/* $Id: ethernet.c,v 1.18 2001/10/03 14:40:43 jonashg Exp $ * * e100net.c: A network driver for the ETRAX 100LX network controller. * * Copyright (c) 1998-2001 Axis Communications AB. * * The outline of this driver comes from skeleton.c. * * $Log: ethernet.c,v $ * Revision 1.18 2001/10/03 14:40:43 jonashg * Update rx_bytes counter. * * Revision 1.17 2001/06/11 12:43:46 olof * Modified defines for network LED behavior * * Revision 1.16 2001/05/30 06:12:46 markusl * TxDesc.next should not be set to NULL * * Revision 1.15 2001/05/29 10:27:04 markusl * Updated after review remarks: * +Use IO_EXTRACT * +Handle underrun * * Revision 1.14 2001/05/29 09:20:14 jonashg * Use driver name on printk output so one can tell which driver that complains. * * Revision 1.13 2001/05/09 12:35:59 johana * Use DMA_NBR and IRQ_NBR defines from dma.h and irq.h * * Revision 1.12 2001/04/05 11:43:11 tobiasa * Check dev before panic. * * Revision 1.11 2001/04/04 11:21:05 markusl * Updated according to review remarks * * Revision 1.10 2001/03/26 16:03:06 bjornw * Needs linux/config.h * * Revision 1.9 2001/03/19 14:47:48 pkj * * Make sure there is always a pause after the network LEDs are * changed so they will not look constantly lit during heavy traffic. * * Always use HZ when setting times relative to jiffies. * * Use LED_NETWORK_SET() when setting the network LEDs. * * Revision 1.8 2001/02/27 13:52:48 bjornw * malloc.h -> slab.h * * Revision 1.7 2001/02/23 13:46:38 bjornw * Spellling check * * Revision 1.6 2001/01/26 15:21:04 starvik * Don't disable interrupts while reading MDIO registers (MDIO is slow) * Corrected promiscuous mode * Improved deallocation of IRQs ("ifconfig eth0 down" now works) * * Revision 1.5 2000/11/29 17:22:22 bjornw * Get rid of the udword types legacy stuff * * Revision 1.4 2000/11/22 16:36:09 bjornw * Please marketing by using the correct case when spelling Etrax. * * Revision 1.3 2000/11/21 16:43:04 bjornw * Minor short->int change * * Revision 1.2 2000/11/08 14:27:57 bjornw * 2.4 port * * Revision 1.1 2000/11/06 13:56:00 bjornw * Verbatim copy of the 1.24 version of e100net.c from elinux * * Revision 1.24 2000/10/04 15:55:23 bjornw * * Use virt_to_phys etc. for DMA addresses * * Removed bogus CHECKSUM_UNNECESSARY * * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* DMA and register descriptions */ #include /* LED_* I/O functions */ #include #include #include #include //#define ETHDEBUG #define D(x) /* * The name of the card. Is used for messages and in the requests for * io regions, irqs and dma channels */ static const char* cardname = "ETRAX 100LX built-in ethernet controller"; /* A default ethernet address. Highlevel SW will set the real one later */ static struct sockaddr default_mac = { 0, { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 } }; /* Information that need to be kept for each board. */ struct net_local { struct net_device_stats stats; /* Tx control lock. This protects the transmit buffer ring * state along with the "tx full" state of the driver. This * means all netif_queue flow control actions are protected * by this lock as well. */ spinlock_t lock; }; /* Dma descriptors etc. */ #define RX_BUF_SIZE 32768 #define MAX_MEDIA_DATA_SIZE 1518 #define MIN_PACKET_LEN 46 #define ETHER_HEAD_LEN 14 /* ** MDIO constants. */ #define MDIO_BASE_STATUS_REG 0x1 #define MDIO_BASE_CONTROL_REG 0x0 #define MDIO_LINK_UP_MASK 0x4 #define MDIO_START 0x1 #define MDIO_READ 0x2 #define MDIO_WRITE 0x1 #define MDIO_PREAMBLE 0xfffffffful /* Broadcom specific */ #define MDIO_AUX_CTRL_STATUS_REG 0x18 #define MDIO_SPEED 0x2 #define MDIO_PHYS_ADDR 0x0 /* Network flash constants */ #define NET_FLASH_TIME (HZ/50) /* 20 ms */ #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */ #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */ #define NO_NETWORK_ACTIVITY 0 #define NETWORK_ACTIVITY 1 #define RX_DESC_BUF_SIZE 256 #define NBR_OF_RX_DESC (RX_BUF_SIZE / \ RX_DESC_BUF_SIZE) #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01) static etrax_dma_descr *myNextRxDesc; /* Points to the next descriptor to to be processed */ static