/* * Simple synchronous serial port driver for ETRAX 100LX. * * Synchronous serial ports are used for continous streamed data like audio. * The default setting for this driver is compatible with the STA 013 MP3 * decoder. The driver can easily be tuned to fit other audio encoder/decoders * and SPI * * Copyright (c) 2001 Axis Communications AB * * Author: Mikael Starvik * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* The receiver is a bit tricky beacuse of the continous stream of data. */ /* */ /* Two DMA descriptors are linked together. Each DMA descriptor is */ /* responsible for one half of a common buffer. */ /* */ /* ------------------------------ */ /* | ---------- ---------- | */ /* --> | Descr1 |-->| Descr2 |--- */ /* ---------- ---------- */ /* | | */ /* v v */ /* ----------------------------- */ /* | BUFFER | */ /* ----------------------------- */ /* | | */ /* readp writep */ /* */ /* If the application keeps up the pace readp will be right after writep.*/ /* If the application can't keep the pace we have to throw away data. */ /* The idea is that readp should be ready with the data pointed out by */ /* Descr1 when the DMA has filled in Descr2. Otherwise we will discard */ /* the rest of the data pointed out by Descr1 and set readp to the start */ /* of Descr2 */ #define SYNC_SERIAL_MAJOR 125 /* IN_BUFFER_SIZE should be a multiple of 6 to make sure that 24 bit */ /* words can be handled */ #define IN_BUFFER_SIZE 12288 #define OUT_BUFFER_SIZE 4096 #define DEFAULT_FRAME_RATE 0 #define DEFAULT_WORD_RATE 7 #define DEBUG(x) /* Define some macros to access ETRAX 100 registers */ #define SETF(var, reg, field, val) var = (var & ~IO_MASK(##reg##, field)) | \ IO_FIELD(##reg##, field, val) #define SETS(var, reg, field, val) var = (var & ~IO_MASK(##reg##, field)) | \ IO_STATE(##reg##, field, val) typedef struct sync_port { /* Etrax registers and bits*/ volatile unsigned * const status; volatile unsigned * const ctrl_data; volatile unsigned * const output_dma_first; volatile unsigned char * const output_dma_cmd; volatile unsigned char * const output_dma_clr_irq; volatile unsigned * const input_dma_first; volatile unsigned char * const input_dma_cmd; volatile unsigned char * const input_dma_clr_irq; volatile unsigned * const data_out; volatile unsigned * const data_in; char data_avail_bit; /* In R_IRQ_MASK1_RD */ char transmitter_ready_bit; /* In R_IRQ_MASK1_RD */ char ready_irq_bit; /* In R_IRQ_MASK1_SET and R_IRQ_MASK1_CLR */ char input_dma_descr_bit; /* In R_IRQ_MASK2_RD */ char output_dma_bit; /* In R_IRQ_MASK2_RD */ int enabled; /* 1 if port is enabled */ int use_dma; /* 1 if port uses dma */ int port_nbr; /* Port 0 or 1 */ unsigned ctrl_data_shadow; /* Register shadow */ char busy; /* 1 if port is busy */ wait_queue_head_t out_wait_q; wait_queue_head_t in_wait_q; struct etrax_dma_descr out_descr; struct etrax_dma_descr in_descr1; struct etrax_dma_descr in_descr2; char out_buffer[OUT_BUFFER_SIZE]; int out_count; /* Remaining bytes for current transfer */ char* outp; /* Current position in out_buffer */ char in_buffer[IN_BUFFER_SIZE]; volatile char* readp; /* Next byte to be read by application */ volatile char* writep; /* Next byte to be written by etrax */ int odd_output; /* 1 if writing odd nible in 12 bit mode */ int odd_input; /* 1 if reading odd nible in 12 bit mode */ } sync_port; static int etrax_sync_serial_init(void); static void initialize_port(int portnbr); static int sync_serial_open(struct inode *, struct file*); static int sync_serial_release(struct