/* * BK Id: SCCS/s.prep_setup.c 1.44 11/13/01 21:26:07 paulus */ /* * linux/arch/ppc/kernel/setup.c * * Copyright (C) 1995 Linus Torvalds * Adapted from 'alpha' version by Gary Thomas * Modified by Cort Dougan (cort@cs.nmt.edu) * * Support for PReP (Motorola MTX/MVME) * by Troy Benjegerdes (hozer@drgw.net) */ /* * bootup setup stuff.. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "local_irq.h" #include "i8259.h" #include "open_pic.h" #if defined(CONFIG_SOUND) || defined(CONFIG_SOUND_MODULE) #include <../drivers/sound/sound_config.h> #include <../drivers/sound/dev_table.h> #endif unsigned char ucSystemType; unsigned char ucBoardRev; unsigned char ucBoardRevMaj, ucBoardRevMin; extern unsigned long mc146818_get_rtc_time(void); extern int mc146818_set_rtc_time(unsigned long nowtime); extern unsigned long mk48t59_get_rtc_time(void); extern int mk48t59_set_rtc_time(unsigned long nowtime); extern unsigned char prep_nvram_read_val(int addr); extern void prep_nvram_write_val(int addr, unsigned char val); extern unsigned char rs_nvram_read_val(int addr); extern void rs_nvram_write_val(int addr, unsigned char val); extern void ibm_prep_init(void); extern int pckbd_setkeycode(unsigned int scancode, unsigned int keycode); extern int pckbd_getkeycode(unsigned int scancode); extern int pckbd_translate(unsigned char scancode, unsigned char *keycode, char raw_mode); extern char pckbd_unexpected_up(unsigned char keycode); extern void pckbd_leds(unsigned char leds); extern void pckbd_init_hw(void); extern unsigned char pckbd_sysrq_xlate[]; extern void prep_find_bridges(void); extern char saved_command_line[]; int _prep_type; #define cached_21 (((char *)(ppc_cached_irq_mask))[3]) #define cached_A1 (((char *)(ppc_cached_irq_mask))[2]) /* for the mac fs */ kdev_t boot_dev; /* used in nasty hack for sound - see prep_setup_arch() -- Cort */ long ppc_cs4232_dma, ppc_cs4232_dma2; extern PTE *Hash, *Hash_end; extern unsigned long Hash_size, Hash_mask; extern int probingmem; extern unsigned long loops_per_jiffy; #ifdef CONFIG_BLK_DEV_RAM extern int rd_doload; /* 1 = load ramdisk, 0 = don't load */ extern int rd_prompt; /* 1 = prompt for ramdisk, 0 = don't prompt */ extern int rd_image_start; /* starting block # of image */ #endif #ifdef CONFIG_SOUND_MODULE EXPORT_SYMBOL(ppc_cs4232_dma); EXPORT_SYMBOL(ppc_cs4232_dma2); #endif static int __prep prep_show_cpuinfo(struct seq_file *m) { extern char *Motherboard_map_name; int cachew; #ifdef CONFIG_PREP_RESIDUAL int i; #endif seq_printf(m, "machine\t\t: PReP %s\n", Motherboard_map_name); switch ( _prep_type ) { case _PREP_IBM: cachew = inw(0x80c); if (cachew & (1<<6)) seq_printf(m, "Upgrade CPU\n"); seq_printf(m, "L2\t\t: "); if (cachew & (1<<7)) { seq_printf(m, "not present\n"); goto no_l2; } seq_printf(m, "%sKb,", (cachew & (1 << 10))? "512" : "256"); seq_printf(m, "%ssync\n", (cachew & (1 << 15))? "" : "a"); break; case _PREP_Motorola: cachew = *((unsigned char *)CACHECRBA); seq_printf(m, "L2\t\t: "); switch (cachew & L2CACHE_MASK) { case L2CACHE_512KB: seq_printf(m, "512Kb"); break; case L2CACHE_256KB: seq_printf(m, "256Kb"); break; case L2CACHE_1MB: seq_printf(m, "1MB"); break; case L2CACHE_NONE: seq_printf(m, "none\n"); goto no_l2; break; default: seq_printf(m, "%x\n", cachew); } seq_printf(m, ", parity %s", (cachew & L2CACHE_PARITY)? "enabled" : "disabled"); seq_printf(m, " SRAM:"); switch ( ((cachew & 0xf0) >> 4) & ~(0x3) ) { case 1: seq_printf(m, "synchronous,parity,flow-through\n"); break; case 2: seq_printf(m, "asynchronous,no