/* * linux/arch/arm/mm/fault-common.c * * Copyright (C) 1995 Linus Torvalds * Modifications for ARM processor (c) 1995-2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_CPU_26 #define FAULT_CODE_WRITE 0x02 #define FAULT_CODE_FORCECOW 0x01 #define DO_COW(m) ((m) & (FAULT_CODE_WRITE|FAULT_CODE_FORCECOW)) #define READ_FAULT(m) (!((m) & FAULT_CODE_WRITE)) #else /* * On 32-bit processors, we define "mode" to be zero when reading, * non-zero when writing. This now ties up nicely with the polarity * of the 26-bit machines, and also means that we avoid the horrible * gcc code for "int val = !other_val;". */ #define DO_COW(m) (m) #define READ_FAULT(m) (!(m)) #endif NORET_TYPE void die(const char *msg, struct pt_regs *regs, int err) ATTRIB_NORET; /* * This is useful to dump out the page tables associated with * 'addr' in mm 'mm'. */ void show_pte(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; if (!mm) mm = &init_mm; printk(KERN_ALERT "pgd = %p\n", mm->pgd); pgd = pgd_offset(mm, addr); printk(KERN_ALERT "*pgd = %08lx", pgd_val(*pgd)); do { pmd_t *pmd; pte_t *pte; if (pgd_none(*pgd)) break; if (pgd_bad(*pgd)) { printk("(bad)"); break; } pmd = pmd_offset(pgd, addr); printk(", *pmd = %08lx", pmd_val(*pmd)); if (pmd_none(*pmd)) break; if (pmd_bad(*pmd)) { printk("(bad)"); break; } pte = pte_offset(pmd, addr); printk(", *pte = %08lx", pte_val(*pte)); #ifdef CONFIG_CPU_32 printk(", *ppte = %08lx", pte_val(pte[-PTRS_PER_PTE])); #endif } while(0); printk("\n"); } /* * Oops. The kernel tried to access some page that wasn't present. */ static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr, int error_code, struct pt_regs *regs) { unsigned long fixup; /* * Are we prepared to handle this kernel fault? */ if ((fixup = search_exception_table(instruction_pointer(regs))) != 0) { #ifdef DEBUG printk(KERN_DEBUG "%s: Exception at [<%lx>] addr=%lx (fixup: %lx)\n", current->comm, regs->ARM_pc, addr, fixup); #endif regs->ARM_pc = fixup; return; } /* * No handler, we'll have to terminate things with extreme prejudice. */ printk(KERN_ALERT "Unable to handle kernel %s at virtual address %08lx\n", (addr < PAGE_SIZE) ? "NULL pointer dereference" : "paging request", addr); show_pte(mm, addr); die("Oops", regs, error_code); do_exit(SIGKILL); } /* * Something tried to access memory that isn't in our memory map.. * User mode accesses just cause a SIGSEGV */ static void __do_user_fault(struct task_struct *tsk, unsigned long addr, int error_code, int code, struct pt_regs *regs) { struct siginfo si; #ifdef CONFIG_DEBUG_USER printk(KERN_DEBUG "%s: unhandled page fault at pc=0x%08lx, " "lr=0x%08lx (bad address=0x%08lx, code %d)\n", tsk->comm, regs->ARM_pc, regs->ARM_lr, addr, error_code); #endif tsk->thread.address = addr; tsk->thread.error_code = error_code; tsk->thread.trap_no = 14; si.si_signo = SIGSEGV; si.si_errno = 0; si.si_code = code; si.si_addr = (void *)addr; force_sig_info(SIGSEGV, &si, tsk); } void do_bad_area(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, int error_code, struct pt_regs *regs) { /* * If we are in kernel mode at this point, we * have no context to handle this fault with. */ if (user_mode(regs)) __do_user_fault(tsk, addr, error_code, SEGV_MAPERR, regs); else __do_kernel_fault(mm, addr, error_code, regs); } static int __do_page_fault(struct mm_struct *mm, unsigned long addr, int error_code, struct task_struct *tsk) { struct vm_area_struct *vma; int fault, mask; vma = find_vma(mm, addr); fault = -2; /* bad map area */ if (!vma) goto out; if (vma->vm_start > addr) goto check_stack; /* * Ok, we have a good vm_area for this * memory access, so we can handle it. */ good_area: if (READ_FAULT(error_code)) /* read? */ mask = VM_READ|VM_EXEC; else mask = VM_WRITE; fault = -1; /* bad access type */ if (!