inode*, struct file*); static int sync_serial_ioctl(struct inode*, struct file*, unsigned int cmd, unsigned long arg); static ssize_t sync_serial_write(struct file * file, const char * buf, size_t count, loff_t *ppos); static ssize_t sync_serial_manual_write(struct file * file, const char * buf, size_t count, loff_t *ppos); static ssize_t sync_serial_read(struct file *file, char *buf, size_t count, loff_t *ppos); static void send_word(sync_port* port); static void start_dma(struct sync_port *port, const char* data, int count); static void start_dma_in(sync_port* port); static void tr_interrupt(int irq, void *dev_id, struct pt_regs * regs); static void rx_interrupt(int irq, void *dev_id, struct pt_regs * regs); static void manual_interrupt(int irq, void *dev_id, struct pt_regs * regs); /* The ports */ static struct sync_port ports[]= { { R_SYNC_SERIAL1_STATUS, /* status */ R_SYNC_SERIAL1_CTRL, /* ctrl_data */ R_DMA_CH8_FIRST, /* output_dma_first */ R_DMA_CH8_CMD, /* output_dma_cmd */ R_DMA_CH8_CLR_INTR, /* output_dma_clr_irq */ R_DMA_CH9_FIRST, /* input_dma_first */ R_DMA_CH9_CMD, /* input_dma_cmd */ R_DMA_CH9_CLR_INTR, /* input_dma_clr_irq */ R_SYNC_SERIAL1_TR_DATA, /* data_out */ R_SYNC_SERIAL1_REC_DATA,/* data in */ IO_BITNR(R_IRQ_MASK1_RD, ser1_data), /* data_avail_bit */ IO_BITNR(R_IRQ_MASK1_RD, ser1_ready), /* transmitter_ready_bit */ IO_BITNR(R_IRQ_MASK1_SET, ser1_ready), /* ready_irq_bit */ IO_BITNR(R_IRQ_MASK2_RD, dma9_descr), /* input_dma_descr_bit */ IO_BITNR(R_IRQ_MASK2_RD, dma8_eop), /* output_dma_bit */ }, { R_SYNC_SERIAL3_STATUS, /* status */ R_SYNC_SERIAL3_CTRL, /* ctrl_data */ R_DMA_CH4_FIRST, /* output_dma_first */ R_DMA_CH4_CMD, /* output_dma_cmd */ R_DMA_CH4_CLR_INTR, /* output_dma_clr_irq */ R_DMA_CH5_FIRST, /* input_dma_first */ R_DMA_CH5_CMD, /* input_dma_cmd */ R_DMA_CH5_CLR_INTR, /* input_dma_clr_irq */ R_SYNC_SERIAL3_TR_DATA, /* data_out */ R_SYNC_SERIAL3_REC_DATA,/* data in */ IO_BITNR(R_IRQ_MASK1_RD, ser3_data), /* data_avail_bit */ IO_BITNR(R_IRQ_MASK1_RD, ser3_ready), /* transmitter_ready_bit */ IO_BITNR(R_IRQ_MASK1_SET, ser3_ready), /* ready_irq_bit */ IO_BITNR(R_IRQ_MASK2_RD, dma5_descr), /* input_dma_descr_bit */ IO_BITNR(R_IRQ_MASK2_RD, dma4_eop), /* output_dma_bit */ } }; /* Register shadows */ static unsigned sync_serial_prescale_shadow = 0; static unsigned gen_config_ii_shadow = 0; #define NUMBER_OF_PORTS (sizeof(ports)/sizeof(sync_port)) static struct file_operations sync_serial_fops = { owner: THIS_MODULE, write: sync_serial_write, read: sync_serial_read, ioctl: sync_serial_ioctl, open: sync_serial_open, release: sync_serial_release }; static int __init etrax_sync_serial_init(void) { ports[0].enabled = 0; ports[1].enabled = 0; if (register_chrdev(SYNC_SERIAL_MAJOR,"sync serial", &sync_serial_fops) <0 ) { printk("unable to get major for synchronous serial port\n"); return -EBUSY; } /* Deselect synchronous serial ports */ SETS(gen_config_ii_shadow, R_GEN_CONFIG_II, sermode1, async); SETS(gen_config_ii_shadow, R_GEN_CONFIG_II, sermode3, async); SETS(gen_config_ii_shadow, R_GEN_CONFIG_II, ser3, select); *R_GEN_CONFIG_II = gen_config_ii_shadow; /* Initialize Ports */ #if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT0) ports[0].enabled = 1; SETS(port_pb_i2c_shadow, R_PORT_PB_I2C, syncser1, ss1extra); SETS(gen_config_ii_shadow, R_GEN_CONFIG_II, sermode1, sync); #if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL0_DMA) ports[0].use_dma = 1; initialize_port(0); if(request_irq(24, tr_interrupt, 0, "synchronous serial 1 dma