struct*)((char*)hwrpb + hwrpb->processor_offset + cpuid * hwrpb->processor_size); switch (cpu->type) { case EV45_CPU: on_chip_cache = 16 + 16; break; case EV5_CPU: case EV56_CPU: on_chip_cache = 8 + 8 + 96; break; case PCA56_CPU: on_chip_cache = 16 + 8; break; case EV6_CPU: case EV67_CPU: on_chip_cache = 64 + 64; break; default: on_chip_cache = 8 + 8; break; } freq = hwrpb->cycle_freq ? : est_cycle_freq; #if 0 /* Magic estimation stolen from x86 port. */ cacheflush_time = freq / 1024L * on_chip_cache / 5000L; printk("Using heuristic of %d cycles.\n", cacheflush_time); #else /* Magic value to force potential preemption of other CPUs. */ cacheflush_time = INT_MAX; printk("Using heuristic of %d cycles.\n", cacheflush_time); #endif } /* * Send a message to a secondary's console. "START" is one such * interesting message. ;-) */ static void send_secondary_console_msg(char *str, int cpuid) { struct percpu_struct *cpu; register char *cp1, *cp2; unsigned long cpumask; size_t len; long timeout; cpu = (struct percpu_struct *) ((char*)hwrpb + hwrpb->processor_offset + cpuid * hwrpb->processor_size); cpumask = (1UL << cpuid); if (hwrpb->txrdy & cpumask) goto delay1; ready1: cp2 = str; len = strlen(cp2); *(unsigned int *)&cpu->ipc_buffer[0] = len; cp1 = (char *) &cpu->ipc_buffer[1]; memcpy(cp1, cp2, len); /* atomic test and set */ wmb(); set_bit(cpuid, &hwrpb->rxrdy); if (hwrpb->txrdy & cpumask) goto delay2; ready2: return; delay1: /* Wait 10 seconds. Note that jiffies aren't ticking yet. */ for (timeout = 1000000; timeout > 0; --timeout) { if (!(hwrpb->txrdy & cpumask)) goto ready1; udelay(10); barrier(); } goto timeout; delay2: /* Wait 10 seconds. */ for (timeout = 1000000; timeout > 0; --timeout) { if (!(hwrpb->txrdy & cpumask)) goto ready2; udelay(10); barrier(); } goto timeout; timeout: printk("Processor %x not ready\n", cpuid); return; } /* * A secondary console wants to send a message. Receive it. */ static void recv_secondary_console_msg(void) { int mycpu, i, cnt; unsigned long txrdy = hwrpb->txrdy; char *cp1, *cp2, buf[80]; struct percpu_struct *cpu; DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy)); mycpu = hard_smp_processor_id(); for (i = 0; i < NR_CPUS; i++) { if (!(txrdy & (1UL << i))) continue; DBGS(("recv_secondary_console_msg: " "TXRDY contains CPU %d.\n", i)); cpu = (struct percpu_struct *) ((char*)hwrpb + hwrpb->processor_offset + i * hwrpb->processor_size); DBGS(("recv_secondary_console_msg: on %d from %d" " HALT_REASON 0x%lx FLAGS 0x%lx\n", mycpu, i, cpu->halt_reason, cpu->flags)); cnt = cpu->ipc_buffer[0] >> 32; if (cnt <= 0 || cnt >= 80) strcpy(buf, "<<< BOGUS MSG >>>"); else { cp1 = (char *) &cpu->ipc_buffer[11]; cp2 = buf; strcpy(cp2, cp1); while ((cp2 = strchr(cp2, '\r')) != 0) { *cp2 = ' '; if (cp2[1] == '\n') cp2[1] = ' '; } } DBGS((KERN_INFO "recv_secondary_console_msg: on %d " "message is '%s'\n", mycpu, buf)); } hwrpb->txrdy = 0; } /* * Convince the console to have a secondary cpu begin execution. */ static int __init secondary_cpu_start(int cpuid, struct task_struct *idle) { struct percpu_struct *cpu; struct pcb_struct *hwpcb; long timeout; cpu = (struct percpu_struct *) ((char*)hwrpb + hwrpb->processor_offset + cpuid * hwrpb->processor_size); hwpcb = (struct pcb_struct *) cpu->hwpcb; /* Initialize the CPU's HWPCB to something just good enough for us to get started. Immediately after starting, we'll swpctx to the target idle task's ptb. Reuse the stack in the mean time. Precalculate the target PCBB. */ hwpcb->ksp = (unsigned long) idle + sizeof(union task_union) - 16; hwpcb->usp = 0; hwpcb->ptbr = idle->thread.ptbr; hwpcb->pcc = 0; hwpcb->asn = 0; hwpcb->unique = virt_to_phys(&idle->thread); hwpcb->flags = idle->thread.pal_flags; hwpcb->res1 = hwpcb->res2 = 0; #if 0 DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n", hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique)); #endif DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n", cpuid, idle->state, idle->thread.pal_flags)); /* Setup HWRPB fields that SRM uses to activate secondary CPU */ hwrpb->CPU_restart = __smp_callin; hwrpb->CPU_restart_data = (unsigned long) __smp_callin; /* Recalculate and update the HWRPB checksum */ hwrpb_update_checksum(hwrpb); /* * Send a "start" command to the specified processor. */ /* SRM III 3.4.1.3 */ cpu->flags |= 0x22; /* turn on Context Valid and Restart Capable */ cpu->flags &= ~1; /* turn off Bootstrap In Progress */ wmb(); send_secondary_console_msg("START\r\n", cpuid); /* Wait 10 seconds for an ACK from the console. Note that jiffies aren't ticking yet. */ for (timeout = 1000000; timeout > 0; timeout--) { if (cpu->flags & 1) goto started; udelay(10); barrier(); } printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid); return -1; started: DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid)); return 0; } static int __init fork_by_hand(void) { struct pt_regs regs; /* * don't care about the regs settings since * we'll never reschedule the forked task. */ return do_fork(CLONE_VM|CLONE_PID, 0, ®s, 0); } /* * Bring one cpu online. */ static int __init smp_boot_one_cpu(int cpuid, int cpunum) { struct task_struct *idle; long timeout; /* Cook up an idler for this guy. Note that the address we give to kernel_thread is irrelevant -- it's going to start where HWRPB.CPU_restart says to start. But this gets all the other task-y sort of data structures set up like we wish. */ /* * We can't use kernel_thread since we must avoid to * reschedule the child. */ if (fork_by_hand() < 0) panic("failed fork for CPU %d", cpuid); idle = init_task.prev_task; if (!idle) panic("No idle process for CPU %d", cpuid); if (idle == &init_task) panic("idle process is init_task for CPU %d", cpuid); idle->processor = cpuid; idle->cpus_runnable = 1 << cpuid; /* we schedule the first task manually */ __cpu_logical_map[cpunum] = cpuid; __cpu_number_map[cpuid] = cpunum; del_from_runqueue(idle); unhash_process(idle); init_tasks[cpunum] = idle; DBGS(("smp_boot_one_cpu: CPU %d state 0x%lx flags 0x%lx\n", cpuid, idle->state, idle->flags)); /* The secondary will change this once it is happy. Note that secondary_cpu_start contains the necessary memory barrier. */ smp_secondary_alive = -1; /* Whirrr, whirrr, whirrrrrrrrr... */ if (secondary_cpu_start(cpuid, idle)) return -1; mb(); /* Notify the secondary CPU it can run calibrate_delay() */ smp_secondary_alive = 0; /* We've been acked by the console; wait one second for the task to start up for real. Note that jiffies aren't ticking yet. */ for (timeout = 0; timeout < 1000000; timeout++) { if (smp_secondary_alive == 1) goto alive; udelay(10); barrier(); } /* we must invalidate our stuff as we failed to boot the CPU */ __cpu_logical_map[cpunum] = -1; __cpu_number_map[cpuid] = -1; /* the idle task is local to us so free it as we don't use it */ free_task_struct(idle); printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid); return -1; alive: /* Another "Red Snapper". */ return 0; } /* * Called from setup_arch. Detect an SMP system and which processors * are present. */ void __init setup_smp(void) { struct percpu_struct *cpubase, *cpu; int i; if (boot_cpuid != 0) { printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n", boot_cpuid); } if (hwrpb->nr_processors > 1) { int boot_cpu_palrev; DBGS(("setup_smp: nr_processors %ld\n", hwrpb->nr_processors)); cpubase = (struct percpu_struct *) ((char*)hwrpb + hwrpb->processor_offset); boot_cpu_palrev = cpubase->pal_revision; for (i = 0; i < hwrpb->nr_processors; i++ ) { cpu = (struct percpu_struct *) ((char *)cpubase + i*hwrpb->processor_size); if ((cpu->flags & 0x1cc) == 0x1cc) { smp_num_probed++; /* Assume here that "whami" == index */ hwrpb_cpu_present_mask |= (1UL << i); cpu->pal_revision = boot_cpu_palrev; } DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n", i, cpu->flags, cpu->type)); DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n", i, cpu->pal_revision)); } } else { smp_num_probed = 1; hwrpb_cpu_present_mask = (1UL << boot_cpuid); } cpu_present_mask = 1UL << boot_cpuid; printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_mask = %lx\n", smp_num_probed, hwrpb_cpu_present_mask); } /* * Called by smp_init bring all the secondaries online and hold them. */ void __init smp_boot_cpus(void) { int cpu_count, i; unsigned long bogosum; /* Take care of some initial bookkeeping. */ memset(__cpu_number_map, -1, sizeof(__cpu_number_map)); memset(__cpu_logical_map, -1, sizeof(__cpu_logical_map)); memset(ipi_data, 0, sizeof(ipi_data)); __cpu_number_map[boot_cpuid] = 0; __cpu_logical_map[0] = boot_cpuid; current->processor = boot_cpuid; smp_store_cpu_info(boot_cpuid); smp_tune_scheduling(boot_cpuid); smp_setup_percpu_timer(boot_cpuid); init_idle(); /* ??? This should be in init_idle. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; /* Nothing to do on a UP box, or when told not to. */ if (smp_num_probed == 1 || max_cpus == 0) { printk(KERN_INFO "SMP mode deactivated.\n"); return; } printk(KERN_INFO "SMP starting up secondaries.\n"); cpu_count = 1; for (i = 0; i < NR_CPUS; i++) { if (i == boot_cpuid) continue; if (((hwrpb_cpu_present_mask >> i) & 1) == 0) continue; if (smp_boot_one_cpu(i, cpu_count)) continue; cpu_present_mask |= 1UL << i; cpu_count++; } if (cpu_count == 1) { printk(KERN_ERR "SMP: Only one lonely processor alive.\n"); return; } bogosum = 0; for (i = 0; i < NR_CPUS; i++) { if (cpu_present_mask & (1UL << i)) bogosum += cpu_data[i].loops_per_jiffy; } printk(KERN_INFO "SMP: Total of %d processors activated " "(%lu.%02lu BogoMIPS).\n", cpu_count, (bogosum + 2500) / (500000/HZ), ((bogosum + 2500) / (5000/HZ)) % 100); smp_num_cpus = cpu_count; } /* * Called by smp_init to release the blocking online cpus once they * are all started. */ void __init smp_commence(void) { /* smp_init sets smp_threads_ready -- that's enough. */ mb(); } void smp_percpu_timer_interrupt(struct pt_regs *regs) { int cpu = smp_processor_id(); unsigned long user = user_mode(regs); struct cpuinfo_alpha *data = &cpu_data[cpu]; /* Record kernel PC. */ if (!user) alpha_do_profile(regs->pc); if (!--data->prof_counter) { /* We need to make like a normal interrupt -- otherwise timer interrupts ignore the global interrupt lock, which would be a Bad Thing. */ irq_enter(cpu, RTC_IRQ); update_process_times(user); data->prof_counter = data->prof_multiplier; irq_exit(cpu, RTC_IRQ); if (softirq_pending(cpu)) do_softirq(); } } int __init setup_profiling_timer(unsigned int multiplier) { return -EINVAL; } static void send_ipi_message(unsigned long to_whom, enum ipi_message_type operation) { long i, j; /* Reduce the number of memory barriers by doing two loops, one to set the bits, one to invoke the interrupts. */ mb(); /* Order out-of-band data and bit setting. */ for (i = 0, j = 1; i < NR_CPUS; ++i, j <<= 1) { if (to_whom & j) set_bit(operation, &ipi_data[i].bits); } mb(); /* Order bit setting and interrupt. */ for (i = 0, j = 1; i < NR_CPUS; ++i, j <<= 1) { if (to_whom & j) wripir(i); } } /* Structure and data for smp_call_function. This is designed to minimize static memory requirements. Plus it looks cleaner. */ struct smp_call_struct { void (*func) (void *info); void *info; long wait; atomic_t unstarted_count; atomic_t unfinished_count; }; static struct smp_call_struct *smp_call_function_data; /* Atomicly drop data into a shared pointer. The pointer is free if it is initially locked. If retry, spin until free. */ static inline int pointer_lock (void *lock, void *data, int retry) { void *old, *tmp; mb(); again: /* Compare and swap with zero. */ asm volatile ( "1: ldq_l %0,%1\n" " mov %3,%2\n" " bne %0,2f\n" " stq_c %2,%1\n" " beq %2,1b\n" "2:" : "=&r"(old), "=m"(*(void **)lock), "=&r"(tmp) : "r"(data) : "memory"); if (old == 0) return 0; if (! retry) return -EBUSY; while (*(void **)lock) barrier(); goto again; } void handle_ipi(struct pt_regs *regs) { int this_cpu = smp_processor_id(); unsigned long *pending_ipis = &ipi_data[this_cpu].bits; unsigned long ops; #if 0 DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n", this_cpu, *pending_ipis, regs->pc)); #endif mb(); /* Order interrupt and bit testing. */ while ((ops = xchg(pending_ipis, 0)) != 0) { mb(); /* Order bit clearing and data access. */ do { unsigned long which; which = ops & -ops; ops &= ~which; which = ffz(~which); if (which == IPI_RESCHEDULE) { /* Reschedule callback. Everything to be done is done by the interrupt return path. */ } else if (which == IPI_CALL_FUNC) { struct smp_call_struct *data; void (*func)(void *info); void *info; int wait; data = smp_call_function_data; func = data->func; info = data->info; wait = data->wait; /* Notify the sending CPU that the data has been received, and execution is about to begin. */ mb(); atomic_dec (&data->unstarted_count); /* At this point the structure may be gone unless wait is true. */ (*func)(info); /* Notify the sending CPU that the task is done. */ mb(); if (wait) atomic_dec (&data->unfinished_count); } else if (which == IPI_CPU_STOP) { halt(); } else { printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n", this_cpu, which); } } while (ops); mb(); /* Order data access and bit testing. */ } cpu_data[this_cpu].ipi_count++; if (hwrpb->txrdy) recv_secondary_console_msg(); } void smp_send_reschedule(int cpu) { #if DEBUG_IPI_MSG if (cpu == hard_smp_processor_id()) printk(KERN_WARNING "smp_send_reschedule: Sending IPI to self.\n"); #endif send_ipi_message(1UL << cpu, IPI_RESCHEDULE); } void smp_send_stop(void) { unsigned long to_whom = cpu_present_mask ^ (1UL << smp_processor_id()); #if DEBUG_IPI_MSG if (hard_smp_processor_id() != boot_cpu_id) printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n"); #endif send_ipi_message(to_whom, IPI_CPU_STOP); } /* * Run a function on all other CPUs. * The function to run. This must be fast and non-blocking. * An arbitrary pointer to pass to the function. * If true, keep retrying until ready. * If true, wait until function has completed on other CPUs. * [RETURNS] 0 on success, else a negative status code. * * Does not return until remote CPUs are nearly ready to execute * or are or have executed. */ int smp_call_function_on_cpu (void (*func) (void *info), void *info, int retry, int wait, unsigned long to_whom) { struct smp_call_struct data; long timeout; int num_cpus_to_call; long i,j; data.func = func; data.info = info; data.wait = wait; to_whom &= ~(1L << smp_processor_id()); for (i = 0, j = 1, num_cpus_to_call = 0; i < NR_CPUS; ++i, j <<= 1) if (to_whom & j) num_cpus_to_call++; atomic_set(&data.unstarted_count, num_cpus_to_call); atomic_set(&data.unfinished_count, num_cpus_to_call); /* Acquire