/* * BK Id: SCCS/s.commproc.c 1.15 10/16/01 16:21:52 trini */ /* * General Purpose functions for the global management of the * Communication Processor Module. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) * * In addition to the individual control of the communication * channels, there are a few functions that globally affect the * communication processor. * * Buffer descriptors must be allocated from the dual ported memory * space. The allocator for that is here. When the communication * process is reset, we reclaim the memory available. There is * currently no deallocator for this memory. * The amount of space available is platform dependent. On the * MBX, the EPPC software loads additional microcode into the * communication processor, and uses some of the DP ram for this * purpose. Current, the first 512 bytes and the last 256 bytes of * memory are used. Right now I am conservative and only use the * memory that can never be used for microcode. If there are * applications that require more DP ram, we can expand the boundaries * but then we have to be careful of any downloaded microcode. */ #include #include #include #include #include #include #include #include #include #include #include #include #include extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep); static uint dp_alloc_base; /* Starting offset in DP ram */ static uint dp_alloc_top; /* Max offset + 1 */ static uint host_buffer; /* One page of host buffer */ static uint host_end; /* end + 1 */ cpm8xx_t *cpmp; /* Pointer to comm processor space */ /* CPM interrupt vector functions. */ struct cpm_action { void (*handler)(void *, struct pt_regs * regs); void *dev_id; }; static struct cpm_action cpm_vecs[CPMVEC_NR]; static void cpm_interrupt(int irq, void * dev, struct pt_regs * regs); static void cpm_error_interrupt(void *, struct pt_regs * regs); void m8xx_cpm_reset(uint host_page_addr) { volatile immap_t *imp; volatile cpm8xx_t *commproc; pte_t *pte; imp = (immap_t *)IMAP_ADDR; commproc = (cpm8xx_t *)&imp->im_cpm; #ifdef CONFIG_UCODE_PATCH /* Perform a reset. */ commproc->cp_cpcr = (CPM_CR_RST | CPM_CR_FLG); /* Wait for it. */ while (commproc->cp_cpcr & CPM_CR_FLG); cpm_load_patch(imp); #endif /* Set SDMA Bus Request priority 5. * On 860T, this also enables FEC priority 6. I am not sure * this is what we realy want for some applications, but the * manual recommends it. * Bit 25, FAM can also be set to use FEC aggressive mode (860T). */ imp->im_siu_conf.sc_sdcr = 1; /* Reclaim the DP memory for our use. */ dp_alloc_base = CPM_DATAONLY_BASE; dp_alloc_top = dp_alloc_base + CPM_DATAONLY_SIZE; /* Set the host page for allocation. */ host_buffer = host_page_addr; /* Host virtual page address */ host_end = host_page_addr + PAGE_SIZE; /* We need to get this page early, so I have to do it the * hard way. */ if (get_pteptr(&init_mm, host_page_addr, &pte)) { pte_val(*pte) |= _PAGE_NO_CACHE; flush_tlb_page(init_mm.mmap, host_buffer); } else { panic("Huh? No CPM host page?"); } /* Tell everyone where the comm processor resides. */ cpmp = (cpm8xx_t *)commproc; } /* This is called during init_IRQ. We used to do it above, but this * was too early since init_IRQ was not yet called. */ void cpm_interrupt_init(void) { /* Initialize the CPM interrupt controller. */ ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr = (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | ((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK; ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr = 0; /* Set our interrupt handler with the core CPU. */ if (request_8xxirq(CPM_INTERRUPT, cpm_interrupt, 0, "cpm", NULL) != 0) panic("Could not allocate CPM IRQ!"); /* Install our own error handler. */ cpm_install_handler(CPMVEC_ERROR, cpm_error_interrupt, NULL); ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr |= CICR_IEN; } /* CPM interrupt controller interrupt. */ static void cpm_interrupt(int irq, void * dev, struct pt_regs * regs) { uint vec; /* Get the vector by setting the ACK bit and then reading * the register. */ ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr = 1; vec = ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr; vec >>= 11; if (cpm_vecs[vec].handler != 0) (*cpm_vecs[vec].handler)(cpm_vecs[vec].dev_id, regs); else ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec); /* After servicing the interrupt, we have to remove the status * indicator. */ ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr = (1 << vec); } /* The CPM can generate the error interrupt when there is a race condition * between generating and masking interrupts. All we have to do is ACK it * and return. This is a no-op function so we don't need any special * tests in the interrupt handler. */ static void cpm_error_interrupt(void *dev, struct pt_regs *regs) { } /* Install a CPM interrupt handler. */ void cpm_install_handler(int vec, void (*handler)(void *, struct pt_regs *regs), void *dev_id) { /* If null handler, assume we are trying to free the IRQ. */ if (!handler) { cpm_free_handler(vec); return; } if (cpm_vecs[vec].handler != 0) printk("CPM interrupt %x replacing %x\n", (uint)handler, (uint)cpm_vecs[vec].handler); cpm_vecs[vec].handler = handler; cpm_vecs[vec].dev_id = dev_id; ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << vec); } /* Free a CPM interrupt handler. */ void cpm_free_handler(int vec) { cpm_vecs[vec].handler = NULL; cpm_vecs[vec].dev_id = NULL; ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec); } /* Allocate some memory from the dual ported ram. We may want to * enforce alignment restrictions, but right now everyone is a good * citizen. */ uint m8xx_cpm_dpalloc(uint size) { uint retloc; if ((dp_alloc_base + size) >= dp_alloc_top) return(CPM_DP_NOSPACE); retloc = dp_alloc_base; dp_alloc_base += size; return(retloc); } /* We also own one page of host buffer space for the allocation of * UART "fifos" and the like. */ uint m8xx_cpm_hostalloc(uint size) { uint retloc; if ((host_buffer + size) >= host_end) return(0); retloc = host_buffer; host_buffer += size; return(retloc); } /* Set a baud rate generator. This needs lots of work. There are * four BRGs, any of which can be wired to any channel. * The internal baud rate clock is the system clock divided by 16. * This assumes the baudrate is 16x oversampled by the uart. */ #define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq) #define BRG_UART_CLK (BRG_INT_CLK/16) #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) void m8xx_cpm_setbrg(uint brg, uint rate) { volatile uint *bp; /* This is good enough to get SMCs running..... */ bp = (uint *)&cpmp->cp_brgc1; bp += brg; /* The BRG has a 12-bit counter. For really slow baud rates (or * really fast processors), we may have to further divide by 16. */ if (((BRG_UART_CLK / rate) - 1) < 4096) *bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN; else *bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | CPM_BRG_EN | CPM_BRG_DIV16; }