parity\n"); break; case 3: seq_printf(m, "asynchronous,parity\n"); break; default:seq_printf(m, "synchronous,pipelined,no parity\n"); break; } break; default: break; } no_l2: #ifdef CONFIG_PREP_RESIDUAL if (res->ResidualLength == 0) { /* print info about SIMMs */ seq_printf(m, "simms\t\t: "); for (i = 0; (res->ActualNumMemories) && (i < MAX_MEMS); i++) { if (res->Memories[i].SIMMSize != 0) seq_printf(m, "%d:%ldM ", i, (res->Memories[i].SIMMSize > 1024) ? res->Memories[i].SIMMSize>>20 : res->Memories[i].SIMMSize); } seq_printf(m, "\n"); } #endif return 0; } static int __prep prep_show_percpuinfo(struct seq_file *m, int i) { int len = 0; /* PREP's without residual data will give incorrect values here */ seq_printf(m, "clock\t\t: "); #ifdef CONFIG_PREP_RESIDUAL if (res->ResidualLength) seq_printf(m, "%ldMHz\n", (res->VitalProductData.ProcessorHz > 1024) ? res->VitalProductData.ProcessorHz>>20 : res->VitalProductData.ProcessorHz); else #endif /* CONFIG_PREP_RESIDUAL */ seq_printf(m, "???\n"); return 0; } static void __init prep_setup_arch(void) { unsigned char reg; #if 0 /* unused?? */ unsigned char ucMothMemType; unsigned char ucEquipPres1; #endif /* init to some ~sane value until calibrate_delay() runs */ loops_per_jiffy = 50000000; /* Lookup PCI host bridges */ prep_find_bridges(); /* Set up floppy in PS/2 mode */ outb(0x09, SIO_CONFIG_RA); reg = inb(SIO_CONFIG_RD); reg = (reg & 0x3F) | 0x40; outb(reg, SIO_CONFIG_RD); outb(reg, SIO_CONFIG_RD); /* Have to write twice to change! */ /* * We need to set up the NvRAM access routines early as prep_init * has yet to be called */ ppc_md.nvram_read_val = prep_nvram_read_val; ppc_md.nvram_write_val = prep_nvram_write_val; /* we should determine this according to what we find! -- Cort */ switch ( _prep_type ) { case _PREP_IBM: /* Enable L2. Assume we don't need to flush -- Cort*/ *(unsigned char *)(0x8000081c) |= 3; ROOT_DEV = to_kdev_t(0x0301); /* hda1 */ break; case _PREP_Motorola: /* Enable L2. Assume we don't need to flush -- Cort*/ *(unsigned char *)(0x8000081c) |= 3; #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start) ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0); /* /dev/ram */ else #endif #ifdef CONFIG_ROOT_NFS ROOT_DEV = to_kdev_t(0x00ff); /* /dev/nfs */ #else ROOT_DEV = to_kdev_t(0x0802); /* /dev/sda2 */ #endif break; } /* Read in NVRAM data */ init_prep_nvram(); /* if no bootargs, look in NVRAM */ if ( cmd_line[0] == '\0' ) { char *bootargs; bootargs = prep_nvram_get_var("bootargs"); if (bootargs != NULL) { strcpy(cmd_line, bootargs); /* again.. */ strcpy(saved_command_line, cmd_line); } } #ifdef CONFIG_SOUND_CS4232 /* * setup proper values for the cs4232 driver so we don't have * to recompile for the motorola or ibm workstations sound systems. * This is a really nasty hack, but unless we change the driver * it's the only way to support both addrs from one binary. * -- Cort */ if ( _machine == _MACH_prep ) { extern struct card_info snd_installed_cards[]; struct card_info *snd_ptr; for ( snd_ptr = snd_installed_cards; snd_ptr < &snd_installed_cards[num_sound_cards]; snd_ptr++ ) { if ( snd_ptr->card_type == SNDCARD_CS4232 ) { if ( _prep_type == _PREP_Motorola ) { snd_ptr->config.io_base = 0x830; snd_ptr->config.irq = 10; snd_ptr->config.dma = ppc_cs4232_dma = 6; snd_ptr->config.dma2 = ppc_cs4232_dma2 = 7; } if ( _prep_type == _PREP_IBM ) { snd_ptr->config.io_base = 0x530; snd_ptr->config.irq = 5; snd_ptr->config.dma = ppc_cs4232_dma = 1; /* this is wrong - but leave it for now */ snd_ptr->config.dma2 = ppc_cs4232_dma2 = 7; } } } } #endif /* CONFIG_SOUND_CS4232 */ /*print_residual_device_info();*/ switch (_prep_type) { case _PREP_Motorola: raven_init(); break; case _PREP_IBM: ibm_prep_init(); break; } #ifdef CONFIG_VGA_CONSOLE /* remap the VGA memory */ vgacon_remap_base = 0xf0000000; /*vgacon_remap_base = ioremap(0xc0000000, 0xba000);*/ conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif } /* * Determine the decrementer frequency from the residual data * This allows for a faster boot as we do not need to calibrate the * decrementer against another clock. This is important for embedded systems. */ static int __init prep_res_calibrate_decr(void) { #ifdef CONFIG_PREP_RESIDUAL unsigned long freq, divisor = 4; if ( res->VitalProductData.ProcessorBusHz ) { freq = res->VitalProductData.ProcessorBusHz; printk("time_init: decrementer frequency = %lu.%.6lu MHz\n", (freq/divisor)/1000000, (freq/divisor)%1000000); tb_to_us = mulhwu_scale_factor(freq/divisor, 1000000); tb_ticks_per_jiffy = freq / HZ / divisor; return 0; } else #endif return 1; } /* * Uses the on-board timer to calibrate the on-chip decrementer register * for prep systems. On the pmac the OF tells us what the frequency is * but on prep we have to figure it out. * -- Cort */ /* Done with 3 interrupts: the first one primes the cache and the * 2 following ones measure the interval. The precision of the method * is still doubtful due to the short interval sampled. */ static volatile int calibrate_steps __initdata = 3; static unsigned tbstamp __initdata = 0; static void __init prep_calibrate_decr_handler(int irq, void *dev, struct pt_regs *regs) { unsigned long t, freq; int step=--calibrate_steps; t = get_tbl(); if (step > 0) { tbstamp = t; } else { freq = (t - tbstamp)*HZ; printk("time_init: decrementer frequency = %lu.%.6lu MHz\n", freq/1000000, freq%1000000); tb_ticks_per_jiffy = freq / HZ; tb_to_us = mulhwu_scale_factor(freq, 1000000); } } static void __init prep_calibrate_decr(void) { int res; /* Try and get this from the residual data. */ res = prep_res_calibrate_decr(); /* If we didn't get it from the residual data, try this. */ if ( res ) { unsigned long flags; save_flags(flags); #define TIMER0_COUNT 0x40 #define TIMER_CONTROL 0x43 /* set timer to periodic mode */ outb_p(0x34,TIMER_CONTROL);/* binary, mode 2, LSB/MSB, ch 0 */ /* set the clock to ~100 Hz */ outb_p(LATCH & 0xff , TIMER0_COUNT); /* LSB */ outb(LATCH >> 8 , TIMER0_COUNT); /* MSB */ if (request_irq(0, prep_calibrate_decr_handler, 0, "timer", NULL) != 0) panic("Could not allocate timer IRQ!"); __sti(); /* wait for calibrate */ while ( calibrate_steps ) ; restore_flags(flags); free_irq( 0, NULL); } } static long __init mk48t59_init(void) { unsigned char tmp; tmp = ppc_md.nvram_read_val(MK48T59_RTC_CONTROLB); if (tmp & MK48T59_RTC_CB_STOP) { printk("Warning: RTC was stopped, date will be wrong.\n"); ppc_md.nvram_write_val(MK48T59_RTC_CONTROLB, tmp & ~MK48T59_RTC_CB_STOP); /* Low frequency crystal oscillators may take a very long * time to startup and stabilize. For now just ignore the * the issue, but attempting to calibrate the decrementer * from the RTC just after this wakeup is likely to be very * inaccurate. Firmware should not allow to load * the OS with the clock stopped anyway... */ } /* Ensure that the clock registers are updated */ tmp = ppc_md.nvram_read_val(MK48T59_RTC_CONTROLA); tmp &= ~(MK48T59_RTC_CA_READ | MK48T59_RTC_CA_WRITE); ppc_md.nvram_write_val(MK48T59_RTC_CONTROLA, tmp); return 0; } /* We use the