etrax_dma_descr *myLastRxDesc; /* The last processed descriptor */ static etrax_dma_descr *myPrevRxDesc; /* The descriptor right before myNextRxDesc */ static unsigned char RxBuf[RX_BUF_SIZE]; static etrax_dma_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(4))); static etrax_dma_descr TxDesc __attribute__ ((aligned(4))); static struct sk_buff *tx_skb; /* Network speed indication. */ static struct timer_list speed_timer; static struct timer_list clear_led_timer; static int current_speed; static int led_next_time; static int led_active; /* Index to functions, as function prototypes. */ static int etrax_ethernet_init(struct net_device *dev); static int e100_open(struct net_device *dev); static int e100_set_mac_address(struct net_device *dev, void *addr); static int e100_send_packet(struct sk_buff *skb, struct net_device *dev); static void e100rx_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void e100tx_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void e100nw_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void e100_rx(struct net_device *dev); static int e100_close(struct net_device *dev); static struct net_device_stats *e100_get_stats(struct net_device *dev); static void set_multicast_list(struct net_device *dev); static void e100_hardware_send_packet(char *buf, int length); static void update_rx_stats(struct net_device_stats *); static void update_tx_stats(struct net_device_stats *); static void e100_check_speed(unsigned long dummy); static unsigned short e100_get_mdio_reg(unsigned char reg_num); static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd); static void e100_send_mdio_bit(unsigned char bit); static unsigned char e100_receive_mdio_bit(void); static void e100_reset_tranceiver(void); static void e100_clear_network_leds(unsigned long dummy); static void e100_set_network_leds(int active); #define tx_done(dev) (*R_DMA_CH0_CMD == 0) /* * Check for a network adaptor of this type, and return '0' if one exists. * If dev->base_addr == 0, probe all likely locations. * If dev->base_addr == 1, always return failure. * If dev->base_addr == 2, allocate space for the device and return success * (detachable devices only). */ static int __init etrax_ethernet_init(struct net_device *dev) { int i; int anOffset = 0; printk("ETRAX 100LX 10/100MBit ethernet v2.0 (c) 2000-2001 Axis Communications AB\n"); dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */ printk("%s initialized\n", dev->name); /* make Linux aware of the new hardware */ if (!dev) { printk(KERN_WARNING "%s: dev == NULL. Should this happen?\n", cardname); dev = init_etherdev(dev, sizeof(struct net_local)); if (!dev) panic("init_etherdev failed\n"); } /* setup generic handlers and stuff in the dev struct */ ether_setup(dev); /* make room for the local structure containing stats etc */ dev->priv = kmalloc(sizeof(struct net_local), GFP_KERNEL); if (dev->priv == NULL) return -ENOMEM; memset(dev->priv, 0, sizeof(struct net_local)); /* now setup our etrax specific stuff */ dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */ dev->dma = NETWORK_RX_DMA_NBR; /* fill in our handlers so the network layer can talk to us in the future */ dev->open = e100_open; dev->hard_start_xmit = e100_send_packet; dev->stop = e100_close; dev->get_stats = e100_get_stats; dev->set_multicast_list = set_multicast_list; dev->set_mac_address = e100_set_mac_address; /* set the default MAC address */ e100_set_mac_address(dev, &default_mac); /* Initialise the list of Etrax DMA-descriptors */ /* Initialise receive descriptors */ for(i = 0; i < (NBR_OF_RX_DESC - 1); i++) { RxDescList[i].ctrl = 0; RxDescList[i].sw_len = RX_DESC_BUF_SIZE; RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]); RxDescList[i].buf = virt_to_phys(RxBuf + anOffset); RxDescList[i].status = 0; RxDescList[i].hw_len = 0; anOffset += RX_DESC_BUF_SIZE; } RxDescList[i].ctrl = d_eol; RxDescList[i].sw_len = RX_DESC_BUF_SIZE; RxDescList[i].next = virt_to_phys(&RxDescList[0]); RxDescList[i].buf = virt_to_phys(RxBuf + anOffset); RxDescList[i].status = 0; RxDescList[i].hw_len = 0; /* Initialise initial pointers */ myNextRxDesc = &RxDescList[0]; myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; myPrevRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; /* Initialize speed indicator stuff. */ current_speed = 10; speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL; speed_timer.function = e100_check_speed; add_timer(&speed_timer); clear_led_timer.function = e100_clear_network_leds; clear_led_timer.expires = jiffies + HZ/10; add_timer(&clear_led_timer); return 0; } /* set MAC address of the interface. called from the core after a * SIOCSIFADDR ioctl, and from the bootup above. */ static int e100_set_mac_address(struct net_device *dev, void *p) { struct sockaddr *addr = p; int i; /* remember it */ memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); /* Write it to the hardware. * Note the way the address is wrapped: * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24); * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8); */ *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24); *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8); *R_NETWORK_SA_2 = 0; /* show it in the log as well */ printk("%s: changed MAC to ", dev->name); for (i = 0; i < 5; i++) printk("%02X:", dev->dev_addr[i]); printk("%02X\n", dev->dev_addr[i]); return 0; } /* * Open/initialize the board. This is called (in the current kernel) * sometime after booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int e100_open(struct net_device *dev) { unsigned long flags; /* disable the ethernet interface while we configure it */ *R_NETWORK_GEN_CONFIG = IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) | IO_STATE(R_NETWORK_GEN_CONFIG, enable, off); /* enable the MDIO output pin */ *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable); *R_IRQ_MASK0_CLR = IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) | IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) | IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr); /* clear dma0 and 1 eop and descr irq masks */ *R_IRQ_MASK2_CLR = IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr); /* Reset and wait for the DMA channels */ RESET_DMA(NETWORK_TX_DMA_NBR); RESET_DMA(NETWORK_RX_DMA_NBR); WAIT_DMA(NETWORK_TX_DMA_NBR); WAIT_DMA(NETWORK_RX_DMA_NBR); /* Initialise the etrax network controller */ /* allocate the irq corresponding to the receiving DMA */ if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rx_interrupt, 0, cardname, (void *)dev)) { goto grace_exit; } /* allocate the irq corresponding to the transmitting DMA */ if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100tx_interrupt, 0, cardname, (void *)dev)) { goto grace_exit; } /* allocate the irq corresponding to the network errors etc */ if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0, cardname, (void *)dev)) { goto grace_exit; } /* * Always allocate the DMA channels after the IRQ, * and clean up on failure. */ if(request_dma(NETWORK_TX_DMA_NBR, cardname)) { goto grace_exit; } if(request_dma(NETWORK_RX_DMA_NBR, cardname)) { grace_exit: /* this will cause some 'trying to free free irq' but what the heck... */ free_dma(NETWORK_TX_DMA_NBR); free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev); free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev); free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev); return -EAGAIN; } /* give the HW an idea of what MAC address we want */ *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24); *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8); *R_NETWORK_SA_2 = 0; #if 0 /* use promiscuous mode for testing */ *R_NETWORK_GA_0 = 0xffffffff; *R_NETWORK_GA_1 = 0xffffffff; *R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */ #else *R_NETWORK_REC_CONFIG = IO_STATE(R_NETWORK_REC_CONFIG, broadcast, receive) | IO_STATE(R_NETWORK_REC_CONFIG, ma0, enable); #endif *R_NETWORK_GEN_CONFIG = IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) | IO_STATE(R_NETWORK_GEN_CONFIG, enable, on); save_flags(flags); cli(); /* enable the irq's for ethernet DMA */ *R_IRQ_MASK2_SET = IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) | IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set); *R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, overrun, set) | IO_STATE(R_IRQ_MASK0_SET, underrun, set) | IO_STATE(R_IRQ_MASK0_SET, excessive_col, set); tx_skb = 0; /* make sure the irqs are cleared */ *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do); *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do); /* make sure the rec and transmit error counters are cleared */ (void)*R_REC_COUNTERS; /* dummy read */ (void)*R_TR_COUNTERS; /* dummy read */ /* start the receiving DMA channel so we can receive packets from now on */ *R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc); *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start); restore_flags(flags); /* We are now ready to accept transmit requeusts from * the queueing layer of the networking. */ netif_start_queue(dev); return 0; } static void e100_check_speed(unsigned long dummy) { unsigned long data; int old_speed = current_speed; data = e100_get_mdio_reg(MDIO_BASE_STATUS_REG); if (!(data & MDIO_LINK_UP_MASK)) { current_speed = 0; } else { data = e100_get_mdio_reg(MDIO_AUX_CTRL_STATUS_REG); current_speed = (data & MDIO_SPEED ? 100 : 10); } if (old_speed != current_speed) e100_set_network_leds(NO_NETWORK_ACTIVITY); /* Reinitialize the timer. */ speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL; add_timer(&speed_timer); } static unsigned short e100_get_mdio_reg(unsigned char reg_num) { unsigned long flags; unsigned short cmd; /* Data to be sent on MDIO port */ unsigned short data; /* Data read from MDIO */ int bitCounter; /* Start of frame, OP Code, Physical Address, Register Address */ cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (MDIO_PHYS_ADDR << 7) | (reg_num << 2); e100_send_mdio_cmd(cmd, 0); data = 0; /* Data... */ for(bitCounter=15; bitCounter>=0 ; bitCounter--) { data |= (e100_receive_mdio_bit() << bitCounter); } return data; } static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd) { int bitCounter; unsigned char data = 0x2; /* Preamble */ for(bitCounter = 31; bitCounter>= 0; bitCounter--) e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE)); for(bitCounter = 15; bitCounter >= 2; bitCounter--) e100_send_mdio_bit(GET_BIT(bitCounter, cmd)); /* Turnaround */ for(bitCounter = 1; bitCounter >= 0 ; bitCounter--) if (write_cmd) e100_send_mdio_bit(GET_BIT(bitCounter, data)); else e100_receive_mdio_bit(); } static void e100_send_mdio_bit(unsigned char bit) { *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) | IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit); udelay(1); *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) | IO_MASK(R_NETWORK_MGM_CTRL, mdck) | IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit); udelay(1); } static unsigned char e100_receive_mdio_bit() { unsigned char bit; *R_NETWORK_MGM_CTRL = 0; bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT); udelay(1); *R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck); udelay(1); return bit; } static void e100_reset_tranceiver(void) { unsigned long flags; unsigned short cmd; unsigned short data; int bitCounter; data = e100_get_mdio_reg(MDIO_BASE_CONTROL_REG); cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (MDIO_PHYS_ADDR << 7) | (MDIO_BASE_CONTROL_REG << 2); e100_send_mdio_cmd(cmd, 1); data |= 0x8000; for(bitCounter = 15; bitCounter >= 0 ; bitCounter--) { e100_send_mdio_bit(GET_BIT(bitCounter, data)); } } /* Called by upper layers if they decide it took too long to complete * sending a packet - we need to reset and stuff. */ static void e100_tx_timeout(struct net_device *dev) { struct net_local *np = (struct net_local *)dev->priv; printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name, tx_done(dev) ? "IRQ problem" : "network cable problem"); /* remember we got an error */ np->stats.tx_errors++; /* reset the TX DMA in case it has hung on something */ RESET_DMA(NETWORK_TX_DMA_NBR); WAIT_DMA(NETWORK_TX_DMA_NBR); /* Reset the tranceiver. */ e100_reset_tranceiver(); /* and get rid of the packet that never got an interrupt */ dev_kfree_skb(tx_skb); tx_skb = 0; /* tell