/* * linux/arch/arm/kernel/irq.c * * Copyright (C) 1992 Linus Torvalds * Modifications for ARM processor Copyright (C) 1995-2000 Russell King. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This file contains the code used by various IRQ handling routines: * asking for different IRQ's should be done through these routines * instead of just grabbing them. Thus setups with different IRQ numbers * shouldn't result in any weird surprises, and installing new handlers * should be easier. * * IRQ's are in fact implemented a bit like signal handlers for the kernel. * Naturally it's not a 1:1 relation, but there are similarities. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* pick up fixup_irq definition */ /* * Maximum IRQ count. Currently, this is arbitary. However, it should * not be set too low to prevent false triggering. Conversely, if it * is set too high, then you could miss a stuck IRQ. * * Maybe we ought to set a timer and re-enable the IRQ at a later time? */ #define MAX_IRQ_CNT 100000 static volatile unsigned long irq_err_count; static spinlock_t irq_controller_lock; struct irqdesc irq_desc[NR_IRQS]; void (*init_arch_irq)(void) __initdata = NULL; /* * Dummy mask/unmask handler */ static void dummy_mask_unmask_irq(unsigned int irq) { } /** * disable_irq - disable an irq and wait for completion * @irq: Interrupt to disable * * Disable the selected interrupt line. * * This function may be called - with care - from IRQ context. */ void disable_irq(unsigned int irq) { unsigned long flags; spin_lock_irqsave(&irq_controller_lock, flags); irq_desc[irq].enabled = 0; irq_desc[irq].mask(irq); spin_unlock_irqrestore(&irq_controller_lock, flags); } /** * enable_irq - enable interrupt handling on an irq * @irq: Interrupt to enable * * Re-enables the processing of interrupts on this IRQ line * * This function may be called from IRQ context. */ void enable_irq(unsigned int irq) { unsigned long flags; spin_lock_irqsave(&irq_controller_lock, flags); irq_desc[irq].probing = 0; irq_desc[irq].triggered = 0; irq_desc[irq].enabled = 1; irq_desc[irq].unmask(irq); spin_unlock_irqrestore(&irq_controller_lock, flags); } int get_irq_list(char *buf) { int i; struct irqaction * action; char *p = buf; for (i = 0 ; i < NR_IRQS ; i++) { action = irq_desc[i].action; if (!action) continue; p += sprintf(p, "%3d: %10u ", i, kstat_irqs(i)); p += sprintf(p, " %s", action->name); for (action = action->next; action; action = action->next) { p += sprintf(p, ", %s", action->name); } *p++ = '\n'; } #ifdef CONFIG_ARCH_ACORN p += get_fiq_list(p); #endif p += sprintf(p, "Err: %10lu\n", irq_err_count); return p - buf; } /* * IRQ lock detection. * * Hopefully, this should get us out of a few locked situations. * However, it may take a while for this to happen, since we need * a large number if IRQs to appear in the same jiffie with the * same instruction pointer (or within 2 instructions). */ static void check_irq_lock(struct irqdesc *desc, int irq, struct pt_regs *regs) { unsigned long instr_ptr = instruction_pointer(regs); if (desc->lck_jif == jiffies && desc->lck_pc >= instr_ptr && desc->lck_pc < instr_ptr + 8) { desc->lck_cnt += 1; if (desc->lck_cnt > MAX_IRQ_CNT) { printk(KERN_ERR "IRQ LOCK: IRQ%d is locking the system, disabled\n", irq); disable_irq(irq); } } else { desc->lck_cnt = 0; desc->lck_pc = instruction_pointer(regs); desc->lck_jif = jiffies; } } /* * do_IRQ handles all normal device IRQ's */ asmlinkage void do_IRQ(int irq, struct pt_regs * regs) { struct irqdesc * desc; struct irqaction * action; int cpu; irq = fixup_irq(irq); /* * Some hardware gives randomly wrong interrupts. Rather * than crashing, do something sensible. */ if (irq >= NR_IRQS) goto bad_irq; desc = irq_desc + irq; spin_lock(&irq_controller_lock); desc->mask_ack(irq); spin_unlock(&irq_controller_lock); cpu = smp_processor_id(); irq_enter(cpu, irq); kstat.irqs[cpu][irq]++; desc->triggered = 1; /* Return with this interrupt masked if no action */ action = desc->action; if (action) { int status = 0; if (desc->nomask) { spin_lock(&irq_controller_lock); desc->unmask(irq); spin_unlock(&irq_controller_lock); } if (!