/* * Conversion between 32-bit and 64-bit native system calls. * * Copyright (C) 2000 Silicon Graphics, Inc. * Written by Ulf Carlsson (ulfc@engr.sgi.com) * sys32_execve from ia64/ia32 code, Feb 2000, Kanoj Sarcar (kanoj@sgi.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define A(__x) ((unsigned long)(__x)) /* * Revalidate the inode. This is required for proper NFS attribute caching. */ static __inline__ int do_revalidate(struct dentry *dentry) { struct inode * inode = dentry->d_inode; if (inode->i_op && inode->i_op->revalidate) return inode->i_op->revalidate(dentry); return 0; } static int cp_new_stat32(struct inode * inode, struct stat32 * statbuf) { struct stat32 tmp; unsigned int blocks, indirect; memset(&tmp, 0, sizeof(tmp)); tmp.st_dev = kdev_t_to_nr(inode->i_dev); tmp.st_ino = inode->i_ino; tmp.st_mode = inode->i_mode; tmp.st_nlink = inode->i_nlink; SET_STAT_UID(tmp, inode->i_uid); SET_STAT_GID(tmp, inode->i_gid); tmp.st_rdev = kdev_t_to_nr(inode->i_rdev); tmp.st_size = inode->i_size; tmp.st_atime = inode->i_atime; tmp.st_mtime = inode->i_mtime; tmp.st_ctime = inode->i_ctime; /* * st_blocks and st_blksize are approximated with a simple algorithm if * they aren't supported directly by the filesystem. The minix and msdos * filesystems don't keep track of blocks, so they would either have to * be counted explicitly (by delving into the file itself), or by using * this simple algorithm to get a reasonable (although not 100% * accurate) value. */ /* * Use minix fs values for the number of direct and indirect blocks. * The count is now exact for the minix fs except that it counts zero * blocks. Everything is in units of BLOCK_SIZE until the assignment * to tmp.st_blksize. */ #define D_B 7 #define I_B (BLOCK_SIZE / sizeof(unsigned short)) if (!inode->i_blksize) { blocks = (tmp.st_size + BLOCK_SIZE - 1) / BLOCK_SIZE; if (blocks > D_B) { indirect = (blocks - D_B + I_B - 1) / I_B; blocks += indirect; if (indirect > 1) { indirect = (indirect - 1 + I_B - 1) / I_B; blocks += indirect; if (indirect > 1) blocks++; } } tmp.st_blocks = (BLOCK_SIZE / 512) * blocks; tmp.st_blksize = BLOCK_SIZE; } else { tmp.st_blocks = inode->i_blocks; tmp.st_blksize = inode->i_blksize; } return copy_to_user(statbuf,&tmp,sizeof(tmp)) ? -EFAULT : 0; } asmlinkage int sys32_newstat(char * filename, struct stat32 *statbuf) { struct nameidata nd; int error; error = user_path_walk(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_new_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } return error; } asmlinkage int sys32_newlstat(char * filename, struct stat32 *statbuf) { struct nameidata nd; int error; error = user_path_walk_link(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_new_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } return error; } asmlinkage long sys32_newfstat(unsigned int fd, struct stat32 * statbuf) { struct file * f; int err = -EBADF; f = fget(fd); if (f) { struct dentry * dentry = f->f_dentry; err = do_revalidate(dentry); if (!err) err = cp_new_stat32(dentry->d_inode, statbuf); fput(f); } return err; } asmlinkage int sys_mmap2(void) {return 0;} asmlinkage long sys_truncate(const char * path, unsigned long length); asmlinkage int sys_truncate64(const char *path, unsigned int high, unsigned int low) { if ((int)high < 0) return -EINVAL; return sys_truncate(path, ((long) high << 32) | low); } asmlinkage long sys_ftruncate(unsigned int fd, unsigned long length); asmlinkage int sys_ftruncate64(unsigned int fd, unsigned int high, unsigned int low) { if ((int)high < 0) return -EINVAL; return sys_ftruncate(fd, ((long) high << 32) | low); } extern asmlinkage int sys_utime(char * filename, struct utimbuf * times); struct utimbuf32 { __kernel_time_t32 actime, modtime; }; asmlinkage int sys32_utime(char * filename, struct utimbuf32 *times) { struct utimbuf t; mm_segment_t old_fs; int ret; char *filenam; if (!times) return sys_utime(filename, NULL); if (get_user (t.actime, ×->actime) || __get_user (t.modtime, ×->modtime)) return -EFAULT; filenam = getname (filename); ret = PTR_ERR(filenam); if (!IS_ERR(filenam)) { old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_utime(filenam, &t); set_fs (old_fs); putname (filenam); } return ret; } #if 0 /* * count32() counts the number of arguments/envelopes */ static int count32(u32 * argv, int max) { int i = 0; if (argv != NULL) { for (;;) { u32 p; /* egcs is stupid */ if (!access_ok(VERIFY_READ, argv, sizeof (u32))) return -EFAULT; __get_user(p,argv); if (!p) break; argv++; if(++i > max) return -E2BIG; } } return i; } /* * 'copy_strings32()' copies argument/envelope strings from user * memory to free pages in kernel mem. These are in a format ready * to be put directly into the top of new user memory. */ int copy_strings32(int argc, u32 * argv, struct linux_binprm *bprm) { while (argc-- > 0) { u32 str; int len; unsigned long pos; if (get_user(str, argv+argc) || !str || !(len = strnlen_user((char *)A(str), bprm->p))) return -EFAULT; if (bprm->p < len) return -E2BIG; bprm->p -= len; /* XXX: add architecture specific overflow check here. */ pos = bprm->p; while (len > 0) { char *kaddr; int i, new, err; struct page *page; int offset, bytes_to_copy; offset = pos % PAGE_SIZE; i = pos/PAGE_SIZE; page = bprm->page[i]; new = 0; if (!page) { page = alloc_page(GFP_HIGHUSER); bprm->page[i] = page; if (!page) return -ENOMEM; new = 1; } kaddr = kmap(page); if (new && offset) memset(kaddr, 0, offset); bytes_to_copy = PAGE_SIZE - offset; if (bytes_to_copy > len) { bytes_to_copy = len; if (new) memset(kaddr+offset+len, 0, PAGE_SIZE-offset-len); } err = copy_from_user(kaddr + offset, (char *)A(str), bytes_to_copy); flush_page_to_ram(page); kunmap(page); if (err) return -EFAULT; pos += bytes_to_copy; str += bytes_to_copy; len -= bytes_to_copy; } } return 0; } /* * sys_execve32() executes a new program. */ int do_execve32(char * filename, u32 * argv, u32 * envp, struct pt_regs * regs) { struct linux_binprm bprm; struct dentry * dentry; int retval; int i; bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0])); dentry = open_namei(filename, 0, 0); retval = PTR_ERR(dentry); if (IS_ERR(dentry)) return retval; bprm.dentry = dentry; bprm.filename = filename; bprm.sh_bang = 0; bprm.loader = 0; bprm.exec = 0; if ((bprm.argc = count32(argv, bprm.p / sizeof(u32))) < 0) { dput(dentry); return bprm.argc; } if ((bprm.envc = count32(envp, bprm.p / sizeof(u32))) < 0) { dput(dentry); return bprm.envc; } retval = prepare_binprm(&bprm); if (retval < 0) goto out; retval = copy_strings_kernel(1, &bprm.filename, &bprm); if (retval < 0) goto out; bprm.exec = bprm.p; retval = copy_strings32(bprm.envc, envp, &bprm); if (retval < 0) goto out; retval = copy_strings32(bprm.argc, argv, &bprm); if (retval < 0) goto out; retval = search_binary_handler(&bprm,regs); if (retval >= 0) /* execve success */ return retval; out: /* Something went wrong, return the inode and free the argument pages*/ if (bprm.dentry) dput(bprm.dentry); /* Assumes that free_page() can take a NULL argument. */ /* I hope this is ok for all architectures */ for (i = 0 ; i < MAX_ARG_PAGES ; i++) if (bprm.page[i]) __free_page(bprm.page[i]); return retval; } /* * sys_execve() executes a new program. */ asmlinkage int sys32_execve(abi64_no_regargs, struct pt_regs regs) { int error; char * filename; filename = getname((char *) (long)regs.regs[4]); printk("Executing: %s\n", filename); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve32(filename, (u32 *) (long)regs.regs[5], (u32 *) (long)regs.regs[6], ®s); putname(filename); out: return error; } #else static int nargs(unsigned int arg, char **ap) { char *ptr; int n, ret; n = 0; do { /* egcs is stupid */ if (!access_ok(VERIFY_READ, arg, sizeof (unsigned int))) return -EFAULT; if (IS_ERR(ret = __get_user((long)ptr,(int *)A(arg)))) return ret; if (ap) /* no access_ok needed, we allocated */ if (IS_ERR(ret = __put_user(ptr, ap++))) return ret; arg += sizeof(unsigned int); n++; } while (ptr); return(n - 1); } asmlinkage int sys32_execve(abi64_no_regargs, struct pt_regs regs) { extern asmlinkage int sys_execve(abi64_no_regargs, struct pt_regs regs); extern asmlinkage long sys_munmap(unsigned long addr, size_t len); unsigned int argv = (unsigned int)regs.regs[5]; unsigned int envp = (unsigned int)regs.regs[6]; char **av, **ae; int na, ne, r, len; char * filename; na = nargs(argv, NULL); if (IS_ERR(na)) return(na); ne = nargs(envp, NULL); if (IS_ERR(ne)) return(ne); len = (na + ne + 2) * sizeof(*av); /* * kmalloc won't work because the `sys_exec' code will attempt * to do a `get_user' on the arg list and `get_user' will fail * on a kernel address (simplifies `get_user'). Instead we * do an mmap to get a user address. Note that since a successful * `execve' frees all current memory we only have to do an * `munmap' if the `execve' failes. */ down_write(¤t->mm->mmap_sem); av = (char **) do_mmap_pgoff(0, 0, len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0); up_write(¤t->mm->mmap_sem); if (IS_ERR(av)) return (long) av; ae = av + na + 1; if (IS_ERR(r = __put_user(0, (av + na)))) goto out; if (IS_ERR(r = __put_user(0, (ae + ne)))) goto out; if (IS_ERR(r = nargs(argv, av))) goto out; if (IS_ERR(r = nargs(envp, ae))) goto out; filename = getname((char *) (long)regs.regs[4]); r = PTR_ERR(filename); if (IS_ERR(filename)) goto out; r = do_execve(filename, av, ae, ®s); putname(filename); if (IS_ERR(r)) out: sys_munmap((unsigned long)av, len); return(r); } #endif struct dirent32 { unsigned int d_ino; unsigned int d_off; unsigned short d_reclen; char d_name[NAME_MAX + 1]; }; static void xlate_dirent(void *dirent64, void *dirent32, long n) { long off; struct dirent *dirp; struct dirent32 *dirp32; off = 0; while (off < n) { dirp = (struct dirent *)(dirent64 + off); dirp32 = (struct dirent32 *)(dirent32 + off); off += dirp->d_reclen; dirp32->d_ino = dirp->d_ino; dirp32->d_off = (unsigned int)dirp->d_off; dirp32->d_reclen = dirp->d_reclen; strncpy(dirp32->d_name, dirp->d_name, dirp->d_reclen - ((3 * 4) + 2)); } return; } asmlinkage long sys_getdents(unsigned int fd, void * dirent, unsigned int count); asmlinkage long sys32_getdents(unsigned int fd, void * dirent32, unsigned int count) { long n; void *dirent64; dirent64 = (void *)((unsigned long)(dirent32 + (sizeof(long) - 1)) & ~(sizeof(long) - 1)); if ((n = sys_getdents(fd, dirent64, count - (dirent64 - dirent32))) < 0) return(n); xlate_dirent(dirent64, dirent32, n); return(n); } asmlinkage int old_readdir(unsigned int fd, void * dirent, unsigned int count); asmlinkage int sys32_readdir(unsigned int fd, void * dirent32, unsigned int count) { int n; struct dirent dirent64; if ((n = old_readdir(fd, &dirent64, count)) < 0) return(n); xlate_dirent(&dirent64, dirent32, dirent64.d_reclen); return(n); } struct timeval32 { int tv_sec, tv_usec; }; struct itimerval32 { struct timeval32 it_interval; struct timeval32 it_value; }; struct rusage32 { struct timeval32 ru_utime; struct timeval32 ru_stime; int ru_maxrss; int ru_ixrss; int ru_idrss; int ru_isrss; int ru_minflt; int ru_majflt; int ru_nswap; int ru_inblock; int ru_oublock; int ru_msgsnd; int ru_msgrcv; int ru_nsignals; int ru_nvcsw; int ru_nivcsw; }; static int put_rusage (struct rusage32 *ru, struct rusage *r) { int err; err = put_user (r->ru_utime.tv_sec, &ru->ru_utime.tv_sec); err |= __put_user (r->ru_utime.tv_usec, &ru->ru_utime.tv_usec); err |= __put_user (r->ru_stime.tv_sec, &ru->ru_stime.tv_sec); err |= __put_user (r->ru_stime.tv_usec, &ru->ru_stime.tv_usec); err |= __put_user (r->ru_maxrss, &ru->ru_maxrss); err |= __put_user (r->ru_ixrss, &ru->ru_ixrss); err |= __put_user (r->ru_idrss, &ru->ru_idrss); err |= __put_user (r->ru_isrss, &ru->ru_isrss); err |= __put_user (r->ru_minflt, &ru->ru_minflt); err |= __put_user (r->ru_majflt, &ru->ru_majflt); err |= __put_user (r->ru_nswap, &ru->ru_nswap); err |= __put_user (r->ru_inblock, &ru->ru_inblock); err |= __put_user (r->ru_oublock, &ru->ru_oublock); err |= __put_user (r->ru_msgsnd, &ru->ru_msgsnd); err |= __put_user (r->ru_msgrcv, &ru->ru_msgrcv); err |= __put_user (r->ru_nsignals, &ru->ru_nsignals); err |= __put_user (r->ru_nvcsw, &ru->ru_nvcsw); err |= __put_user (r->ru_nivcsw, &ru->ru_nivcsw); return err; } asmlinkage int sys32_wait4(__kernel_pid_t32 pid, unsigned int * stat_addr, int options, struct rusage32 * ru) { if (!ru) return sys_wait4(pid, stat_addr, options, NULL); else { struct rusage r; int ret; unsigned int status; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_wait4(pid, stat_addr ? &status : NULL, options, &r); set_fs(old_fs); if (put_rusage (ru, &r)) return -EFAULT; if (stat_addr && put_user (status, stat_addr)) return -EFAULT; return ret; } } asmlinkage int sys32_waitpid(__kernel_pid_t32 pid, unsigned int *stat_addr, int options) { return sys32_wait4(pid, stat_addr, options, NULL); } #define RLIM_INFINITY32 0x7fffffff #define RESOURCE32(x) ((x > RLIM_INFINITY32) ? RLIM_INFINITY32 : x) struct rlimit32 { int rlim_cur; int rlim_max; }; extern asmlinkage int sys_old_getrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage int sys32_getrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_old_getrlimit(resource, &r); set_fs (old_fs); if (!ret) { ret = put_user (RESOURCE32(r.rlim_cur), &rlim->rlim_cur); ret |= __put_user (RESOURCE32(r.rlim_max), &rlim->rlim_max); } return ret; } extern asmlinkage int sys_setrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage int sys32_setrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); if (resource >= RLIM_NLIMITS) return -EINVAL; if (get_user (r.rlim_cur, &rlim->rlim_cur) || __get_user (r.rlim_max, &rlim->rlim_max)) return -EFAULT; if (r.rlim_cur == RLIM_INFINITY32) r.rlim_cur = RLIM_INFINITY; if (r.rlim_max == RLIM_INFINITY32) r.rlim_max = RLIM_INFINITY; set_fs (KERNEL_DS); ret = sys_setrlimit(resource, &r); set_fs (old_fs); return ret; } struct statfs32 { int f_type; int f_bsize; int f_frsize; int f_blocks; int f_bfree; int f_files; int f_ffree; int f_bavail; __kernel_fsid_t32 f_fsid; int f_namelen; int f_spare[6]; }; static inline int put_statfs (struct statfs32 *ubuf, struct statfs *kbuf) { int err; err = put_user (kbuf->f_type, &ubuf->f_type); err |= __put_user (kbuf->f_bsize, &ubuf->f_bsize); err |= __put_user (kbuf->f_blocks, &ubuf->f_blocks); err |= __put_user (kbuf->f_bfree, &ubuf->f_bfree); err |= __put_user (kbuf->f_bavail, &ubuf->f_bavail); err |= __put_user (kbuf->f_files, &ubuf->f_files); err |= __put_user (kbuf->f_ffree, &ubuf->f_ffree); err |= __put_user (kbuf->f_namelen, &ubuf->f_namelen); err |= __put_user (kbuf->f_fsid.val[0], &ubuf->f_fsid.val[0]); err |= __put_user (kbuf->f_fsid.val[1], &ubuf->f_fsid.val[1]); return err; } extern asmlinkage int sys_statfs(const char * path, struct statfs * buf); asmlinkage int sys32_statfs(const char * path, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_statfs((const char *)path, &s); set_fs (old_fs); if (put_statfs(buf, &s)) return -EFAULT; return ret; } extern asmlinkage int sys_fstatfs(unsigned int fd, struct statfs * buf); asmlinkage int sys32_fstatfs(unsigned int fd, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_fstatfs(fd, &s); set_fs (old_fs); if (put_statfs(buf, &s)) return -EFAULT; return ret; } extern asmlinkage int sys_getrusage(int who, struct rusage *ru); asmlinkage int sys32_getrusage(int who, struct rusage32 *ru) { struct rusage r; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_getrusage(who, &r); set_fs (old_fs); if (put_rusage (ru, &r)) return -EFAULT; return ret; } static inline long get_tv32(struct timeval *o, struct timeval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec))); } static inline long get_it32(struct itimerval *o, struct itimerval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) | __get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) | __get_user(o->it_value.tv_sec, &i->it_value.tv_sec) | __get_user(o->it_value.tv_usec, &i->it_value.tv_usec))); } static inline long put_tv32(struct timeval32 *o, struct timeval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec))); } static inline long put_it32(struct itimerval32 *o, struct itimerval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) | __put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) | __put_user(i->it_value.tv_sec, &o->it_value.tv_sec) | __put_user(i->it_value.tv_usec, &o->it_value.tv_usec))); } extern int do_getitimer(int which, struct itimerval *value); asmlinkage int sys32_getitimer(int which, struct itimerval32 *it) { struct itimerval kit; int error; error = do_getitimer(which, &kit); if (!error && put_it32(it, &kit)) error = -EFAULT; return error; } extern int do_setitimer(int which, struct itimerval *, struct itimerval *); asmlinkage int sys32_setitimer(int which, struct itimerval32 *in, struct itimerval32 *out) { struct itimerval kin, kout; int error; if (in) { if (get_it32(&kin, in)) return -EFAULT; } else memset(&kin, 0, sizeof(kin)); error = do_setitimer(which, &kin, out ? &kout : NULL); if (error || !out) return error; if (put_it32(out, &kout)) return -EFAULT; return 0; } asmlinkage unsigned long sys32_alarm(unsigned int seconds) { struct itimerval it_new, it_old; unsigned int oldalarm; it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; it_new.it_value.tv_sec = seconds; it_new.it_value.tv_usec = 0; do_setitimer(ITIMER_REAL, &it_new, &it_old); oldalarm = it_old.it_value.tv_sec; /* ehhh.. We can't return 0 if we have an alarm pending.. */ /* And we'd better return too much than too little anyway */ if (it_old.it_value.tv_usec) oldalarm++; return oldalarm; } /* Translations due to time_t size differences. Which affects all sorts of things, like timeval and itimerval. */ extern struct timezone sys_tz; extern int do_sys_settimeofday(struct timeval *tv, struct timezone *tz); asmlinkage int sys32_gettimeofday(struct timeval32 *tv, struct timezone *tz) { if (tv) { struct timeval ktv; do_gettimeofday(&ktv); if (put_tv32(tv, &ktv)) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } asmlinkage int sys32_settimeofday(struct timeval32 *tv, struct timezone *tz) { struct timeval ktv; struct timezone ktz; if (tv) { if (get_tv32(&ktv, tv)) return -EFAULT; } if (tz) { if (copy_from_user(&ktz, tz, sizeof(ktz))) return -EFAULT; } return do_sys_settimeofday(tv ? &ktv : NULL, tz ? &ktz : NULL); } extern asmlinkage long sys_llseek(unsigned int fd, unsigned long offset_high, unsigned long offset_low, loff_t * result, unsigned int origin); extern asmlinkage int sys32_llseek(unsigned int fd, unsigned int offset_high, unsigned int offset_low, loff_t * result, unsigned int origin) { return sys_llseek(fd, offset_high, offset_low, result, origin); } struct iovec32 { unsigned int iov_base; int iov_len; }; typedef ssize_t (*IO_fn_t)(struct file *, char *, size_t, loff_t *); static long do_readv_writev32(int type, struct file *file, const struct iovec32 *vector, u32 