/* * Copyright 2001 MontaVista Software Inc. * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net * * Common time service routines for MIPS machines. See * Documents/MIPS/README.txt. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* This is for machines which generate the exact clock. */ #define USECS_PER_JIFFY (1000000/HZ) #define USECS_PER_JIFFY_FRAC ((1000000ULL << 32) / HZ & 0xffffffff) /* * forward reference */ extern rwlock_t xtime_lock; extern volatile unsigned long wall_jiffies; /* * By default we provide the null RTC ops */ static unsigned long null_rtc_get_time(void) { return mktime(2000, 1, 1, 0, 0, 0); } static int null_rtc_set_time(unsigned long sec) { return 0; } unsigned long (*rtc_get_time)(void) = null_rtc_get_time; int (*rtc_set_time)(unsigned long) = null_rtc_set_time; /* * timeofday services, for syscalls. */ void do_gettimeofday(struct timeval *tv) { unsigned long flags; read_lock_irqsave (&xtime_lock, flags); *tv = xtime; tv->tv_usec += do_gettimeoffset(); /* * xtime is atomically updated in timer_bh. jiffies - wall_jiffies * is nonzero if the timer bottom half hasnt executed yet. */ if (jiffies - wall_jiffies) tv->tv_usec += USECS_PER_JIFFY; read_unlock_irqrestore (&xtime_lock, flags); if (tv->tv_usec >= 1000000) { tv->tv_usec -= 1000000; tv->tv_sec++; } } void do_settimeofday(struct timeval *tv) { write_lock_irq (&xtime_lock); /* This is revolting. We need to set the xtime.tv_usec * correctly. However, the value in this location is * is value at the last tick. * Discover what correction gettimeofday * would have done, and then undo it! */ tv->tv_usec -= do_gettimeoffset(); if (tv->tv_usec < 0) { tv->tv_usec += 1000000; tv->tv_sec--; } xtime = *tv; time_adjust = 0; /* stop active adjtime() */ time_status |= STA_UNSYNC; time_maxerror = NTP_PHASE_LIMIT; time_esterror = NTP_PHASE_LIMIT; write_unlock_irq (&xtime_lock); } /* * Gettimeoffset routines. These routines returns the time duration * since last timer interrupt in usecs. * * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. * Otherwise use calibrate_gettimeoffset() * * If the CPU does not have counter register all, you can either supply * your own gettimeoffset() routine, or use null_gettimeoffset() routines, * which gives the same resolution as HZ. */ /* This is for machines which generate the exact clock. */ #define USECS_PER_JIFFY (1000000/HZ) /* usecs per counter cycle, shifted to left by 32 bits */ static unsigned int sll32_usecs_per_cycle=0; /* how many counter cycles in a jiffy */ static unsigned long cycles_per_jiffy=0; /* Cycle counter value at the previous timer interrupt.. */ static unsigned int timerhi, timerlo; /* last time when xtime and rtc are sync'ed up */ static long last_rtc_update; /* the function pointer to one of the gettimeoffset funcs*/ unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; unsigned long null_gettimeoffset(void) { return 0; } unsigned long fixed_rate_gettimeoffset(void) { u32 count; unsigned long res; /* Get last timer tick in absolute kernel time */ count = read_32bit_cp0_register(CP0_COUNT); /* .. relative to previous jiffy (32 bits is enough) */ count -= timerlo; __asm__("multu\t%1,%2\n\t" "mfhi\t%0" :"=r" (res) :"r" (count), "r" (sll32_usecs_per_cycle)); /* * Due to possible jiffies inconsistencies, we need to check * the result so that we'll get a timer that is monotonic. */ if (res >= USECS_PER_JIFFY) res = USECS_PER_JIFFY-1; return res; } /* * Cached "1/(clocks per usec)*2^32" value. * It has to be recalculated once each jiffy. */ static unsigned long cached_quotient; /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ static unsigned long last_jiffies = 0; /* * This is copied from dec/time.c:do_ioasic_gettimeoffset() by Mercij. */ unsigned