/* * linux/arch/arm/mach-sa1100/cpu-sa1110.c * * Copyright (C) 2001 Russell King * * $Id: cpu-sa1110.c,v 1.5 2001/09/10 13:25:58 rmk Exp $ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Note: there are two erratas that apply to the SA1110 here: * 7 - SDRAM auto-power-up failure (rev A0) * 13 - Corruption of internal register reads/writes following * SDRAM reads (rev A0, B0, B1) * * We ignore rev. A0 and B0 devices; I don't think they're worth supporting. */ #include #include #include #include #include #include #include #include #include #undef DEBUG extern u_int processor_id; #define CPU_REVISION (processor_id & 15) #define CPU_SA1110_A0 (0) #define CPU_SA1110_B0 (4) #define CPU_SA1110_B1 (5) #define CPU_SA1110_B2 (6) #define CPU_SA1110_B4 (8) struct sdram_params { u_char rows; /* bits */ u_char cas_latency; /* cycles */ u_char tck; /* clock cycle time (ns) */ u_char trcd; /* activate to r/w (ns) */ u_char trp; /* precharge to activate (ns) */ u_char twr; /* write recovery time (ns) */ u_short refresh; /* refresh time for array (us) */ }; static struct sdram_params tc59sm716_cl2_params __initdata = { rows: 12, tck: 10, trcd: 20, trp: 20, twr: 10, refresh: 64000, cas_latency: 2, }; static struct sdram_params tc59sm716_cl3_params __initdata = { rows: 12, tck: 8, trcd: 20, trp: 20, twr: 8, refresh: 64000, cas_latency: 3, }; static struct sdram_params sdram_params; /* * Given a period in ns and frequency in khz, calculate the number of * cycles of frequency in period. Note that we round up to the next * cycle, even if we are only slightly over. */ static inline u_int ns_to_cycles(u_int ns, u_int khz) { return (ns * khz + 999999) / 1000000; } /* * Create the MDCAS register bit pattern. */ static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd) { u_int shift; rcd = 2 * rcd - 1; shift = delayed + 1 + rcd; mdcas[0] = (1 << rcd) - 1; mdcas[0] |= 0x55555555 << shift; mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1); } static void sdram_update_timing(u_int cpu_khz, struct sdram_params *sdram) { u_int mdcnfg, mdrefr, mdcas[3], mem_khz, sd_khz, trp, twr; unsigned long flags; mem_khz = cpu_khz / 2; sd_khz = mem_khz; /* * If SDCLK would invalidate the SDRAM timings, * run SDCLK at half speed. * * CPU steppings prior to B2 must either run the memory at * half speed or use delayed read latching (errata 13). */ if ((ns_to_cycles(sdram->tck, sd_khz) > 1) || (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000)) sd_khz /= 2; mdcnfg = MDCNFG & 0x007f007f; twr = ns_to_cycles(sdram->twr, mem_khz); /* trp should always be >1 */ trp = ns_to_cycles(sdram->trp, mem_khz) - 1; if (trp < 1) trp = 1; mdcnfg |= trp << 8; mdcnfg |= trp << 24; mdcnfg |= sdram->cas_latency << 12; mdcnfg |= sdram->cas_latency << 28; mdcnfg |= twr << 14; mdcnfg |= twr << 30; mdrefr = MDREFR & 0xffbffff0; mdrefr |= 7; if (sd_khz != mem_khz) mdrefr |= MDREFR_K1DB2; /* initial number of '1's in MDCAS + 1 */ set_mdcas(mdcas, sd_khz >= 62000, ns_to_cycles(sdram->trcd, mem_khz)); #ifdef DEBUG mdelay(250); printk("MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n", mdcnfg, mdrefr, mdcas[0], mdcas[1], mdcas[2]); #endif /* * Reprogram the DRAM timings with interrupts disabled, and * ensure that we are doing this within a complete cache line. * This means that we won't access SDRAM for the duration of * the programming. */ local_irq_save(flags); asm("mcr p15, 0, %0, c10, c4" : : "r" (0)); udelay(10); __asm__(" b 1f .align 5 1: str %3, [%1, #28] @ MDREFR str %4, [%1, #4] @ MDCAS0 str %5, [%1, #8] @ MDCAS1 str %6, [%1, #12] @ MDCAS2 str %2, [%1, #0] @ MDCNFG ldr %0, [%1, #0] nop nop" : "=&r" (mdcnfg) : "r" (io_p2v(_MDCNFG)), "0" (mdcnfg), "r" (mdrefr), "r" (mdcas[0]), "r" (mdcas[1]), "r" (mdcas[2])); local_irq_restore(flags); } /* * Set the SDRAM refresh rate. */ static inline void sdram_set_refresh(u_int dri) { MDREFR = (MDREFR & 0xffff000f) | (dri << 4); (void) MDREFR; } /* * Update the refresh period. We do this such that we always refresh * the SDRAMs within their permissible period. The refresh period is * always a multiple of the memory clock (fixed at cpu_clock / 2). * * FIXME: we don't currently take account of burst accesses here, * but neither do Intels DM nor Angel. */ static void sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram) { u_int ns_row = (sdram->refresh * 1000) >> sdram->rows; u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32; #ifdef DEBUG mdelay(250); printk("new dri value = %d\n", dri); #endif sdram_set_refresh(dri); } static int sdram_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_info *ci = data; struct sdram_params *sdram = &sdram_params; /* were we initialised? */ if (sdram->cas_latency == 0) { struct cpufreq_minmax *m = data; m->min_freq = m->max_freq = m->cur_freq; return 0; } switch (val) { case CPUFREQ_MINMAX: /* * until we work out why the assabet * crashes below 147.5MHz... */ cpufreq_updateminmax(data, 147500, -1); break; case CPUFREQ_PRECHANGE: /* * The clock could be going away for some time. * Set the SDRAMs to refresh rapidly (every 64 * memory clock cycles). To get through the * whole array, we need to wait 262144 mclk cycles. * We wait 20ms to be safe. */ sdram_set_refresh(2); set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(20 * HZ / 1000); if (ci->old_freq < ci->new_freq) sdram_update_timing(ci->new_freq, sdram); break; case CPUFREQ_POSTCHANGE: if (ci->old_freq > ci->new_freq) sdram_update_timing(ci->new_freq, sdram); sdram_update_refresh(ci->new_freq, sdram); break; } return 0; } static struct notifier_block sa1110_clkchg_block = { notifier_call: sdram_notifier, }; static int __init sa1110_sdram_init(void) { struct sdram_params *sdram = NULL; unsigned int cur_freq = cpufreq_get(smp_processor_id()); if (machine_is_assabet()) sdram = &tc59sm716_cl3_params; if (sdram) { printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d" " twr: %d refresh: %d cas_latency: %d\n", sdram->tck, sdram->trcd, sdram->trp, sdram->twr, sdram->refresh, sdram->cas_latency); memcpy(&sdram_params, sdram, sizeof(sdram_params)); sdram_update_timing(cur_freq, &sdram_params); sdram_update_refresh(cur_freq, &sdram_params); } return cpufreq_register_notifier(&sa1110_clkchg_block); } __initcall(sa1110_sdram_init);