count) { unsigned long tot_len; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov=iovstack, *ivp; struct inode *inode; long retval, i; IO_fn_t fn; /* First get the "struct iovec" from user memory and * verify all the pointers */ if (!count) return 0; if(verify_area(VERIFY_READ, vector, sizeof(struct iovec32)*count)) return -EFAULT; if (count > UIO_MAXIOV) return -EINVAL; if (count > UIO_FASTIOV) { iov = kmalloc(count*sizeof(struct iovec), GFP_KERNEL); if (!iov) return -ENOMEM; } tot_len = 0; i = count; ivp = iov; while (i > 0) { u32 len; u32 buf; __get_user(len, &vector->iov_len); __get_user(buf, &vector->iov_base); tot_len += len; ivp->iov_base = (void *)A(buf); ivp->iov_len = (__kernel_size_t) len; vector++; ivp++; i--; } inode = file->f_dentry->d_inode; /* VERIFY_WRITE actually means a read, as we write to user space */ retval = locks_verify_area((type == VERIFY_WRITE ? FLOCK_VERIFY_READ : FLOCK_VERIFY_WRITE), inode, file, file->f_pos, tot_len); if (retval) { if (iov != iovstack) kfree(iov); return retval; } /* Then do the actual IO. Note that sockets need to be handled * specially as they have atomicity guarantees and can handle * iovec's natively */ if (inode->i_sock) { int err; err = sock_readv_writev(type, inode, file, iov, count, tot_len); if (iov != iovstack) kfree(iov); return err; } if (!file->f_op) { if (iov != iovstack) kfree(iov); return -EINVAL; } /* VERIFY_WRITE actually means a read, as we write to user space */ fn = file->f_op->read; if (type == VERIFY_READ) fn = (IO_fn_t) file->f_op->write; ivp = iov; while (count > 0) { void * base; int len, nr; base = ivp->iov_base; len = ivp->iov_len; ivp++; count--; nr = fn(file, base, len, &file->f_pos); if (nr < 0) { if (retval) break; retval = nr; break; } retval += nr; if (nr != len) break; } if (iov != iovstack) kfree(iov); return retval; } asmlinkage long sys32_readv(int fd, struct iovec32 *vector, u32 count) { struct file *file; ssize_t ret; ret = -EBADF; file = fget(fd); if (!file) goto bad_file; if (file->f_op && (file->f_mode & FMODE_READ) && (file->f_op->readv || file->f_op->read)) ret = do_readv_writev32(VERIFY_WRITE, file, vector, count); fput(file); bad_file: return ret; } asmlinkage long sys32_writev(int fd, struct iovec32 *vector, u32 count) { struct file *file; ssize_t ret; ret = -EBADF; file = fget(fd); if(!file) goto bad_file; if (file->f_op && (file->f_mode & FMODE_WRITE) && (file->f_op->writev || file->f_op->write)) ret = do_readv_writev32(VERIFY_READ, file, vector, count); fput(file); bad_file: return ret; } /* From the Single Unix Spec: pread & pwrite act like lseek to pos + op + lseek back to original location. They fail just like lseek does on non-seekable files. */ asmlinkage ssize_t sys32_pread(unsigned int fd, char * buf, size_t count, u32 unused, loff_t pos) { ssize_t ret; struct file * file; ssize_t (*read)(struct file *, char *, size_t, loff_t *); ret = -EBADF; file = fget(fd); if (!file) goto bad_file; if (!(file->f_mode & FMODE_READ)) goto out; ret = locks_verify_area(FLOCK_VERIFY_READ, file->f_dentry->d_inode, file, pos, count); if (ret) goto out; ret = -EINVAL; if (!file->f_op || !(read = file->f_op->read)) goto out; if (pos < 0) goto out; ret = read(file, buf, count, &pos); if (ret > 0) inode_dir_notify(file->f_dentry->d_parent->d_inode, DN_ACCESS); out: fput(file); bad_file: return ret; } asmlinkage ssize_t sys32_pwrite(unsigned int fd, const char * buf, size_t count, u32 unused, loff_t pos) { ssize_t ret; struct file * file; ssize_t (*write)(struct file *, const char *, size_t, loff_t *); ret = -EBADF; file = fget(fd); if (!file) goto bad_file; if (!(file->f_mode & FMODE_WRITE)) goto out; ret = locks_verify_area(FLOCK_VERIFY_WRITE, file->f_dentry->d_inode, file, pos, count); if (ret) goto out; ret = -EINVAL; if (!file->f_op || !(write = file->f_op->write)) goto out; if (pos < 0) goto out; ret = write(file, buf, count, &pos); if (ret > 0) inode_dir_notify(file->f_dentry->d_parent->d_inode, DN_MODIFY); out: fput(file); bad_file: return ret; } /* * Ooo, nasty. We need here to frob 32-bit unsigned longs to * 64-bit unsigned longs. */ static inline int get_fd_set32(unsigned long n, unsigned long *fdset, u32 *ufdset) { #ifdef __MIPSEB__ if (ufdset) { unsigned long odd; if (verify_area(VERIFY_WRITE, ufdset, n*sizeof(u32))) return -EFAULT; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; __get_user(l, ufdset); __get_user(h, ufdset+1); ufdset += 2; *fdset++ = h << 32 | l; n -= 2; } if (odd) __get_user(*fdset, ufdset); } else { /* Tricky, must clear full unsigned long in the * kernel fdset at the end, this makes sure that * actually happens. */ memset(fdset, 0, ((n + 1) & ~1)*sizeof(u32)); } return 0; #else <> #endif } static inline void set_fd_set32(unsigned long n, u32 *ufdset, unsigned long *fdset) { unsigned long odd; if (!ufdset) return; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; l = *fdset++; h = l >> 32; __put_user(l, ufdset); __put_user(h, ufdset+1); ufdset += 2; n -= 2; } if (odd) __put_user(*fdset, ufdset); } /* * We can actually return ERESTARTSYS instead of EINTR, but I'd * like to be certain this leads to no problems. So I return * EINTR just for safety. * * Update: ERESTARTSYS breaks at least the xview clock binary, so * I'm trying ERESTARTNOHAND which restart only when you want to. */ #define MAX_SELECT_SECONDS \ ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1) asmlinkage int sys32_select(int n, u32 *inp, u32 *outp, u32 *exp, struct timeval32 *tvp) { fd_set_bits fds; char *bits; unsigned long nn; long timeout; int ret, size; timeout = MAX_SCHEDULE_TIMEOUT; if (tvp) { time_t sec, usec; if ((ret = verify_area(VERIFY_READ, tvp, sizeof(*tvp))) || (ret = __get_user(sec, &tvp->tv_sec)) || (ret = __get_user(usec, &tvp->tv_usec))) goto out_nofds; ret = -EINVAL; if(sec < 0 || usec < 0) goto out_nofds; if ((unsigned long) sec < MAX_SELECT_SECONDS) { timeout = (usec + 1000000/HZ - 1) / (1000000/HZ); timeout += sec * (unsigned long) HZ; } } ret = -EINVAL; if (n < 0) goto out_nofds; if (n > current->files->max_fdset) n = current->files->max_fdset; /* * We need 6 bitmaps (in/out/ex for both incoming and outgoing), * since we used fdset we need to allocate memory in units of * long-words. */ ret = -ENOMEM; size = FDS_BYTES(n); bits = kmalloc(6 * size, GFP_KERNEL); if (!bits) goto out_nofds; fds.in = (unsigned long *) bits; fds.out = (unsigned long *) (bits + size); fds.ex = (unsigned long *) (bits + 2*size); fds.res_in = (unsigned long *) (bits + 3*size); fds.res_out = (unsigned long *) (bits + 4*size); fds.res_ex = (unsigned long *) (bits + 5*size); nn = (n + 8*sizeof(u32) - 1) / (8*sizeof(u32)); if ((ret = get_fd_set32(nn, fds.in, inp)) || (ret = get_fd_set32(nn, fds.out, outp)) || (ret = get_fd_set32(nn, fds.ex, exp))) goto out; zero_fd_set(n, fds.res_in); zero_fd_set(n, fds.res_out); zero_fd_set(n, fds.res_ex); ret = do_select(n, &fds, &timeout); if (tvp && !