long calibrate_div32_gettimeoffset(void) { u32 count; unsigned long res, tmp; unsigned long quotient; tmp = jiffies; quotient = cached_quotient; if (last_jiffies != tmp) { last_jiffies = tmp; if (last_jiffies != 0) { unsigned long r0; do_div64_32(r0, timerhi, timerlo, tmp); do_div64_32(quotient, USECS_PER_JIFFY, USECS_PER_JIFFY_FRAC, r0); cached_quotient = quotient; } } /* Get last timer tick in absolute kernel time */ count = read_32bit_cp0_register(CP0_COUNT); /* .. relative to previous jiffy (32 bits is enough) */ count -= timerlo; __asm__("multu %2,%3" : "=l" (tmp), "=h" (res) : "r" (count), "r" (quotient)); /* * Due to possible jiffies inconsistencies, we need to check * the result so that we'll get a timer that is monotonic. */ if (res >= USECS_PER_JIFFY) res = USECS_PER_JIFFY - 1; return res; } unsigned long calibrate_div64_gettimeoffset(void) { u32 count; unsigned long res, tmp; unsigned long quotient; tmp = jiffies; quotient = cached_quotient; if (tmp && last_jiffies != tmp) { last_jiffies = tmp; __asm__(".set\tnoreorder\n\t" ".set\tnoat\n\t" ".set\tmips3\n\t" "lwu\t%0,%2\n\t" "dsll32\t$1,%1,0\n\t" "or\t$1,$1,%0\n\t" "ddivu\t$0,$1,%3\n\t" "mflo\t$1\n\t" "dsll32\t%0,%4,0\n\t" "nop\n\t" "ddivu\t$0,%0,$1\n\t" "mflo\t%0\n\t" ".set\tmips0\n\t" ".set\tat\n\t" ".set\treorder" :"=&r" (quotient) :"r" (timerhi), "m" (timerlo), "r" (tmp), "r" (USECS_PER_JIFFY) :"$1"); cached_quotient = quotient; } /* Get last timer tick in absolute kernel time */ count = read_32bit_cp0_register(CP0_COUNT); /* .. relative to previous jiffy (32 bits is enough) */ count -= timerlo; __asm__("multu\t%1,%2\n\t" "mfhi\t%0" :"=r" (res) :"r" (count), "r" (quotient)); /* * Due to possible jiffies inconsistencies, we need to check * the result so that we'll get a timer that is monotonic. */ if (res >= USECS_PER_JIFFY) res = USECS_PER_JIFFY-1; return res; } /* * high-level timer interrupt service routines. This function * is set as irqaction->handler and is invoked through do_IRQ. */ void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { if (mips_cpu.options & MIPS_CPU_COUNTER) { unsigned int count; /* * The cycle counter is only 32 bit which is good for about * a minute at current count rates of upto 150MHz or so. */ count = read_32bit_cp0_register(CP0_COUNT); timerhi += (count < timerlo); /* Wrap around */ timerlo = count; /* * set up for next timer interrupt - no harm if the machine * is using another timer interrupt source. * Note that writing to COMPARE register clears the interrupt */ write_32bit_cp0_register (CP0_COMPARE, count + cycles_per_jiffy); } if(!user_mode(regs)) { if (prof_buffer && current->pid) { extern int _stext; unsigned long pc = regs->cp0_epc; pc -= (unsigned long) &_stext; pc >>= prof_shift; /* * Dont ignore out-of-bounds pc values silently, * put them into the last histogram slot, so if * present, they will show up as a sharp peak. */ if (pc > prof_len-1) pc = prof_len-1; atomic_inc((atomic_t *)&prof_buffer[pc]); } } /* * call the generic timer interrupt handling */ do_timer(regs); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be * called as close as possible to 500 ms before the new second starts. */ read_lock (&xtime_lock); if ((time_status & STA_UNSYNC) == 0 && xtime.tv_sec > last_rtc_update + 660 && xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 && xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) { if (rtc_set_time(xtime.tv_sec) == 0) { last_rtc_update = xtime.tv_sec; } else { last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } } read_unlock (&xtime_lock); /* * If jiffies has overflowed in this timer_interrupt we must * update the timer[hi]/[lo] to make fast gettimeoffset funcs * quotient calc still valid. -arca */ if (!jiffies) { timerhi = timerlo = 0; } } asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) { int cpu = smp_processor_id(); irq_enter(cpu, irq); kstat.irqs[cpu][irq]++; /* we keep interrupt disabled all the time */ timer_interrupt(irq, NULL, regs); irq_exit(cpu, irq); if (softirq_pending(cpu)) do_softirq(); } /* * time_init() - it does the following things. * * 1) board_time_init() - * a) (optional) set up RTC routines, * b) (optional) calibrate and set the mips_counter_frequency * (only needed if you intended to use fixed_rate_gettimeoffset * or use cpu counter as timer interrupt source) * 2) setup xtime based on rtc_get_time(). * 3) choose a appropriate gettimeoffset routine. * 4) calculate a couple of cached variables for later usage * 5) board_timer_setup() - * a) (optional) over-write any choices made above by time_init(). * b) machine specific code should setup the timer irqaction. * c) enable the timer interrupt */ void (*board_time_init)(void) = NULL; void (*board_timer_setup)(struct irqaction *irq) = NULL; unsigned int mips_counter_frequency = 0; static struct irqaction timer_irqaction = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL}; void __init time_init(void) { if (board_time_init) board_time_init(); xtime.tv_sec = rtc_get_time(); xtime.tv_usec = 0; /* choose appropriate gettimeoffset routine */ if (!(mips_cpu.options & MIPS_CPU_COUNTER)) { /* no cpu counter - sorry */ do_gettimeoffset = null_gettimeoffset; } else if (mips_counter_frequency != 0) { /* we have cpu counter and know counter frequency! */ do_gettimeoffset = fixed_rate_gettimeoffset; } else if ((mips_cpu.isa_level == MIPS_CPU_ISA_M32) || (mips_cpu.isa_level == MIPS_CPU_ISA_I) || (mips_cpu.isa_level == MIPS_CPU_ISA_II) ) { /* we need to calibrate the counter but we don't have * 64-bit division. */ do_gettimeoffset = calibrate_div32_gettimeoffset; } else { /* we need to calibrate the counter but we *do* have * 64-bit division. */ do_gettimeoffset = calibrate_div64_gettimeoffset; } /* caclulate cache parameters */ if (mips_counter_frequency) { cycles_per_jiffy = mips_counter_frequency / HZ; /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */ /* any better way to do this? */ sll32_usecs_per_cycle = mips_counter_frequency / 100000; sll32_usecs_per_cycle = 0xffffffff / sll32_usecs_per_cycle; sll32_usecs_per_cycle *= 10; } /* * Call board specific timer interrupt setup. * * this pointer must be setup in machine setup routine. * * Even if the machine choose to use low-level timer interrupt, * it still needs to setup the timer_irqaction. * In that case, it might be better to set timer_irqaction.handler * to be NULL function so that we are sure the high-level code * is not invoked accidentally. */ board_timer_setup(&timer_irqaction); } #define FEBRUARY 2 #define STARTOFTIME 1970 #define SECDAY 86400L #define SECYR (SECDAY * 365) #define leapyear(year) ((year) % 4 == 0) #define days_in_year(a) (leapyear(a) ? 366 : 365) #define days_in_month(a) (month_days[(a) - 1]) static int month_days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; void to_tm(unsigned long tim, struct rtc_time * tm) { long hms, day; int i; day = tim / SECDAY; hms = tim % SECDAY; /* Hours, minutes, seconds are easy */ tm->tm_hour = hms / 3600; tm->tm_min = (hms % 3600) / 60; tm->tm_sec = (hms % 3600) % 60; /* Number of years in days */ for (i = STARTOFTIME; day >= days_in_year(i); i++) day -= days_in_year(i); tm->tm_year = i; /* Number of months in days left */ if (leapyear(tm->tm_year)) days_in_month(FEBRUARY) = 29; for (i = 1; day >= days_in_month(i); i++) day -= days_in_month(i); days_in_month(FEBRUARY) = 28; tm->tm_mon = i; /* Days are what is left over (+1) from all that. */ tm->tm_mday = day + 1; /* * Determine the day of week */ tm->tm_wday = (day + 3) % 7; }