NVRAM RTC to time a second to calibrate the decrementer, * the RTC registers have just been set up in the right state by the * preceding routine. */ static void __init mk48t59_calibrate_decr(void) { unsigned long freq; unsigned long t1; unsigned char save_control; long i; unsigned char sec; /* Make sure the time is not stopped. */ save_control = ppc_md.nvram_read_val(MK48T59_RTC_CONTROLB); ppc_md.nvram_write_val(MK48T59_RTC_CONTROLA, (save_control & (~MK48T59_RTC_CB_STOP))); /* Now make sure the read bit is off so the value will change. */ save_control = ppc_md.nvram_read_val(MK48T59_RTC_CONTROLA); save_control &= ~MK48T59_RTC_CA_READ; ppc_md.nvram_write_val(MK48T59_RTC_CONTROLA, save_control); /* Read the seconds value to see when it changes. */ sec = ppc_md.nvram_read_val(MK48T59_RTC_SECONDS); /* Actually this is bad for precision, we should have a loop in * which we only read the seconds counter. nvram_read_val writes * the address bytes on every call and this takes a lot of time. * Perhaps an nvram_wait_change method returning a time * stamp with a loop count as parameter would be the solution. */ for (i = 0 ; i < 1000000 ; i++) { /* may take up to 1 second... */ t1 = get_tbl(); if (ppc_md.nvram_read_val(MK48T59_RTC_SECONDS) != sec) { break; } } sec = ppc_md.nvram_read_val(MK48T59_RTC_SECONDS); for (i = 0 ; i < 1000000 ; i++) { /* Should take up 1 second... */ freq = get_tbl()-t1; if (ppc_md.nvram_read_val(MK48T59_RTC_SECONDS) != sec) break; } printk("time_init: decrementer frequency = %lu.%.6lu MHz\n", freq/1000000, freq%1000000); tb_ticks_per_jiffy = freq / HZ; tb_to_us = mulhwu_scale_factor(freq, 1000000); } static void __prep prep_restart(char *cmd) { unsigned long i = 10000; __cli(); /* set exception prefix high - to the prom */ _nmask_and_or_msr(0, MSR_IP); /* make sure bit 0 (reset) is a 0 */ outb( inb(0x92) & ~1L , 0x92 ); /* signal a reset to system control port A - soft reset */ outb( inb(0x92) | 1 , 0x92 ); while ( i != 0 ) i++; panic("restart failed\n"); } static void __prep prep_halt(void) { unsigned long flags; __cli(); /* set exception prefix high - to the prom */ save_flags( flags ); restore_flags( flags|MSR_IP ); /* make sure bit 0 (reset) is a 0 */ outb( inb(0x92) & ~1L , 0x92 ); /* signal a reset to system control port A - soft reset */ outb( inb(0x92) | 1 , 0x92 ); while ( 1 ) ; /* * Not reached */ } /* * On IBM PReP's, power management is handled by a Signetics 87c750 behind the * Utah component on the ISA bus. To access the 750 you must write a series of * nibbles to port 0x82a (decoded by the Utah). This is described somewhat in * the IBM Carolina Technical Specification. * -Hollis */ static void __prep utah_sig87c750_setbit(unsigned int bytenum, unsigned int bitnum, int value) { /* * byte1: 0 0 0 1 0 d a5 a4 * byte2: 0 0 0 1 a3 a2 a1 a0 * * d = the bit's value, enabled or disabled * (a5 a4 a3) = the byte number, minus 20 * (a2 a1 a0) = the bit number * * example: set the 5th bit of byte 21 (21.5) * a5 a4 a3 = 001 (byte 1) * a2 a1 a0 = 101 (bit 5) * * byte1 = 0001 0100 (0x14) * byte2 = 0001 1101 (0x1d) */ unsigned char byte1=0x10, byte2=0x10; const unsigned int pm_reg_1=0x82a; /* ISA address */ /* the 750's '20.0' is accessed as '0.0' through Utah (which adds 20) */ bytenum -= 20; byte1 |= (!!value) << 2; /* set d */ byte1 |= (bytenum >> 1) & 0x3; /* set a5, a4 */ byte2 |= (bytenum & 0x1) << 3; /* set a3 */ byte2 |= bitnum & 0x7; /* set a2, a1, a0 */ outb(byte1, pm_reg_1); /* first nibble */ mb(); udelay(100); /* important: let