the upper layers we're ok again */ netif_wake_queue(dev); } /* This will only be invoked if the driver is _not_ in XOFF state. * What this means is that we need not check it, and that this * invariant will hold if we make sure that the netif_*_queue() * calls are done at the proper times. */ static int e100_send_packet(struct sk_buff *skb, struct net_device *dev) { struct net_local *np = (struct net_local *)dev->priv; int length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN; unsigned char *buf = skb->data; #ifdef ETHDEBUG printk("send packet len %d\n", length); #endif spin_lock_irq(&np->lock); /* protect from tx_interrupt */ tx_skb = skb; /* remember it so we can free it in the tx irq handler later */ dev->trans_start = jiffies; e100_hardware_send_packet(buf, length); /* this simple TX driver has only one send-descriptor so we're full * directly. If this had a send-ring instead, we would only do this if * the ring got full. */ netif_stop_queue(dev); spin_unlock_irq(&np->lock); return 0; } /* * The typical workload of the driver: * Handle the network interface interrupts. */ static void e100rx_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = (struct net_device *)dev_id; unsigned long irqbits = *R_IRQ_MASK2_RD; if(irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) { /* acknowledge the eop interrupt */ *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do); /* check if one or more complete packets were indeed received */ while(*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) { /* Take out the buffer and give it to the OS, then * allocate a new buffer to put a packet in. */ e100_rx(dev); ((struct net_local *)dev->priv)->stats.rx_packets++; /* restart/continue on the channel, for safety */ *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart); /* clear dma channel 1 eop/descr irq bits */ *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do); /* now, we might have gotten another packet so we have to loop back and check if so */ } } } /* the transmit dma channel interrupt * * this is supposed to free the skbuff which was pending during transmission, * and inform the kernel that we can send one more buffer */ static void e100tx_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = (struct net_device *)dev_id; unsigned long irqbits = *R_IRQ_MASK2_RD; struct net_local *np = (struct net_local *)dev->priv; /* check for a dma0_eop interrupt */ if(irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) { /* This protects us from concurrent execution of * our dev->hard_start_xmit function above. */ spin_lock(&np->lock); /* acknowledge the eop interrupt */ *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do); if(*R_DMA_CH0_FIRST == 0 && tx_skb) { np->stats.tx_bytes += tx_skb->len; np->stats.tx_packets++; /* dma is ready with the transmission of the data in tx_skb, so now we can release the skb memory */ dev_kfree_skb_irq(tx_skb); tx_skb = 0; netif_wake_queue(dev); } else { printk(KERN_WARNING "%s: tx weird interrupt\n", cardname); } spin_unlock(&np->lock); } } static void e100nw_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = (struct net_device *)dev_id; struct net_local *np = (struct net_local *)dev->priv; unsigned long irqbits = *R_IRQ_MASK0_RD; /* check for underrun irq */ if(irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) { *R_NETWORK_TR_CTRL = IO_STATE(R_NETWORK_TR_CTRL, clr_error, clr); np->stats.tx_errors++; D(printk("ethernet receiver underrun!\n")); } /* check for overrun irq */ if(irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) { update_rx_stats(&np->stats); /* this will ack the irq */ D(printk("ethernet receiver overrun!\n")); } /* check for excessive collision irq */ if(irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) { *R_NETWORK_TR_CTRL = IO_STATE(R_NETWORK_TR_CTRL, clr_error, clr); np->stats.tx_errors++; D(printk("ethernet excessive collisions!