(current->personality & STICKY_TIMEOUTS)) { time_t sec = 0, usec = 0; if (timeout) { sec = timeout / HZ; usec = timeout % HZ; usec *= (1000000/HZ); } put_user(sec, &tvp->tv_sec); put_user(usec, &tvp->tv_usec); } if (ret < 0) goto out; if (!ret) { ret = -ERESTARTNOHAND; if (signal_pending(current)) goto out; ret = 0; } set_fd_set32(nn, inp, fds.res_in); set_fd_set32(nn, outp, fds.res_out); set_fd_set32(nn, exp, fds.res_ex); out: kfree(bits); out_nofds: return ret; } struct timespec32 { int tv_sec; int tv_nsec; }; extern asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval); asmlinkage int sys32_sched_rr_get_interval(__kernel_pid_t32 pid, struct timespec32 *interval) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_sched_rr_get_interval(pid, &t); set_fs (old_fs); if (put_user (t.tv_sec, &interval->tv_sec) || __put_user (t.tv_nsec, &interval->tv_nsec)) return -EFAULT; return ret; } extern asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp); asmlinkage int sys32_nanosleep(struct timespec32 *rqtp, struct timespec32 *rmtp) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); if (get_user (t.tv_sec, &rqtp->tv_sec) || __get_user (t.tv_nsec, &rqtp->tv_nsec)) return -EFAULT; set_fs (KERNEL_DS); ret = sys_nanosleep(&t, rmtp ? &t : NULL); set_fs (old_fs); if (rmtp && ret == -EINTR) { if (__put_user (t.tv_sec, &rmtp->tv_sec) || __put_user (t.tv_nsec, &rmtp->tv_nsec)) return -EFAULT; } return ret; } struct tms32 { int tms_utime; int tms_stime; int tms_cutime; int tms_cstime; }; extern asmlinkage long sys_times(struct tms * tbuf); asmlinkage long sys32_times(struct tms32 *tbuf) { struct tms t; long ret; mm_segment_t old_fs = get_fs(); int err; set_fs(KERNEL_DS); ret = sys_times(tbuf ? &t : NULL); set_fs(old_fs); if (tbuf) { err = put_user (t.tms_utime, &tbuf->tms_utime); err |= __put_user (t.tms_stime, &tbuf->tms_stime); err |= __put_user (t.tms_cutime, &tbuf->tms_cutime); err |= __put_user (t.tms_cstime, &tbuf->tms_cstime); if (err) ret = -EFAULT; } return ret; } extern asmlinkage int sys_setsockopt(int fd, int level, int optname, char *optval, int optlen); asmlinkage int sys32_setsockopt(int fd, int level, int optname, char *optval, int optlen) { if (optname == SO_ATTACH_FILTER) { struct sock_fprog32 { __u16 len; __u32 filter; } *fprog32 = (struct sock_fprog32 *)optval; struct sock_fprog kfprog; struct sock_filter *kfilter; unsigned int fsize; mm_segment_t old_fs; __u32 uptr; int ret; if (get_user(kfprog.len, &fprog32->len) || __get_user(uptr, &fprog32->filter)) return -EFAULT; kfprog.filter = (struct sock_filter *)A(uptr); fsize = kfprog.len * sizeof(struct sock_filter); kfilter = (struct sock_filter *)kmalloc(fsize, GFP_KERNEL); if (kfilter == NULL) return -ENOMEM; if (copy_from_user(kfilter, kfprog.filter, fsize)) { kfree(kfilter); return -EFAULT; } kfprog.filter = kfilter; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_setsockopt(fd, level, optname, (char *)&kfprog, sizeof(kfprog)); set_fs(old_fs); kfree(kfilter); return ret; } return sys_setsockopt(fd, level, optname, optval, optlen); } struct flock32 { short l_type; short l_whence; __kernel_off_t32 l_start; __kernel_off_t32 l_len; __kernel_pid_t32 l_pid; short __unused; }; static inline int get_flock(struct flock *kfl, struct flock32 *ufl) { int err; err = get_user(kfl->l_type, &ufl->l_type); err |= __get_user(kfl->l_whence, &ufl->l_whence); err |= __get_user(kfl->l_start, &ufl->l_start); err |= __get_user(kfl->l_len, &ufl->l_len); err |= __get_user(kfl->l_pid, &ufl->l_pid); return err; } static inline int put_flock(struct flock *kfl, struct flock32 *ufl) { int err; err = __put_user(kfl->l_type, &ufl->l_type); err |= __put_user(kfl->l_whence, &ufl->l_whence); err |= __put_user(kfl->l_start, &ufl->l_start); err |= __put_user(kfl->l_len, &ufl->l_len); err |= __put_user(kfl->l_pid, &ufl->l_pid); return err; } extern asmlinkage long sys_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg); asmlinkage long sys32_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg) { switch (cmd) { case F_GETLK: case F_SETLK: case F_SETLKW: { struct flock f; mm_segment_t old_fs; long ret; if (get_flock(&f, (struct flock32 *)arg)) return -EFAULT; old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_fcntl(fd, cmd, (unsigned long)&f); set_fs (old_fs); if (put_flock(&f, (struct flock32 *)arg)) return -EFAULT; return ret; } default: return sys_fcntl(fd, cmd, (unsigned long)arg); } } asmlinkage long sys32_fcntl64(unsigned int fd, unsigned int cmd, unsigned long arg) { switch (cmd) { case F_GETLK64: return sys_fcntl(fd, F_GETLK, arg); case F_SETLK64: return sys_fcntl(fd, F_SETLK, arg); case F_SETLKW64: return sys_fcntl(fd, F_SETLKW, arg); } return sys32_fcntl(fd, cmd, arg); } struct msgbuf32 { s32 mtype; char mtext[1]; }; struct ipc_perm32 { key_t key; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_uid_t32 cuid; __kernel_gid_t32 cgid; __kernel_mode_t32 mode; unsigned short seq; }; struct semid_ds32 { struct ipc_perm32 sem_perm; /* permissions .. see ipc.h */ __kernel_time_t32 sem_otime; /* last semop time */ __kernel_time_t32 sem_ctime; /* last change time */ u32 sem_base; /* ptr to first semaphore in array */ u32 sem_pending; /* pending operations to be processed */ u32 sem_pending_last; /* last pending operation */ u32 undo; /* undo requests on this array */ unsigned short sem_nsems; /* no. of semaphores in array */ }; struct msqid_ds32 { struct ipc_perm32 msg_perm; u32 msg_first; u32 msg_last; __kernel_time_t32 msg_stime; __kernel_time_t32 msg_rtime; __kernel_time_t32 msg_ctime; u32 wwait; u32 rwait; unsigned short msg_cbytes; unsigned short msg_qnum; unsigned short msg_qbytes; __kernel_ipc_pid_t32 msg_lspid; __kernel_ipc_pid_t32 msg_lrpid; }; struct shmid_ds32 { struct ipc_perm32 shm_perm; int shm_segsz; __kernel_time_t32 shm_atime; __kernel_time_t32 shm_dtime; __kernel_time_t32 shm_ctime; __kernel_ipc_pid_t32 shm_cpid; __kernel_ipc_pid_t32 shm_lpid; unsigned short shm_nattch; }; #define IPCOP_MASK(__x) (1UL << (__x)) static int do_sys32_semctl(int first, int second, int third, void *uptr) { union semun fourth; u32 pad; int err, err2; struct semid64_ds s; struct semid_ds32 *usp; mm_segment_t old_fs; if (!uptr) return -EINVAL; err = -EFAULT; if (get_user (pad, (u32 *)uptr)) return err; if ((third & ~IPC_64) == SETVAL) fourth.val = (int)pad; else fourth.