(action->flags & SA_INTERRUPT)) __sti(); do { status |= action->flags; action->handler(irq, action->dev_id, regs); action = action->next; } while (action); if (status & SA_SAMPLE_RANDOM) add_interrupt_randomness(irq); __cli(); if (!desc->nomask && desc->enabled) { spin_lock(&irq_controller_lock); desc->unmask(irq); spin_unlock(&irq_controller_lock); } } /* * Debug measure - hopefully we can continue if an * IRQ lockup problem occurs... */ check_irq_lock(desc, irq, regs); irq_exit(cpu, irq); if (softirq_pending(cpu)) do_softirq(); return; bad_irq: irq_err_count += 1; printk(KERN_ERR "IRQ: spurious interrupt %d\n", irq); return; } #ifdef CONFIG_ARCH_ACORN void do_ecard_IRQ(int irq, struct pt_regs *regs) { struct irqdesc * desc; struct irqaction * action; int cpu; desc = irq_desc + irq; cpu = smp_processor_id(); kstat.irqs[cpu][irq]++; desc->triggered = 1; action = desc->action; if (action) { do { action->handler(irq, action->dev_id, regs); action = action->next; } while (action); } else { spin_lock(&irq_controller_lock); desc->mask(irq); spin_unlock(&irq_controller_lock); } } #endif int setup_arm_irq(int irq, struct irqaction * new) { int shared = 0; struct irqaction *old, **p; unsigned long flags; struct irqdesc *desc; /* * Some drivers like serial.c use request_irq() heavily, * so we have to be careful not to interfere with a * running system. */ if (new->flags & SA_SAMPLE_RANDOM) { /* * This function might sleep, we want to call it first, * outside of the atomic block. * Yes, this might clear the entropy pool if the wrong * driver is attempted to be loaded, without actually * installing a new handler, but is this really a problem, * only the sysadmin is able to do this. */ rand_initialize_irq(irq); } /* * The following block of code has to be executed atomically */ desc = irq_desc + irq; spin_lock_irqsave(&irq_controller_lock, flags); p = &desc->action; if ((old = *p) != NULL) { /* Can't share interrupts unless both agree to */ if (!(old->flags & new->flags & SA_SHIRQ)) { spin_unlock_irqrestore(&irq_controller_lock, flags); return -EBUSY; } /* add new interrupt at end of irq queue */ do { p = &old->next; old = *p; } while (old); shared = 1; } *p = new; if (!shared) { desc->nomask = (new->flags & SA_IRQNOMASK) ? 1 : 0; desc->probing = 0; if (!desc->noautoenable) { desc->enabled = 1; desc->unmask(irq); } } spin_unlock_irqrestore(&irq_controller_lock, flags); return 0; } /** * request_irq - allocate an interrupt line * @irq: Interrupt line to allocate * @handler: Function to be called when the IRQ occurs * @irqflags: Interrupt type flags * @devname: An ascii name for the claiming device * @dev_id: A cookie passed back to the handler function * * This call allocates interrupt resources and enables the * interrupt line and IRQ handling. From the point this * call is made your handler function may be invoked. Since * your handler function must clear any interrupt the board * raises, you must take care both to initialise your hardware * and to set up the interrupt handler in the right order. * * Dev_id must be globally unique. Normally the address of the * device data structure is used as the cookie. Since the handler * receives this value it makes sense to use it. * * If your interrupt is shared you must pass a non NULL dev_id * as this is required when freeing the interrupt. * * Flags: * * SA_SHIRQ Interrupt is shared * * SA_INTERRUPT Disable local interrupts while processing * * SA_SAMPLE_RANDOM The interrupt can be used for entropy * */ int request_irq(unsigned