the smp_call_function_data mutex. */ if (pointer_lock(&smp_call_function_data, &data, retry)) return -EBUSY; /* Send a message to the requested CPUs. */ send_ipi_message(to_whom, IPI_CALL_FUNC); /* Wait for a minimal response. */ timeout = jiffies + HZ; while (atomic_read (&data.unstarted_count) > 0 && time_before (jiffies, timeout)) barrier(); /* We either got one or timed out -- clear the lock. */ mb(); smp_call_function_data = 0; if (atomic_read (&data.unstarted_count) > 0) return -ETIMEDOUT; /* Wait for a complete response, if needed. */ if (wait) { while (atomic_read (&data.unfinished_count) > 0) barrier(); } return 0; } int smp_call_function (void (*func) (void *info), void *info, int retry, int wait) { return smp_call_function_on_cpu (func, info, retry, wait, cpu_present_mask); } static void ipi_imb(void *ignored) { imb(); } void smp_imb(void) { /* Must wait other processors to flush their icache before continue. */ if (smp_call_function(ipi_imb, NULL, 1, 1)) printk(KERN_CRIT "smp_imb: timed out\n"); imb(); } static void ipi_flush_tlb_all(void *ignored) { tbia(); } void flush_tlb_all(void) { /* Although we don't have any data to pass, we do want to synchronize with the other processors. */ if (smp_call_function(ipi_flush_tlb_all, NULL, 1, 1)) { printk(KERN_CRIT "flush_tlb_all: timed out\n"); } tbia(); } #define asn_locked() (cpu_data[smp_processor_id()].asn_lock) static void ipi_flush_tlb_mm(void *x) { struct mm_struct *mm = (struct mm_struct *) x; if (mm == current->active_mm && !asn_locked()) flush_tlb_current(mm); else flush_tlb_other(mm); } void flush_tlb_mm(struct mm_struct *mm) { if (mm == current->active_mm) { flush_tlb_current(mm); if (atomic_read(&mm->mm_users) <= 1) { int i, cpu, this_cpu = smp_processor_id(); for (i = 0; i < smp_num_cpus; i++) { cpu = cpu_logical_map(i); if (cpu == this_cpu) continue; if (mm->context[cpu]) mm->context[cpu] = 0; } return; } } if (smp_call_function(ipi_flush_tlb_mm, mm, 1, 1)) { printk(KERN_CRIT "flush_tlb_mm: timed out\n"); } } struct flush_tlb_page_struct { struct vm_area_struct *vma; struct mm_struct *mm; unsigned long addr; }; static void ipi_flush_tlb_page(void *x) { struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x; struct mm_struct * mm = data->mm; if (mm == current->active_mm && !asn_locked()) flush_tlb_current_page(mm, data->vma, data->addr); else flush_tlb_other(mm); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { struct flush_tlb_page_struct data; struct mm_struct *mm = vma->vm_mm; if (mm == current->active_mm) { flush_tlb_current_page(mm, vma, addr); if (atomic_read(&mm->mm_users) <= 1) { int i, cpu, this_cpu = smp_processor_id(); for (i = 0; i < smp_num_cpus; i++) { cpu = cpu_logical_map(i); if (cpu == this_cpu) continue; if (mm->context[cpu]) mm->context[cpu] = 0; } return; } } data.vma = vma; data.mm = mm; data.addr = addr; if (smp_call_function(ipi_flush_tlb_page, &data, 1, 1)) { printk(KERN_CRIT "flush_tlb_page: timed out\n"); } } void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { /* On the Alpha we always flush the whole user tlb. */ flush_tlb_mm(mm); } static void ipi_flush_icache_page(void *x) { struct mm_struct *mm = (struct mm_struct *) x; if (mm == current->active_mm && !asn_locked()) __load_new_mm_context(mm); else flush_tlb_other(mm); } void flush_icache_page(struct vm_area_struct *vma, struct page *page) { struct mm_struct *mm = vma->vm_mm; if ((vma->vm_flags & VM_EXEC) == 0) return; if (mm == current->active_mm) { __load_new_mm_context(mm); if (atomic_read(&mm->mm_users) <= 1) { int i, cpu, this_cpu = smp_processor_id(); for (i = 0; i < smp_num_cpus; i++) { cpu = cpu_logical_map(i); if (cpu == this_cpu) continue; if (mm->context[cpu]) mm->context[cpu] = 0; } return; } } if (smp_call_function(ipi_flush_icache_page, mm, 1, 1)) { printk(KERN_CRIT "flush_icache_page: timed out\n"); } } #ifdef CONFIG_DEBUG_SPINLOCK void spin_unlock(spinlock_t * lock) { mb(); lock->lock = 0; lock->on_cpu = -1; lock->previous = NULL; lock->task = NULL; lock->base_file = "none"; lock->line_no = 0; } void debug_spin_lock(spinlock_t * lock, const char *base_file, int line_no) { long tmp; long stuck; void *inline_pc = __builtin_return_address(0); unsigned long started = jiffies; int printed = 0; int cpu = smp_processor_id(); stuck = 1L << 30; try_again: /* Use sub-sections to put the actual loop at the end of this object file's text section so as to perfect branch prediction. */ __asm__ __volatile__( "1: ldl_l %0,%1\n" " subq %2,1,%2\n" " blbs %0,2f\n" " or %0,1,%0\n" " stl_c %0,%1\n" " beq %0,3f\n" "4: mb\n" ".subsection 2\n" "2: ldl %0,%1\n" " subq %2,1,%2\n" "3: blt %2,4b\n" " blbs %0,2b\n" " br 1b\n" ".previous" : "=r" (tmp), "=m" (lock->lock), "=r" (stuck) : "1" (lock->lock), "2" (stuck) : "memory"); if (stuck < 0) { printk(KERN_WARNING "%s:%d spinlock stuck in %s at %p(%d)" " owner %s at %p(%d) %s:%d\n", base_file, line_no, current->comm, inline_pc, cpu, lock->task->comm, lock->previous, lock->on_cpu, lock->base_file, lock->line_no); stuck = 1L << 36; printed = 1; goto try_again; } /* Exiting. Got the lock. */ lock->on_cpu = cpu; lock->previous = inline_pc; lock->task = current; lock->base_file = base_file; lock->line_no = line_no; if (printed) { printk(KERN_WARNING "%s:%d spinlock grabbed in %s at %p(%d) %ld ticks\n", base_file, line_no, current->comm, inline_pc, cpu, jiffies - started); } } int debug_spin_trylock(spinlock_t * lock, const char *base_file, int line_no) { int ret; if ((ret = !test_and_set_bit(0, lock))) { lock->on_cpu = smp_processor_id(); lock->previous = __builtin_return_address(0); lock->task = current; } else { lock->base_file = base_file; lock->line_no = line_no; } return ret; } #endif /* CONFIG_DEBUG_SPINLOCK */ #ifdef CONFIG_DEBUG_RWLOCK void write_lock(rwlock_t * lock) { long regx, regy; int stuck_lock, stuck_reader; void *inline_pc = __builtin_return_address(0); try_again: stuck_lock = 1<<30; stuck_reader = 1<<30; __asm__ __volatile__( "1: ldl_l %1,%0\n" " blbs %1,6f\n" " blt %1,8f\n" " mov 1,%1\n" " stl_c %1,%0\n" " beq %1,6f\n" "4: mb\n" ".subsection 2\n" "6: blt %3,4b # debug\n" " subl %3,1,%3 # debug\n" " ldl %1,%0\n" " blbs %1,6b\n" "8: blt %4,4b # debug\n" " subl %4,1,%4 # debug\n" " ldl %1,%0\n" " blt %1,8b\n" " br 1b\n" ".previous" : "=m" (*(volatile int *)lock), "=&r" (regx), "=&r" (regy), "=&r" (stuck_lock), "=&r" (stuck_reader) : "0" (*(volatile int *)lock), "3" (stuck_lock), "4" (stuck_reader) : "memory"); if (stuck_lock < 0) { printk(KERN_WARNING "write_lock stuck at %p\n", inline_pc); goto try_again; } if (stuck_reader < 0) { printk(KERN_WARNING "write_lock stuck on readers at %p\n", inline_pc); goto try_again; } } void read_lock(rwlock_t * lock) { long regx; int stuck_lock; void *inline_pc = __builtin_return_address(0); try_again: stuck_lock = 1<<30; __asm__ __volatile__( "1: ldl_l %1,%0;" " blbs %1,6f;" " subl %1,2,%1;" " stl_c %1,%0;" " beq %1,6f;" "4: mb\n" ".subsection 2\n" "6: ldl %1,%0;" " blt %2,4b # debug\n" " subl %2,1,%2 # debug\n" " blbs %1,6b;" " br 1b\n" ".previous" : "=m" (*(volatile int *)lock), "=&r" (regx), "=&r" (stuck_lock) : "0" (*(volatile int *)lock), "2" (stuck_lock) : "memory"); if (stuck_lock < 0) { printk(KERN_WARNING "read_lock stuck at %p\n", inline_pc); goto try_again; } } #endif /* CONFIG_DEBUG_RWLOCK */