__pad = (void *)A(pad); switch (third & ~IPC_64) { case IPC_INFO: case IPC_RMID: case IPC_SET: case SEM_INFO: case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case GETALL: case SETVAL: case SETALL: err = sys_semctl (first, second, third, fourth); break; case IPC_STAT: case SEM_STAT: usp = (struct semid_ds32 *)A(pad); fourth.__pad = &s; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_semctl (first, second, third, fourth); set_fs (old_fs); err2 = put_user(s.sem_perm.key, &usp->sem_perm.key); err2 |= __put_user(s.sem_perm.uid, &usp->sem_perm.uid); err2 |= __put_user(s.sem_perm.gid, &usp->sem_perm.gid); err2 |= __put_user(s.sem_perm.cuid, &usp->sem_perm.cuid); err2 |= __put_user (s.sem_perm.cgid, &usp->sem_perm.cgid); err2 |= __put_user (s.sem_perm.mode, &usp->sem_perm.mode); err2 |= __put_user (s.sem_perm.seq, &usp->sem_perm.seq); err2 |= __put_user (s.sem_otime, &usp->sem_otime); err2 |= __put_user (s.sem_ctime, &usp->sem_ctime); err2 |= __put_user (s.sem_nsems, &usp->sem_nsems); if (err2) err = -EFAULT; break; } return err; } static int do_sys32_msgsnd (int first, int second, int third, void *uptr) { struct msgbuf *p = kmalloc (second + sizeof (struct msgbuf) + 4, GFP_USER); struct msgbuf32 *up = (struct msgbuf32 *)uptr; mm_segment_t old_fs; int err; if (!p) return -ENOMEM; err = get_user (p->mtype, &up->mtype); err |= __copy_from_user (p->mtext, &up->mtext, second); if (err) goto out; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgsnd (first, p, second, third); set_fs (old_fs); out: kfree (p); return err; } static int do_sys32_msgrcv (int first, int second, int msgtyp, int third, int version, void *uptr) { struct msgbuf32 *up; struct msgbuf *p; mm_segment_t old_fs; int err; if (!version) { struct ipc_kludge *uipck = (struct ipc_kludge *)uptr; struct ipc_kludge ipck; err = -EINVAL; if (!uptr) goto out; err = -EFAULT; if (copy_from_user (&ipck, uipck, sizeof (struct ipc_kludge))) goto out; uptr = (void *)A(ipck.msgp); msgtyp = ipck.msgtyp; } err = -ENOMEM; p = kmalloc (second + sizeof (struct msgbuf) + 4, GFP_USER); if (!p) goto out; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgrcv (first, p, second + 4, msgtyp, third); set_fs (old_fs); if (err < 0) goto free_then_out; up = (struct msgbuf32 *)uptr; if (put_user (p->mtype, &up->mtype) || __copy_to_user (&up->mtext, p->mtext, err)) err = -EFAULT; free_then_out: kfree (p); out: return err; } static int do_sys32_msgctl (int first, int second, void *uptr) { int err = -EINVAL, err2; struct msqid_ds m; struct msqid64_ds m64; struct msqid_ds32 *up = (struct msqid_ds32 *)uptr; mm_segment_t old_fs; switch (second) { case IPC_INFO: case IPC_RMID: case MSG_INFO: err = sys_msgctl (first, second, (struct msqid_ds *)uptr); break; case IPC_SET: err = get_user (m.msg_perm.uid, &up->msg_perm.uid); err |= __get_user (m.msg_perm.gid, &up->msg_perm.gid); err |= __get_user (m.msg_perm.mode, &up->msg_perm.mode); err |= __get_user (m.msg_qbytes, &up->msg_qbytes); if (err) break; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgctl (first, second, &m); set_fs (old_fs); break; case IPC_STAT: case MSG_STAT: old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgctl (first, second, (void *) &m64); set_fs (old_fs); err2 = put_user (m64.msg_perm.key, &up->msg_perm.key); err2 |= __put_user(m64.msg_perm.uid, &up->msg_perm.uid); err2 |= __put_user(m64.msg_perm.gid, &up->msg_perm.gid); err2 |= __put_user(m64.msg_perm.cuid, &up->msg_perm.cuid); err2 |= __put_user(m64.msg_perm.cgid, &up->msg_perm.cgid); err2 |= __put_user(m64.msg_perm.mode, &up->msg_perm.mode); err2 |= __put_user(m64.msg_perm.seq, &up->msg_perm.seq); err2 |= __put_user(m64.msg_stime, &up->msg_stime); err2 |= __put_user(m64.msg_rtime, &up->msg_rtime); err2 |= __put_user(m64.msg_ctime, &up->msg_ctime); err2 |= __put_user(m64.msg_cbytes, &up->msg_cbytes); err2 |= __put_user(m64.msg_qnum, &up->msg_qnum); err2 |= __put_user(m64.msg_qbytes, &up->msg_qbytes); err2 |= __put_user(m64.msg_lspid, &up->msg_lspid); err2 |= __put_user(m64.msg_lrpid, &up->msg_lrpid); if (err2) err = -EFAULT; break; } return err; } static int do_sys32_shmat (int first, int second, int third, int version, void *uptr) { unsigned long raddr; u32 *uaddr = (u32 *)A((u32)third); int err = -EINVAL; if (version == 1) return err; if (version == 1) return err; err = sys_shmat (first, uptr, second, &raddr); if (err) return err; err = put_user (raddr, uaddr); return err; } static int do_sys32_shmctl (int first, int second, void *uptr) { int err = -EFAULT, err2; struct shmid_ds s; struct shmid64_ds s64; struct shmid_ds32 *up = (struct shmid_ds32 *)uptr; mm_segment_t old_fs; struct shm_info32 { int used_ids; u32 shm_tot, shm_rss, shm_swp; u32 swap_attempts, swap_successes; } *uip = (struct shm_info32 *)uptr; struct shm_info si; switch (second) { case IPC_INFO: case IPC_RMID: case SHM_LOCK: case SHM_UNLOCK: err = sys_shmctl (first, second, (struct shmid_ds *)uptr); break; case IPC_SET: err = get_user (s.shm_perm.uid, &up->shm_perm.uid); err |= __get_user (s.shm_perm.gid, &up->shm_perm.gid); err |= __get_user (s.shm_perm.mode, &up->shm_perm.mode); if (err) break; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_shmctl (first, second, &s); set_fs (old_fs); break; case IPC_STAT: case SHM_STAT: old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_shmctl (first, second, (void *) &s64); set_fs (old_fs); if (err < 0) break; err2 = put_user (s64.shm_perm.key, &up->shm_perm.key); err2 |= __put_user (s64.shm_perm.uid, &up->shm_perm.uid); err2 |= __put_user (s64.shm_perm.gid, &up->shm_perm.gid); err2 |= __put_user (s64.shm_perm.cuid, &up->shm_perm.cuid); err2 |= __put_user (s64.shm_perm.cgid, &up->shm_perm.cgid); err2 |= __put_user (s64.shm_perm.mode, &up->shm_perm.mode); err2 |= __put_user (s64.shm_perm.seq, &up->shm_perm.seq); err2 |= __put_user (s64.shm_atime, &up->shm_atime); err2 |= __put_user (s64.shm_dtime, &up->shm_dtime); err2 |= __put_user (s64.shm_ctime, &up->shm_ctime); err2 |= __put_user (s64.shm_segsz, &up->shm_segsz); err2 |= __put_user (s64.shm_nattch, &up->shm_nattch); err2 |= __put_user (s64.shm_cpid, &up->shm_cpid); err2 |= __put_user (s64.shm_lpid, &up->shm_lpid); if (err2) err = -EFAULT; break; case SHM_INFO: old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_shmctl (first, second, (void *)&si); set_fs (old_fs); if (err < 0) break; err2 = put_user (si.used_ids, &uip->used_ids); err2 |= __put_user (si.shm_tot, &uip->shm_tot); err2 |= __put_user (si.shm_rss, &uip->shm_rss); err2 |= __put_user (si.shm_swp, &uip->shm_swp); err2 |= __put_user (si.swap_attempts, &uip->swap_attempts); err2 |= __put_user (si.swap_successes, &uip->swap_successes); if (err2) err = -EFAULT; break; } return err; } asmlinkage long sys32_ipc (u32 call, int first, int second, int third, u32 ptr, u32 fifth) { int version, err; version = call >> 16; /* hack for backward compatibility */ call &= 0xffff; switch (call) { case SEMOP: /* struct sembuf is the same on 32 and 64bit :)) */ err = sys_semop (first, (struct sembuf *)A(ptr), second); break; case SEMGET: err = sys_semget (first, second, third); break; case SEMCTL: err = do_sys32_semctl (first, second, third, (void *)A(ptr)); break; case MSGSND: err = do_sys32_msgsnd (first, second, third, (void *)A(ptr)); break; case MSGRCV: err = do_sys32_msgrcv (first, second, fifth, third, version, (void *)A(ptr)); break; case MSGGET: err = sys_msgget ((key_t) first, second); break; case MSGCTL: err = do_sys32_msgctl (first, second, (void *)A(ptr)); break; case SHMAT: err = do_sys32_shmat (first, second, third, version, (void *)A(ptr)); break; case SHMDT: err = sys_shmdt ((char *)A(ptr)); break; case SHMGET: err = sys_shmget (first, second, third); break; case SHMCTL: err = do_sys32_shmctl (first, second, (void *)A(ptr)); break; default: err = -EINVAL; break; } return err; } struct sysctl_args32 { __kernel_caddr_t32 name; int nlen; __kernel_caddr_t32 oldval; __kernel_caddr_t32 oldlenp; __kernel_caddr_t32 newval; __kernel_size_t32 newlen; unsigned int __unused[4]; }; asmlinkage long sys32_sysctl(struct sysctl_args32 *uargs32) { struct __sysctl_args kargs; struct sysctl_args32 kargs32; mm_segment_t old_fs; int name[CTL_MAXNAME]; size_t oldlen[1]; int err, ret; ret = -EFAULT; memset(&kargs, 0, sizeof (kargs)); err = get_user(kargs32.name, &uargs32->name); err |= __get_user(kargs32.nlen, &uargs32->nlen); err |= __get_user(kargs32.oldval, &uargs32->oldval); err |= __get_user(kargs32.oldlenp, &uargs32->oldlenp); err |= __get_user(kargs32.newval, &uargs32->newval); err |= __get_user(kargs32.newlen, &uargs32->newlen); if (err) goto out; if (kargs32.nlen == 0 || kargs32.nlen >= CTL_MAXNAME) { ret = -ENOTDIR; goto out; } kargs.name = name; kargs.nlen = kargs32.nlen; if (copy_from_user(kargs.name, (int *)A(kargs32.name), kargs32.nlen * sizeof(name) / sizeof(name[0]))) goto out; if (kargs32.oldval) { if (!kargs32.oldlenp || get_user(oldlen[0], (int *)A(kargs32.oldlenp))) return -EFAULT; kargs.oldlenp = oldlen; kargs.oldval = kmalloc(oldlen[0], GFP_KERNEL); if (!kargs.oldval) { ret = -ENOMEM; goto out; } } if (kargs32.newval && kargs32.newlen) { kargs.newval = kmalloc(kargs32.newlen, GFP_KERNEL); if (!kargs.newval) { ret = -ENOMEM; goto out; } if (copy_from_user(kargs.newval, (int *)A(kargs32.newval), kargs32.newlen)) goto out; } old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_sysctl(&kargs); set_fs (old_fs); if (ret) goto out; if (kargs.oldval) { if (put_user(oldlen[0], (int *)A(kargs32.oldlenp)) || copy_to_user((int *)A(kargs32.oldval), kargs.oldval, oldlen[0])) ret = -EFAULT; } out: if (kargs.oldval) kfree(kargs.oldval); if (kargs.newval) kfree(kargs.newval); return ret; } asmlinkage long sys32_newuname(struct new_utsname * name) { int ret = 0; down_read(&uts_sem); if (copy_to_user(name,&system_utsname,sizeof *name)) ret = -EFAULT; up_read(&uts_sem); if (current->personality == PER_LINUX32 && !ret) if (copy_to_user(name->machine, "mips\0\0\0", 8)) ret = -EFAULT; return ret; } extern asmlinkage long sys_personality(unsigned long); asmlinkage int sys32_personality(unsigned long personality) { int ret; if (current->personality == PER_LINUX32 && personality == PER_LINUX) personality = PER_LINUX32; ret = sys_personality(personality); if (ret == PER_LINUX32) ret = PER_LINUX; return ret; } /* Handle adjtimex compatability. */ struct timex32 { u32 modes; s32 offset, freq, maxerror, esterror; s32 status, constant, precision, tolerance; struct timeval32 time; s32 tick; s32 ppsfreq, jitter, shift, stabil; s32 jitcnt, calcnt, errcnt, stbcnt; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; }; extern int do_adjtimex(struct timex *); asmlinkage int sys32_adjtimex(struct timex32 *utp) { struct timex txc; int ret; memset(&txc, 0, sizeof(struct timex)); if(get_user(txc.modes, &utp->modes) || __get_user(txc.offset, &utp->offset) || __get_user(txc.freq, &utp->freq) || __get_user(txc.maxerror, &utp->maxerror) || __get_user(txc.esterror, &utp->esterror) || __get_user(txc.status, &utp->status) || __get_user(txc.constant, &utp->constant) || __get_user(txc.precision, &utp->precision) || __get_user(txc.tolerance, &utp->tolerance) || __get_user(txc.time.tv_sec, &utp->time.tv_sec) || __get_user(txc.time.tv_usec, &utp->time.tv_usec) || __get_user(txc.tick, &utp->tick) || __get_user(txc.ppsfreq, &utp->ppsfreq) || __get_user(txc.jitter, &utp->jitter) || __get_user(txc.shift, &utp->shift) || __get_user(txc.stabil, &utp->stabil) || __get_user(txc.jitcnt, &utp->jitcnt) || __get_user(txc.calcnt, &utp->calcnt) || __get_user(txc.errcnt, &utp->errcnt) || __get_user(txc.stbcnt, &utp->stbcnt)) return -EFAULT; ret = do_adjtimex(&txc); if(put_user(txc.modes, &utp->modes) || __put_user(txc.offset, &utp->offset) || __put_user(txc.freq, &utp->freq) || __put_user(txc.maxerror, &utp->maxerror) || __put_user(txc.esterror, &utp->esterror) || __put_user(txc.status, &utp->status) || __put_user(txc.constant, &utp->constant) || __put_user(txc.precision, &utp->precision) || __put_user(txc.tolerance, &utp->tolerance) || __put_user(txc.time.tv_sec, &utp->time.tv_sec) || __put_user(txc.time.tv_usec, &utp->time.tv_usec) || __put_user(txc.tick, &utp->tick) || __put_user(txc.ppsfreq, &utp->ppsfreq) || __put_user(txc.jitter, &utp->jitter) || __put_user(txc.shift, &utp->shift) || __put_user(txc.stabil, &utp->stabil) || __put_user(txc.jitcnt, &utp->jitcnt) || __put_user(txc.calcnt, &utp->calcnt) || __put_user(txc.errcnt, &utp->errcnt) || __put_user(txc.stbcnt, &utp->stbcnt)) ret = -EFAULT; return ret; } /* * Declare the 32-bit version of the msghdr */ struct msghdr32 { unsigned int msg_name; /* Socket name */ int msg_namelen; /* Length of name */ unsigned int msg_iov; /* Data blocks */ unsigned int msg_iovlen; /* Number of blocks */ unsigned int msg_control; /* Per protocol magic (eg BSD file descriptor passing) */ unsigned int msg_controllen; /* Length of cmsg list */ unsigned msg_flags; }; static inline int shape_msg(struct msghdr *mp, struct msghdr32 *mp32) { int ret; unsigned int i; if (!access_ok(VERIFY_READ, mp32, sizeof(*mp32))) return(-EFAULT); ret = __get_user(i, &mp32->msg_name); mp->msg_name = (void *)A(i); ret |= __get_user(mp->msg_namelen, &mp32->msg_namelen); ret |= __get_user(i, &mp32->msg_iov); mp->msg_iov = (struct iovec *)A(i); ret |= __get_user(mp->msg_iovlen, &mp32->msg_iovlen); ret |= __get_user(i, &mp32->msg_control); mp->msg_control = (void *)A(i); ret |= __get_user(mp->msg_controllen, &mp32->msg_controllen); ret |= __get_user(mp->msg_flags, &mp32->msg_flags); return(ret ? -EFAULT : 0); } /* * Verify & re-shape IA32 iovec. The caller must ensure that the * iovec is big enough to hold the re-shaped message iovec. * * Save time not doing verify_area. copy_*_user will make this work * in any case. * * Don't need to check the total size for overflow (cf net/core/iovec.c), * 32-bit sizes can't overflow a 64-bit count. */ static inline int verify_iovec32(struct msghdr *m, struct iovec *iov, char *address, int mode) { int size, err, ct; struct iovec32 *iov32; if(m->msg_namelen) { if(mode==VERIFY_READ) { err=move_addr_to_kernel(m->msg_name, m->msg_namelen, address); if(err<0) goto out; } m->msg_name = address; } else m->msg_name = NULL; err = -EFAULT; size = m->msg_iovlen * sizeof(struct iovec32); if (copy_from_user(iov, m->msg_iov, size)) goto out; m->msg_iov=iov; err = 0; iov32 = (struct iovec32 *)iov; for (ct = m->msg_iovlen; ct-- > 0; ) { iov[ct].iov_len = (__kernel_size_t)iov32[ct].iov_len; iov[ct].iov_base = (void *) A(iov32[ct].iov_base); err += iov[ct].iov_len; } out: return err; } extern __inline__ void sockfd_put(struct socket *sock) { fput(sock->file); } /* XXX This really belongs in some header file... -DaveM */ #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 16 for IP, 16 for IPX, 24 for IPv6, about 80 for AX.25 */ extern struct socket *sockfd_lookup(int fd, int *err); /* * BSD sendmsg interface */ int sys32_sendmsg(int fd, struct msghdr32 *msg, unsigned flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */ unsigned char *ctl_buf = ctl; struct msghdr msg_sys; int err, ctl_len, iov_size, total_len; err = -EFAULT; if (shape_msg(&msg_sys, msg)) goto out; sock = sockfd_lookup(fd, &err); if (!sock) goto out; /* do not move before msg_sys is valid */ err = -EINVAL; if (msg_sys.msg_iovlen > UIO_MAXIOV) goto out_put; /* Check whether to allocate the iovec area*/ err = -ENOMEM; iov_size = msg_sys.msg_iovlen * sizeof(struct iovec32); if (msg_sys.msg_iovlen > UIO_FASTIOV) { iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); if (!iov) goto out_put; } /* This will also move the address data into kernel space */ err = verify_iovec32(&msg_sys, iov, address, VERIFY_READ); if (err < 0) goto out_freeiov; total_len = err; err = -ENOBUFS; if (msg_sys.msg_controllen > INT_MAX) goto out_freeiov; ctl_len = msg_sys.msg_controllen; if (ctl_len) { if (ctl_len > sizeof(ctl)) { err = -ENOBUFS; ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); if (ctl_buf == NULL) goto out_freeiov; } err = -EFAULT; if (copy_from_user(ctl_buf, msg_sys.msg_control, ctl_len)) goto out_freectl; msg_sys.msg_control = ctl_buf; } msg_sys.msg_flags = flags; if (sock->file->f_flags & O_NONBLOCK) msg_sys.msg_flags |= MSG_DONTWAIT; err = sock_sendmsg(sock, &msg_sys, total_len); out_freectl: if (ctl_buf != ctl) sock_kfree_s(sock->sk, ctl_buf, ctl_len); out_freeiov: if (iov != iovstack) sock_kfree_s(sock->sk, iov, iov_size); out_put: sockfd_put(sock); out: return err; } /* * BSD recvmsg interface */ int sys32_recvmsg (int fd, struct msghdr32 *msg, unsigned int flags) { struct socket *sock; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov=iovstack; struct msghdr msg_sys; unsigned long cmsg_ptr; int err, iov_size, total_len, len; /* kernel mode address */ char addr[MAX_SOCK_ADDR]; /* user mode address pointers */ struct sockaddr *uaddr; int *uaddr_len; err=-EFAULT; if (shape_msg(&msg_sys, msg)) goto out; sock = sockfd_lookup(fd, &err); if (!sock) goto out; err = -EINVAL; if (msg_sys.msg_iovlen > UIO_MAXIOV) goto out_put; /* Check whether to allocate the iovec area*/ err = -ENOMEM; iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); if (msg_sys.msg_iovlen > UIO_FASTIOV) { iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); if (!iov) goto out_put; } /* * Save the user-mode address (verify_iovec will change the * kernel msghdr to use the kernel address space) */ uaddr = msg_sys.msg_name; uaddr_len = &msg->msg_namelen; err = verify_iovec32(&msg_sys, iov, addr, VERIFY_WRITE); if (err < 0) goto out_freeiov; total_len=err; cmsg_ptr = (unsigned long)msg_sys.msg_control; msg_sys.msg_flags = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err = sock_recvmsg(sock, &msg_sys, total_len, flags); if (err < 0) goto out_freeiov; len = err; if (uaddr != NULL) { err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); if (err < 0) goto out_freeiov; } err = __put_user(msg_sys.msg_flags, &msg->msg_flags); if (err) goto out_freeiov; err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, &msg->msg_controllen); if (err) goto out_freeiov; err = len; out_freeiov: if (iov != iovstack) sock_kfree_s(sock->sk, iov, iov_size); out_put: sockfd_put(sock); out: return err; }