int irq, void (*handler)(int, void *, struct pt_regs *), unsigned long irq_flags, const char * devname, void *dev_id) { unsigned long retval; struct irqaction *action; if (irq >= NR_IRQS || !irq_desc[irq].valid || !handler || (irq_flags & SA_SHIRQ && !dev_id)) return -EINVAL; action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_KERNEL); if (!action) return -ENOMEM; action->handler = handler; action->flags = irq_flags; action->mask = 0; action->name = devname; action->next = NULL; action->dev_id = dev_id; retval = setup_arm_irq(irq, action); if (retval) kfree(action); return retval; } /** * free_irq - free an interrupt * @irq: Interrupt line to free * @dev_id: Device identity to free * * Remove an interrupt handler. The handler is removed and if the * interrupt line is no longer in use by any driver it is disabled. * On a shared IRQ the caller must ensure the interrupt is disabled * on the card it drives before calling this function. * * This function may be called from interrupt context. */ void free_irq(unsigned int irq, void *dev_id) { struct irqaction * action, **p; unsigned long flags; if (irq >= NR_IRQS || !irq_desc[irq].valid) { printk(KERN_ERR "Trying to free IRQ%d\n",irq); #ifdef CONFIG_DEBUG_ERRORS __backtrace(); #endif return; } spin_lock_irqsave(&irq_controller_lock, flags); for (p = &irq_desc[irq].action; (action = *p) != NULL; p = &action->next) { if (action->dev_id != dev_id) continue; /* Found it - now free it */ *p = action->next; kfree(action); goto out; } printk(KERN_ERR "Trying to free free IRQ%d\n",irq); #ifdef CONFIG_DEBUG_ERRORS __backtrace(); #endif out: spin_unlock_irqrestore(&irq_controller_lock, flags); } /* Start the interrupt probing. Unlike other architectures, * we don't return a mask of interrupts from probe_irq_on, * but return the number of interrupts enabled for the probe. * The interrupts which have been enabled for probing is * instead recorded in the irq_desc structure. */ unsigned long probe_irq_on(void) { unsigned int i, irqs = 0; unsigned long delay; /* * first snaffle up any unassigned but * probe-able interrupts */ spin_lock_irq(&irq_controller_lock); for (i = 0; i < NR_IRQS; i++) { if (!irq_desc[i].valid || !irq_desc[i].probe_ok || irq_desc[i].action) continue; irq_desc[i].probing = 1; irq_desc[i].triggered = 0; irq_desc[i].unmask(i); irqs += 1; } spin_unlock_irq(&irq_controller_lock); /* * wait for spurious interrupts to mask themselves out again */ for (delay = jiffies + HZ/10; time_before(jiffies, delay); ) /* min 100ms delay */; /* * now filter out any obviously spurious interrupts */ spin_lock_irq(&irq_controller_lock); for (i = 0; i < NR_IRQS; i++) { if (irq_desc[i].probing && irq_desc[i].triggered) { irq_desc[i].probing = 0; irqs -= 1; } } spin_unlock_irq(&irq_controller_lock); /* now filter out any obviously spurious interrupts */ return irqs; } /* * Possible return values: * >= 0 - interrupt number * -1 - no interrupt/many interrupts */ int probe_irq_off(unsigned long irqs) { unsigned int i; int irq_found = NO_IRQ; /* * look at the interrupts, and find exactly one * that we were probing has been triggered */ spin_lock_irq(&irq_controller_lock); for (i = 0; i < NR_IRQS; i++) { if (irq_desc[i].probing && irq_desc[i].triggered) { if (irq_found != NO_IRQ) { irq_found = NO_IRQ; goto out; } irq_found = i; } } if (irq_found == -1) irq_found = NO_IRQ; out: spin_unlock_irq(&irq_controller_lock); return irq_found; } void __init init_irq_proc(void) { } void __init init_IRQ(void) { extern void init_dma(void); int irq; for (irq = 0; irq < NR_IRQS; irq++) { irq_desc[irq].probe_ok = 0; irq_desc[irq].valid = 0; irq_desc[irq].noautoenable = 0; irq_desc[irq].mask_ack = dummy_mask_unmask_irq; irq_desc[irq].mask = dummy_mask_unmask_irq; irq_desc[irq].unmask = dummy_mask_unmask_irq; } init_arch_irq(); init_dma(); }