(vma->vm_flags & mask)) goto out; /* * If for any reason at all we couldn't handle * the fault, make sure we exit gracefully rather * than endlessly redo the fault. */ survive: fault = handle_mm_fault(mm, vma, addr & PAGE_MASK, DO_COW(error_code)); /* * Handle the "normal" cases first - successful and sigbus */ switch (fault) { case 2: tsk->maj_flt++; return fault; case 1: tsk->min_flt++; case 0: return fault; } fault = -3; /* out of memory */ if (tsk->pid != 1) goto out; /* * If we are out of memory for pid1, * sleep for a while and retry */ tsk->policy |= SCHED_YIELD; schedule(); goto survive; check_stack: if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) goto good_area; out: return fault; } int do_page_fault(unsigned long addr, int error_code, struct pt_regs *regs) { struct task_struct *tsk; struct mm_struct *mm; int fault; tsk = current; mm = tsk->mm; /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_interrupt() || !mm) goto no_context; down_read(&mm->mmap_sem); fault = __do_page_fault(mm, addr, error_code, tsk); up_read(&mm->mmap_sem); /* * Handle the "normal" case first */ if (fault > 0) return 0; /* * We had some memory, but were unable to * successfully fix up this page fault. */ if (fault == 0) goto do_sigbus; /* * If we are in kernel mode at this point, we * have no context to handle this fault with. */ if (!user_mode(regs)) goto no_context; if (fault == -3) { /* * We ran out of memory, or some other thing happened to * us that made us unable to handle the page fault gracefully. */ printk("VM: killing process %s\n", tsk->comm); do_exit(SIGKILL); } else __do_user_fault(tsk, addr, error_code, fault == -1 ? SEGV_ACCERR : SEGV_MAPERR, regs); return 0; /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ do_sigbus: /* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ tsk->thread.address = addr; tsk->thread.error_code = error_code; tsk->thread.trap_no = 14; force_sig(SIGBUS, tsk); #ifdef CONFIG_DEBUG_USER printk(KERN_DEBUG "%s: sigbus at 0x%08lx, pc=0x%08lx\n", current->comm, addr, instruction_pointer(regs)); #endif /* Kernel mode? Handle exceptions or die */ if (user_mode(regs)) return 0; no_context: __do_kernel_fault(mm, addr, error_code, regs); return 0; } /* * First Level Translation Fault Handler * * We enter here because the first level page table doesn't contain * a valid entry for the address. * * If the address is in kernel space (>= TASK_SIZE), then we are * probably faulting in the vmalloc() area. * * If the init_task's first level page tables contains the relevant * entry, we copy the it to this task. If not, we send the process * a signal, fixup the exception, or oops the kernel. * * NOTE! We MUST NOT take any locks for this case. We may be in an * interrupt or a critical region, and should only copy the information * from the master page table, nothing more. */ int do_translation_fault(unsigned long addr, int error_code, struct pt_regs *regs) { struct task_struct *tsk; struct mm_struct *mm; int offset; pgd_t *pgd, *pgd_k; pmd_t *pmd, *pmd_k; if (addr < TASK_SIZE) return do_page_fault(addr, error_code, regs); offset = __pgd_offset(addr); pgd = cpu_get_pgd() + offset; pgd_k = init_mm.pgd + offset; if (pgd_none(*pgd_k)) goto bad_area; #if 0 /* note that we are two-level */ if (!pgd_present(*pgd)) set_pgd(pgd, *pgd_k); #endif pmd_k = pmd_offset(pgd_k, addr); pmd = pmd_offset(pgd, addr); if (pmd_none(*pmd_k)) goto bad_area; set_pmd(pmd, *pmd_k); return 0; bad_area: tsk = current; mm = tsk->active_mm; do_bad_area(tsk, mm, addr, error_code, regs); return 0; }