controller recover */ outb(byte2, pm_reg_1); /* second nibble */ mb(); udelay(100); /* important: let controller recover */ } static void __prep prep_power_off(void) { if ( _prep_type == _PREP_IBM) { /* tested on: * Carolina's: 7248-43P, 6070 (PowerSeries 850) * should work on: * Carolina: 6050 (PowerSeries 830) * 7043-140 (Tiger 1) */ unsigned long flags; __cli(); /* set exception prefix high - to the prom */ save_flags( flags ); restore_flags( flags|MSR_IP ); utah_sig87c750_setbit(21, 5, 1); /* set bit 21.5, "PMEXEC_OFF" */ while ( 1 ) ; /* not reached */ } else { prep_halt(); } } static unsigned int __prep prep_irq_cannonicalize(u_int irq) { if (irq == 2) { return 9; } else { return irq; } } static int __prep prep_get_irq(struct pt_regs *regs) { return i8259_irq(smp_processor_id()); } static void __init prep_init_IRQ(void) { int i; if (OpenPIC_Addr != NULL) openpic_init(1, NUM_8259_INTERRUPTS, 0, -1); for ( i = 0 ; i < NUM_8259_INTERRUPTS ; i++ ) irq_desc[i].handler = &i8259_pic; i8259_init(); } #if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_IDE_MODULE) /* * IDE stuff. */ static int __prep prep_ide_default_irq(ide_ioreg_t base) { switch (base) { case 0x1f0: return 13; case 0x170: return 13; case 0x1e8: return 11; case 0x168: return 10; case 0xfff0: return 14; /* MCP(N)750 ide0 */ case 0xffe0: return 15; /* MCP(N)750 ide1 */ default: return 0; } } static ide_ioreg_t __prep prep_ide_default_io_base(int index) { switch (index) { case 0: return 0x1f0; case 1: return 0x170; case 2: return 0x1e8; case 3: return 0x168; default: return 0; } } static int __prep prep_ide_check_region(ide_ioreg_t from, unsigned int extent) { return check_region(from, extent); } static void __prep prep_ide_request_region(ide_ioreg_t from, unsigned int extent, const char *name) { request_region(from, extent, name); } static void __prep prep_ide_release_region(ide_ioreg_t from, unsigned int extent) { release_region(from, extent); } static void __init prep_ide_init_hwif_ports (hw_regs_t *hw, ide_ioreg_t data_port, ide_ioreg_t ctrl_port, int *irq) { ide_ioreg_t reg = data_port; int i; for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; i++) { hw->io_ports[i] = reg; reg += 1; } if (ctrl_port) { hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port; } else { hw->io_ports[IDE_CONTROL_OFFSET] = hw->io_ports[IDE_DATA_OFFSET] + 0x206; } if (irq != NULL) *irq = 0; } #endif #ifdef CONFIG_SMP /* PReP (MTX) support */ static int __init smp_prep_probe(void) { extern int mot_multi; if (mot_multi) { openpic_request_IPIs(); smp_hw_index[1] = 1; return 2; } return 1; } static void __init smp_prep_kick_cpu(int nr) { *(unsigned long *)KERNELBASE = nr; asm volatile("dcbf 0,%0"::"r"(KERNELBASE):"memory"); printk("CPU1 reset, waiting\n"); } static void __init smp_prep_setup_cpu(int cpu_nr) { if (OpenPIC_Addr) do_openpic_setup_cpu(); } static struct smp_ops_t prep_smp_ops __prepdata = { smp_openpic_message_pass, smp_prep_probe, smp_prep_kick_cpu, smp_prep_setup_cpu, }; #endif /* CONFIG_SMP */ /* * This finds the amount of physical ram and does necessary * setup for prep. This is pretty architecture specific so * this will likely stay separate from the pmac. * -- Cort */ static unsigned long __init prep_find_end_of_memory(void) { unsigned long total = 0; extern unsigned int boot_mem_size; #ifdef CONFIG_PREP_RESIDUAL total = res->TotalMemory; #endif if (total == 0 && boot_mem_size != 0) total = boot_mem_size; else if (total == 0) { /* * I need a way to probe the amount of memory if the residual * data doesn't contain it. -- Cort */ total = 0x02000000; printk(KERN_INFO "Ramsize from residual data was 0" " -- defaulting to %ldM\n", total>>20); } return (total); } /* * Setup the bat mappings we're going to load that cover * the io areas. RAM was mapped by mapin_ram(). * -- Cort */ static void __init prep_map_io(void) { io_block_mapping(0x80000000, PREP_ISA_IO_BASE, 0x10000000, _PAGE_IO); io_block_mapping(0xf0000000, PREP_ISA_MEM_BASE, 0x08000000, _PAGE_IO); } static void __init prep_init2(void) { #ifdef CONFIG_NVRAM request_region(PREP_NVRAM_AS0, 0x8, "nvram"); #endif request_region(0x20,0x20,"pic1"); request_region(0xa0,0x20,"pic2"); request_region(0x00,0x20,"dma1"); request_region(0x40,0x20,"timer"); request_region(0x80,0x10,"dma page reg"); request_region(0xc0,0x20,"dma2"); } void __init prep_init(unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7) { #ifdef CONFIG_PREP_RESIDUAL /* make a copy of residual data */ if ( r3 ) { memcpy((void *)res,(void *)(r3+KERNELBASE), sizeof(RESIDUAL)); } #endif #ifdef CONFIG_BLK_DEV_INITRD if ( r4 ) { initrd_start = r4 + KERNELBASE; initrd_end = r5 + KERNELBASE; } #endif /* CONFIG_BLK_DEV_INITRD */ /* Copy cmd_line parameters */ if ( r6 ) { *(char *)(r7 + KERNELBASE) = 0; strcpy(cmd_line, (char *)(r6 + KERNELBASE)); } isa_io_base = PREP_ISA_IO_BASE; isa_mem_base = PREP_ISA_MEM_BASE; pci_dram_offset = PREP_PCI_DRAM_OFFSET; ISA_DMA_THRESHOLD = 0x00ffffff; DMA_MODE_READ = 0x44; DMA_MODE_WRITE = 0x48; /* figure out what kind of prep workstation we are */ #ifdef CONFIG_PREP_RESIDUAL if ( res->ResidualLength != 0 ) { if ( !strncmp(res->VitalProductData.PrintableModel,"IBM",3) ) _prep_type = _PREP_IBM; else _prep_type = _PREP_Motorola; } else /* assume motorola if no residual (netboot?) */ #endif { _prep_type = _PREP_Motorola; } ppc_md.setup_arch = prep_setup_arch; ppc_md.show_percpuinfo = prep_show_percpuinfo; ppc_md.show_cpuinfo = prep_show_cpuinfo; ppc_md.irq_cannonicalize = prep_irq_cannonicalize; ppc_md.init_IRQ = prep_init_IRQ; /* this gets changed later on if we have an OpenPIC -- Cort */ ppc_md.get_irq = prep_get_irq; ppc_md.init = prep_init2; ppc_md.restart = prep_restart; ppc_md.power_off = prep_power_off; ppc_md.halt = prep_halt; ppc_md.time_init = NULL; if (_prep_type == _PREP_IBM) { ppc_md.set_rtc_time = mc146818_set_rtc_time; ppc_md.get_rtc_time = mc146818_get_rtc_time; ppc_md.calibrate_decr = prep_calibrate_decr; } else { ppc_md.set_rtc_time = mk48t59_set_rtc_time; ppc_md.get_rtc_time = mk48t59_get_rtc_time; ppc_md.calibrate_decr = mk48t59_calibrate_decr; ppc_md.time_init = mk48t59_init; } ppc_md.find_end_of_memory = prep_find_end_of_memory; ppc_md.setup_io_mappings = prep_map_io; #if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_IDE_MODULE) ppc_ide_md.default_irq = prep_ide_default_irq; ppc_ide_md.default_io_base = prep_ide_default_io_base; ppc_ide_md.ide_check_region = prep_ide_check_region; ppc_ide_md.ide_request_region = prep_ide_request_region; ppc_ide_md.ide_release_region = prep_ide_release_region; ppc_ide_md.ide_init_hwif = prep_ide_init_hwif_ports; #endif #ifdef CONFIG_VT ppc_md.kbd_setkeycode = pckbd_setkeycode; ppc_md.kbd_getkeycode = pckbd_getkeycode; ppc_md.kbd_translate = pckbd_translate; ppc_md.kbd_unexpected_up = pckbd_unexpected_up; ppc_md.kbd_leds = pckbd_leds; ppc_md.kbd_init_hw = pckbd_init_hw; #ifdef CONFIG_MAGIC_SYSRQ ppc_md.ppc_kbd_sysrq_xlate = pckbd_sysrq_xlate; SYSRQ_KEY = 0x54; #endif #endif #ifdef CONFIG_SMP ppc_md.smp_ops = &prep_smp_ops; #endif /* CONFIG_SMP */ }