tr", &ports[0])) panic("Can't allocate sync serial port 1 IRQ"); if(request_irq(25, rx_interrupt, 0, "synchronous serial 1 dma rx", &ports[0])) panic("Can't allocate sync serial port 1 IRQ"); RESET_DMA(8); WAIT_DMA(8); RESET_DMA(9); WAIT_DMA(9); *R_DMA_CH8_CLR_INTR = IO_STATE(R_DMA_CH8_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH8_CLR_INTR, clr_descr, do); *R_DMA_CH9_CLR_INTR = IO_STATE(R_DMA_CH9_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH9_CLR_INTR, clr_descr, do); *R_IRQ_MASK2_SET = IO_STATE(R_IRQ_MASK2_SET, dma8_eop, set) | IO_STATE(R_IRQ_MASK2_SET, dma8_descr, set) | IO_STATE(R_IRQ_MASK2_SET, dma9_descr, set); start_dma_in(&ports[0]); #else ports[0].use_dma = 0; initialize_port(0); if (request_irq(8, manual_interrupt, SA_SHIRQ, "synchronous serial manual irq", &ports[0])) panic("Can't allocate sync serial manual irq"); *R_IRQ_MASK1_SET = IO_STATE(R_IRQ_MASK1_SET, ser1_data, set); #endif #endif #if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT1) ports[1].enabled = 1; SETS(port_pb_i2c_shadow, R_PORT_PB_I2C, syncser3, ss3extra); SETS(gen_config_ii_shadow, R_GEN_CONFIG_II, sermode3, sync); #if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL1_DMA) ports[1].use_dma = 1; initialize_port(1); if(request_irq(20, tr_interrupt, 0, "synchronous serial 3 dma tr", &ports[1])) panic("Can't allocate sync serial port 1 IRQ"); if(request_irq(21, rx_interrupt, 0, "synchronous serial 3 dma rx", &ports[1])) panic("Can't allocate sync serial port 1 IRQ"); RESET_DMA(4); WAIT_DMA(4); RESET_DMA(5); WAIT_DMA(5); *R_DMA_CH4_CLR_INTR = IO_STATE(R_DMA_CH4_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH4_CLR_INTR, clr_descr, do); *R_DMA_CH5_CLR_INTR = IO_STATE(R_DMA_CH5_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH5_CLR_INTR, clr_descr, do); *R_IRQ_MASK2_SET = IO_STATE(R_IRQ_MASK2_SET, dma4_eop, set) | IO_STATE(R_IRQ_MASK2_SET, dma4_descr, set) | IO_STATE(R_IRQ_MASK2_SET, dma5_descr, set); start_dma_in(&ports[1]); #else ports[1].use_dma = 0; initialize_port(1); if (port[0].use_dma) /* Port 0 uses dma, we must manual allocate IRQ */ { if (request_irq(8, manual_interrupt, SA_SHIRQ, "synchronous serial manual irq", &ports[1])) panic("Can't allocate sync serial manual irq"); } *R_IRQ_MASK1_SET = IO_STATE(R_IRQ_MASK1_SET, ser3_data, set); #endif #endif *R_PORT_PB_I2C = port_pb_i2c_shadow; /* Use PB4/PB7 */ /* Set up timing */ *R_SYNC_SERIAL_PRESCALE = sync_serial_prescale_shadow = ( IO_STATE(R_SYNC_SERIAL_PRESCALE, clk_sel_u1, codec) | IO_STATE(R_SYNC_SERIAL_PRESCALE, word_stb_sel_u1, external) | IO_STATE(R_SYNC_SERIAL_PRESCALE, clk_sel_u3, codec) | IO_STATE(R_SYNC_SERIAL_PRESCALE, word_stb_sel_u3, external) | IO_STATE(R_SYNC_SERIAL_PRESCALE, prescaler, div4) | IO_FIELD(R_SYNC_SERIAL_PRESCALE, frame_rate, DEFAULT_FRAME_RATE) | IO_FIELD(R_SYNC_SERIAL_PRESCALE, word_rate, DEFAULT_WORD_RATE) | IO_STATE(R_SYNC_SERIAL_PRESCALE, warp_mode, normal)); /* Select synchronous ports */ *R_GEN_CONFIG_II = gen_config_ii_shadow; printk("ETRAX 100LX synchronous serial port driver\n"); return 0; } static void initialize_port(int portnbr) { struct sync_port* port = &ports[portnbr]; DEBUG(printk("Init sync serial port %d\n", portnbr)); port->port_nbr = portnbr; port->busy = 0; port->readp = port->in_buffer; port->writep = port->in_buffer + IN_BUFFER_SIZE/2; port->odd_input = 0; init_waitqueue_head(&port->out_wait_q); init_waitqueue_head(&port->in_wait_q); port->ctrl_data_shadow = IO_STATE(R_SYNC_SERIAL1_CTRL, tr_baud, c115k2Hz) | IO_STATE(R_SYNC_SERIAL1_CTRL, mode, master_output) | IO_STATE(R_SYNC_SERIAL1_CTRL, error, ignore) | IO_STATE(R_SYNC_SERIAL1_CTRL, rec_enable, disable) | IO_STATE(R_SYNC_SERIAL1_CTRL, f_synctype, normal) | IO_STATE(R_SYNC_SERIAL1_CTRL, f_syncsize, word) | IO_STATE(R_SYNC_SERIAL1_CTRL, f_sync, on) | IO_STATE(R_SYNC_SERIAL1_CTRL, clk_mode, normal) | IO_STATE(R_SYNC_SERIAL1_CTRL, clk_halt, stopped) | IO_STATE(R_SYNC_SERIAL1_CTRL, bitorder, msb) | IO_STATE(R_SYNC_SERIAL1_CTRL, tr_enable, disable) | IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size8bit) | IO_STATE(R_SYNC_SERIAL1_CTRL, buf_empty, lmt_8) | IO_STATE(R_SYNC_SERIAL1_CTRL, buf_full, lmt_8) | IO_STATE(R_SYNC_SERIAL1_CTRL, flow_ctrl, enabled) | IO_STATE(R_SYNC_SERIAL1_CTRL, clk_polarity, neg) | IO_STATE(R_SYNC_SERIAL1_CTRL, frame_polarity, normal)| IO_STATE(R_SYNC_SERIAL1_CTRL, status_polarity, inverted)| IO_STATE(R_SYNC_SERIAL1_CTRL, clk_driver, normal) | IO_STATE(R_SYNC_SERIAL1_CTRL, frame_driver, normal) | IO_STATE(R_SYNC_SERIAL1_CTRL, status_driver, normal)| IO_STATE(R_SYNC_SERIAL1_CTRL, def_out0, high); if (port->use_dma) port->ctrl_data_shadow |= IO_STATE(R_SYNC_SERIAL1_CTRL, dma_enable, on); else port->ctrl_data_shadow |= IO_STATE(R_SYNC_SERIAL1_CTRL, dma_enable, off); *port->ctrl_data = port->ctrl_data_shadow; } static int sync_serial_open(struct inode *inode, struct file *file) { int dev = MINOR(inode->i_rdev); DEBUG(printk("Open sync serial port %d\n", dev)); if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled) { DEBUG(printk("Invalid minor %d\n", dev)); return -ENODEV; } if (ports[dev].busy) { DEBUG(printk("Device is busy.. \n")); return -EBUSY; } ports[dev].busy = 1; return 0; } static int sync_serial_release(struct inode *inode, struct file *file) { int dev = MINOR(inode->i_rdev); if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled) { DEBUG(printk("Invalid minor %d\n", dev)); return -ENODEV; } ports[dev].busy = 0; return 0; } static int sync_serial_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { int return_val = 0; int dev = MINOR(file->f_dentry->d_inode->i_rdev); sync_port* port; if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled) { DEBUG(printk("Invalid minor %d\n", dev)); return -1; } port = &ports[dev]; /* Disable port while changing config */ if (dev) { RESET_DMA(4); WAIT_DMA(4); *R_DMA_CH4_CLR_INTR = IO_STATE(R_DMA_CH4_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH4_CLR_INTR, clr_descr, do); SETS(gen_config_ii_shadow, R_GEN_CONFIG_II, sermode3, async); } else { RESET_DMA(8); WAIT_DMA(8); *R_DMA_CH8_CLR_INTR = IO_STATE(R_DMA_CH8_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH8_CLR_INTR, clr_descr, do); SETS(gen_config_ii_shadow, R_GEN_CONFIG_II, sermode1, async); } *R_GEN_CONFIG_II = gen_config_ii_shadow; switch(cmd) { case SSP_SPEED: if (GET_SPEED(arg) == CODEC) { if (dev) SETS(sync_serial_prescale_shadow, R_SYNC_SERIAL_PRESCALE, clk_sel_u3, codec); else SETS(sync_serial_prescale_shadow, R_SYNC_SERIAL_PRESCALE, clk_sel_u1, codec); SETF(sync_serial_prescale_shadow, R_SYNC_SERIAL_PRESCALE, prescaler, GET_FREQ(arg)); SETF(sync_serial_prescale_shadow, R_SYNC_SERIAL_PRESCALE, frame_rate, GET_FRAME_RATE(arg)); SETF(sync_serial_prescale_shadow, R_SYNC_SERIAL_PRESCALE, word_rate, GET_WORD_RATE(arg)); } else { SETF(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, tr_baud, GET_SPEED(arg)); if (dev) SETS(sync_serial_prescale_shadow, R_SYNC_SERIAL_PRESCALE, clk_sel_u3, baudrate); else SETS(sync_serial_prescale_shadow, R_SYNC_SERIAL_PRESCALE, clk_sel_u1, baudrate); } break; case SSP_MODE: if (arg > 5) return -EINVAL; SETF(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, mode, arg); break; case SSP_FRAME_SYNC: if (arg & NORMAL_SYNC) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, f_synctype, normal); else if (arg & EARLY_SYNC) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, f_synctype, early); if (arg & BIT_SYNC) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, f_syncsize, bit); else if (arg & WORD_SYNC) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, f_syncsize, word); else if (arg & EXTENDED_SYNC) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, f_syncsize, extended); if (arg & SYNC_ON) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, f_sync, on); else if (arg & SYNC_OFF) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, f_sync, off); if (arg & WORD_SIZE_8) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, wordsize, size8bit); else if (arg & WORD_SIZE_12) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, wordsize, size12bit); else if (arg & WORD_SIZE_16) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, wordsize, size16bit); else if (arg & WORD_SIZE_24) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, wordsize, size24bit); else if (arg & WORD_SIZE_32) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, wordsize, size32bit); if (arg & BIT_ORDER_MSB) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, bitorder, msb); else if (arg & BIT_ORDER_LSB) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, bitorder, lsb); if (arg & FLOW_CONTROL_ENABLE) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, flow_ctrl, enabled); else if (arg & FLOW_CONTROL_DISABLE) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, flow_ctrl, disabled); if (arg & CLOCK_NOT_GATED) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, clk_mode, normal); else if (arg & CLOCK_GATED) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, clk_mode, gated); break; case SSP_IPOLARITY: if (arg & CLOCK_NORMAL) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, clk_polarity, neg); else if (arg & CLOCK_INVERT) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, clk_polarity, pos); if (arg & FRAME_NORMAL) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, frame_polarity, normal); else if (arg & FRAME_INVERT) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, frame_polarity, inverted); if (arg & STATUS_NORMAL) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, status_polarity, normal); else if (arg & STATUS_INVERT) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, status_polarity, inverted); break; case SSP_OPOLARITY: if (arg & CLOCK_NORMAL) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, clk_driver, normal); else if (arg & CLOCK_INVERT) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, clk_driver, inverted); if (arg & FRAME_NORMAL) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, frame_driver, normal); else if (arg & FRAME_INVERT) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, frame_driver, inverted); if (arg & STATUS_NORMAL) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, status_driver, normal); else if (arg & STATUS_INVERT) SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, status_driver, inverted); break; case SSP_SPI: SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, flow_ctrl, disabled); SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, bitorder, msb); SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, wordsize, size8bit); SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, f_sync, on); SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, f_syncsize, word); SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, f_synctype, normal); if (arg & SPI_SLAVE) { SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, frame_polarity, inverted); SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, clk_polarity, neg); SETF(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, mode, SLAVE_INPUT); } else { SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, frame_driver, inverted); SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, clk_driver, inverted); SETF(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, mode, MASTER_OUTPUT); } break; default: return_val = -1; } /* Set config and enable port */ *port->ctrl_data = port->ctrl_data_shadow; *R_SYNC_SERIAL_PRESCALE = sync_serial_prescale_shadow; if (dev) SETS(gen_config_ii_shadow, R_GEN_CONFIG_II, sermode3, sync); else SETS(gen_config_ii_shadow, R_GEN_CONFIG_II, sermode1, sync); *R_GEN_CONFIG_II = gen_config_ii_shadow; return return_val; } static ssize_t sync_serial_manual_write(struct file * file, const char * buf, size_t count, loff_t *ppos) { int dev = MINOR(file->f_dentry->d_inode->i_rdev); DECLARE_WAITQUEUE(wait, current); sync_port* port; if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled) { DEBUG(printk("Invalid minor %d\n", dev)); return -ENODEV; } port = &ports[dev]; copy_from_user(port->out_buffer, buf, count); port->outp = port->out_buffer; port->out_count = count; port->odd_output = 1; add_wait_queue(&port->out_wait_q, &wait); set_current_state(TASK_INTERRUPTIBLE); *R_IRQ_MASK1_SET = 1 << port->ready_irq_bit; /* transmitter ready IRQ on */ send_word(port); /* Start sender by sending first word */ schedule(); set_current_state(TASK_RUNNING); remove_wait_queue(&port->out_wait_q, &wait); if (signal_pending(current)) { return -EINTR; } return count; } static ssize_t sync_serial_write(struct file * file, const char * buf, size_t count, loff_t *ppos) { int dev = MINOR(file->f_dentry->d_inode->i_rdev); DECLARE_WAITQUEUE(wait, current); sync_port *port; if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled) { DEBUG(printk("Invalid minor %d\n", dev)); return -ENODEV; } port = &ports[dev]; DEBUG(printk("Write dev %d count %d\n", port->port_nbr, count)); count = count > OUT_BUFFER_SIZE ? OUT_BUFFER_SIZE : count; /* Make sure transmitter is running */ SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, clk_halt, running); SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, tr_enable, enable); *port->ctrl_data = port->ctrl_data_shadow; if (!port->use_dma) { return sync_serial_manual_write(file, buf, count, ppos); } copy_from_user(port->out_buffer, buf, count); add_wait_queue(&port->out_wait_q, &wait); set_current_state(TASK_INTERRUPTIBLE); start_dma(port, buf, count); schedule(); set_current_state(TASK_RUNNING); remove_wait_queue(&port->out_wait_q, &wait); if (signal_pending(current)) { return -EINTR; } return count; } static ssize_t sync_serial_read(struct file * file, char * buf, size_t count, loff_t *ppos) { int dev = MINOR(file->f_dentry->d_inode->i_rdev); int avail; sync_port *port; char* start; char* end; unsigned long flags; if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled) { DEBUG(printk("Invalid minor %d\n", dev)); return -ENODEV; } port = &ports[dev]; DEBUG(printk("Read dev %d count %d\n", dev, count)); /* Make sure receiver is running */ SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, clk_halt, running); SETS(port->ctrl_data_shadow, R_SYNC_SERIAL1_CTRL, rec_enable, enable); *port->ctrl_data = port->ctrl_data_shadow; /* Calculate number of available bytes */ while (port->readp == port->writep) /* No data */ { if (file->f_flags & O_NONBLOCK) return -EAGAIN; interruptible_sleep_on(&port->in_wait_q); if (signal_pending(current)) { return -EINTR; } } /* Save pointers to avoid that they are modified by interrupt */ start = port->readp; end = port->writep; /* Lazy read, never return wrapped data. */ if (end > start) avail = end - start; else avail = port->in_buffer + IN_BUFFER_SIZE - start; count = count > avail ? avail : count; copy_to_user(buf, start, count); /* Disable interrupts while updating readp */ save_flags(flags); cli(); port->readp += count; if (port->readp == port->in_buffer + IN_BUFFER_SIZE) /* Wrap? */ port->readp = port->in_buffer; restore_flags(flags); DEBUG(printk("%d bytes read\n", count)); return count; } static void send_word(sync_port* port) { switch(port->ctrl_data_shadow & IO_MASK(R_SYNC_SERIAL1_CTRL, wordsize)) { case IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size8bit): port->out_count--; *port->data_out = *port->outp++; break; case IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size12bit): port->out_count--; if (port->odd_output) *port->data_out = ((*port->outp) << 16) | (*(unsigned short *)(port->outp + 1)); else *port->data_out = ((*(unsigned short *)port->outp) << 8) | (*(port->outp + 1)); port->odd_output = !port->odd_output; port->outp++; break; case IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size16bit): port->out_count-=2; *port->data_out = *(unsigned short *)port->outp; port->outp+=2; break; case IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size24bit): port->out_count-=3; *port->data_out = *(unsigned int *)port->outp; port->outp+=3; break; case IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size32bit): port->out_count-=4; *port->data_out = *(unsigned int *)port->outp; port->outp+=4; break; } } static void start_dma(struct sync_port* port, const char* data, int count) { port->out_descr.hw_len = 0; port->out_descr.next = 0; port->out_descr.ctrl = d_int | d_eol | d_eop; port->out_descr.sw_len = count; port->out_descr.buf = virt_to_phys(port->out_buffer); port->out_descr.status = 0; *port->output_dma_first = virt_to_phys(&port->out_descr); *port->output_dma_cmd = IO_STATE(R_DMA_CH0_CMD, cmd, start); } static void start_dma_in(sync_port* port) { if (port->writep > port->in_buffer + IN_BUFFER_SIZE) { panic("Offset too large in sync serial driver\n"); return; } port->in_descr1.hw_len = 0; port->in_descr1.ctrl = d_int; port->in_descr1.status = 0; port->in_descr1.next = virt_to_phys(&port->in_descr2); port->in_descr2.hw_len = 0; port->in_descr2.next = virt_to_phys(&port->in_descr1); port->in_descr2.ctrl = d_int; port->in_descr2.status = 0; /* Find out which descriptor to start */ if (port->writep >= port->in_buffer + IN_BUFFER_SIZE/2) { /* Start descriptor 2 */ port->in_descr1.sw_len = IN_BUFFER_SIZE/2; /* All data available in 1 */ port->in_descr1.buf = virt_to_phys(port->in_buffer); port->in_descr2.sw_len = port->in_buffer + IN_BUFFER_SIZE - port->writep; port->in_descr2.buf = virt_to_phys(port->writep); *port->input_dma_first = virt_to_phys(&port->in_descr2); } else { /* Start descriptor 1 */ port->in_descr1.sw_len = port->in_buffer + IN_BUFFER_SIZE/2 - port->writep; port->in_descr1.buf = virt_to_phys(port->writep); port->in_descr2.sw_len = IN_BUFFER_SIZE/2; port->in_descr2.buf = virt_to_phys(port->in_buffer + IN_BUFFER_SIZE / 2); *port->input_dma_first = virt_to_phys(&port->in_descr1); } *port->input_dma_cmd = IO_STATE(R_DMA_CH0_CMD, cmd, start); } static void tr_interrupt(int irq, void *dev_id, struct pt_regs * regs) { unsigned long ireg = *R_IRQ_MASK2_RD; int i; for (i = 0; i < NUMBER_OF_PORTS; i++) { sync_port *port = &ports[i]; if (ireg & (1 << port->output_dma_bit)) /* IRQ active for the port? */ { /* Clear IRQ */ *port->output_dma_clr_irq = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH0_CLR_INTR, clr_descr, do); wake_up_interruptible(&port->out_wait_q); /* wake up the waiting process */ } } } static void rx_interrupt(int irq, void *dev_id, struct pt_regs * regs) { unsigned long ireg = *R_IRQ_MASK2_RD; int i; for (i = 0; i < NUMBER_OF_PORTS; i++) { int update = 0; sync_port *port = &ports[i]; if (!port->enabled) { continue; } if (ireg & (1 << port->input_dma_descr_bit)) /* Descriptor interrupt */ { /* DMA has reached end of descriptor */ *port->input_dma_clr_irq = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH0_CLR_INTR, clr_descr, do); /* Find out which descriptor that is ready */ if (port->writep >= port->in_buffer + IN_BUFFER_SIZE/2) { /* Descr 2 was ready. Restart DMA at descriptor 1 */ port->writep = port->in_buffer; /* Throw away data? */ if (port->readp < port->in_buffer + IN_BUFFER_SIZE/2) port->readp = port->in_buffer + IN_BUFFER_SIZE/2; } else { /* Descr 1 was ready. Restart DMA at descriptor 2 */ port->writep = port->in_buffer + IN_BUFFER_SIZE/2; /* Throw away data? */ if (port->readp >= port->in_buffer + IN_BUFFER_SIZE/2) port->readp = port->in_buffer; } start_dma_in(port); wake_up_interruptible(&port->in_wait_q); /* wake up the waiting process */ } } } static void manual_interrupt(int irq, void *dev_id, struct pt_regs * regs) { int i; for (i = 0; i < NUMBER_OF_PORTS; i++) { sync_port* port = &ports[i]; if (!port->enabled) { continue; } if (*R_IRQ_MASK1_RD & (1 << port->data_avail_bit)) /* Data received? */ { /* Read data */ switch(port->ctrl_data_shadow & IO_MASK(R_SYNC_SERIAL1_CTRL, wordsize)) { case IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size8bit): *port->writep++ = *(volatile char *)port->data_in; break; case IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size12bit): { int data = *(unsigned short *)port->data_in; if (port->odd_input) { *port->writep |= (data & 0x0f00) >> 8; *(port->writep + 1) = data & 0xff; } else { *port->writep = (data & 0x0ff0) >> 4; *(port->writep + 1) = (data & 0x0f) << 4; } port->odd_input = !port->odd_input; port->writep+=1; } break; case IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size16bit): *(unsigned short*)port->writep = *(volatile unsigned short *)port->data_in; port->writep+=2; break; case IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size24bit): *(unsigned int*)port->writep = *port->data_in; port->writep+=3; break; case IO_STATE(R_SYNC_SERIAL1_CTRL, wordsize, size32bit): *(unsigned int*)port->writep = *port->data_in; port->writep+=4; break; } if (port->writep > port->in_buffer + IN_BUFFER_SIZE) /* Wrap? */ port->writep = port->in_buffer; wake_up_interruptible(&port->in_wait_q); /* Wake up application */ } if (*R_IRQ_MASK1_RD & (1 << port->transmitter_ready_bit)) /* Transmitter ready? */ { if (port->out_count) /* More data to send */ send_word(port); else /* transmission finished */ { *R_IRQ_MASK1_CLR = 1 << port->ready_irq_bit; /* Turn off IRQ */ wake_up_interruptible(&port->out_wait_q); /* Wake up application */ } } } } module_init(etrax_sync_serial_init);