\n")); } } /* We have a good packet(s), get it/them out of the buffers. */ static void e100_rx(struct net_device *dev) { struct sk_buff *skb; int length=0; int i; struct net_local *np = (struct net_local *)dev->priv; struct etrax_dma_descr *mySaveRxDesc = myNextRxDesc; unsigned char *skb_data_ptr; if (!led_active && jiffies > led_next_time) { /* light the network leds depending on the current speed. */ e100_set_network_leds(NETWORK_ACTIVITY); /* Set the earliest time we may clear the LED */ led_next_time = jiffies + NET_FLASH_TIME; led_active = 1; } /* If the packet is broken down in many small packages then merge * count how much space we will need to alloc with skb_alloc() for * it to fit. */ while (!(myNextRxDesc->status & d_eop)) { length += myNextRxDesc->sw_len; /* use sw_len for the first descs */ myNextRxDesc->status = 0; myNextRxDesc = phys_to_virt(myNextRxDesc->next); } length += myNextRxDesc->hw_len; /* use hw_len for the last descr */ ((struct net_local *)dev->priv)->stats.rx_bytes += length; #ifdef ETHDEBUG printk("Got a packet of length %d:\n", length); /* dump the first bytes in the packet */ skb_data_ptr = (unsigned char *)phys_to_virt(mySaveRxDesc->buf); for(i = 0; i < 8; i++) { printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8, skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3], skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]); skb_data_ptr += 8; } #endif skb = dev_alloc_skb(length - ETHER_HEAD_LEN); if (!skb) { np->stats.rx_errors++; printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name); return; } skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */ skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */ #ifdef ETHDEBUG printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n", skb->head, skb->data, skb->tail, skb->end); printk("copying packet to 0x%x.\n", skb_data_ptr); #endif /* this loop can be made using max two memcpy's if optimized */ while(mySaveRxDesc != myNextRxDesc) { memcpy(skb_data_ptr, phys_to_virt(mySaveRxDesc->buf), mySaveRxDesc->sw_len); skb_data_ptr += mySaveRxDesc->sw_len; mySaveRxDesc = phys_to_virt(mySaveRxDesc->next); } memcpy(skb_data_ptr, phys_to_virt(mySaveRxDesc->buf), mySaveRxDesc->hw_len); skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); /* Send the packet to the upper layers */ netif_rx(skb); /* Prepare for next packet */ myNextRxDesc->status = 0; myPrevRxDesc = myNextRxDesc; myNextRxDesc = phys_to_virt(myNextRxDesc->next); myPrevRxDesc->ctrl |= d_eol; myLastRxDesc->ctrl &= ~d_eol; myLastRxDesc = myPrevRxDesc; return; } /* The inverse routine to net_open(). */ static int e100_close(struct net_device *dev) { struct net_local *np = (struct net_local *)dev->priv; printk("Closing %s.\n", dev->name); netif_stop_queue(dev); *R_NETWORK_GEN_CONFIG = IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) | IO_STATE(R_NETWORK_GEN_CONFIG, enable, off); *R_IRQ_MASK0_CLR = IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) | IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) | IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr); *R_IRQ_MASK2_CLR = IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr); /* Stop the receiver and the transmitter */ RESET_DMA(NETWORK_TX_DMA_NBR); RESET_DMA(NETWORK_RX_DMA_NBR); /* Flush the Tx and disable Rx here. */ free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev); free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev); free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev); free_dma(NETWORK_TX_DMA_NBR); free_dma(NETWORK_RX_DMA_NBR); /* Update the statistics here. */ update_rx_stats(&np->stats); update_tx_stats(&np->stats); return 0; } static void update_rx_stats(struct net_device_stats *es) { unsigned long r = *R_REC_COUNTERS; /* update stats relevant to reception errors */ es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r); es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r); es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r); es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r); } static void update_tx_stats(struct net_device_stats *es) { unsigned long r = *R_TR_COUNTERS; /* update stats relevant to transmission errors */ es->collisions += IO_EXTRACT(R_TR_COUNTERS, single_col, r) + IO_EXTRACT(R_TR_COUNTERS, multiple_col, r); es->tx_errors += IO_EXTRACT(R_TR_COUNTERS, deferred, r); } /* * Get the current statistics. * This may be called with the card open or closed. */ static struct net_device_stats * e100_get_stats(struct net_device *dev) { struct net_local *lp = (struct net_local *)dev->priv; update_rx_stats(&lp->stats); update_tx_stats(&lp->stats); return &lp->stats; } /* * Set or clear the multicast filter for this adaptor. * num_addrs == -1 Promiscuous mode, receive all packets * num_addrs == 0 Normal mode, clear multicast list * num_addrs > 0 Multicast mode, receive normal and MC packets, * and do best-effort filtering. */ static void set_multicast_list(struct net_device *dev) { int num_addr = dev->mc_count; unsigned long int lo_bits; unsigned long int hi_bits; if (num_addr == -1) { /* promiscuous mode */ lo_bits = 0xfffffffful; hi_bits = 0xfffffffful; /* Enable individual receive */ *R_NETWORK_REC_CONFIG = IO_STATE(R_NETWORK_REC_CONFIG, broadcast, receive) | IO_STATE(R_NETWORK_REC_CONFIG, ma0, enable) | IO_STATE(R_NETWORK_REC_CONFIG, individual, receive); } else if (num_addr == 0) { /* Normal, clear the mc list */ lo_bits = 0x00000000ul; hi_bits = 0x00000000ul; /* Disable individual receive */ *R_NETWORK_REC_CONFIG = IO_STATE(R_NETWORK_REC_CONFIG, broadcast, receive) | IO_STATE(R_NETWORK_REC_CONFIG, ma0, enable); } else { /* MC mode, receive normal and MC packets */ char hash_ix; struct dev_mc_list *dmi = dev->mc_list; int i; char *baddr; lo_bits = 0x00000000ul; hi_bits = 0x00000000ul; for (i=0; idmi_addr; hash_ix ^= (*baddr) & 0x3f; hash_ix ^= ((*baddr) >> 6) & 0x03; ++baddr; hash_ix ^= ((*baddr) << 2) & 0x03c; hash_ix ^= ((*baddr) >> 4) & 0xf; ++baddr; hash_ix ^= ((*baddr) << 4) & 0x30; hash_ix ^= ((*baddr) >> 2) & 0x3f; ++baddr; hash_ix ^= (*baddr) & 0x3f; hash_ix ^= ((*baddr) >> 6) & 0x03; ++baddr; hash_ix ^= ((*baddr) << 2) & 0x03c; hash_ix ^= ((*baddr) >> 4) & 0xf; ++baddr; hash_ix ^= ((*baddr) << 4) & 0x30; hash_ix ^= ((*baddr) >> 2) & 0x3f; hash_ix &= 0x3f; if (hash_ix > 32) { hi_bits |= (1 << (hash_ix-32)); } else { lo_bits |= (1 << hash_ix); } dmi = dmi->next; } /* Disable individual receive */ *R_NETWORK_REC_CONFIG = IO_STATE(R_NETWORK_REC_CONFIG, broadcast, receive) | IO_STATE(R_NETWORK_REC_CONFIG, ma0, enable); } *R_NETWORK_GA_0 = lo_bits; *R_NETWORK_GA_1 = hi_bits; } void e100_hardware_send_packet(char *buf, int length) { D(printk("e100 send pack, buf 0x%x len %d\n", buf, length)); if (!led_active && jiffies > led_next_time) { /* light the network leds depending on the current speed. */ e100_set_network_leds(NETWORK_ACTIVITY); /* Set the earliest time we may clear the LED */ led_next_time = jiffies + NET_FLASH_TIME; led_active = 1; } /* configure the tx dma descriptor */ TxDesc.sw_len = length; TxDesc.ctrl = d_eop | d_eol | d_wait; TxDesc.buf = virt_to_phys(buf); /* setup the dma channel and start it */ *R_DMA_CH0_FIRST = virt_to_phys(&TxDesc); *R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, start); } static void e100_clear_network_leds(unsigned long dummy) { if (led_active && jiffies > led_next_time) { e100_set_network_leds(NO_NETWORK_ACTIVITY); /* Set the earliest time we may set the LED */ led_next_time = jiffies + NET_FLASH_PAUSE; led_active = 0; } clear_led_timer.expires = jiffies + HZ/10; add_timer(&clear_led_timer); } static void e100_set_network_leds(int active) { #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK) int light_leds = (active == NO_NETWORK_ACTIVITY); #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY) int light_leds = (active == NETWORK_ACTIVITY); #else #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY" #endif if (!current_speed) { /* Make LED red, link is down */ LED_NETWORK_SET(LED_RED); } else if (light_leds) { if (current_speed == 10) { LED_NETWORK_SET(LED_ORANGE); } else { LED_NETWORK_SET(LED_GREEN); } } else { LED_NETWORK_SET(LED_OFF); } } static struct net_device dev_etrax_ethernet; /* only got one */ static int etrax_init_module(void) { struct net_device *d = &dev_etrax_ethernet; d->init = etrax_ethernet_init; if(register_netdev(d) == 0) return 0; else return -ENODEV; } module_init(etrax_init_module);