/* * BK Id: SCCS/s.prom.c 1.42 09/08/01 15:47:42 paulus */ /* * Procedures for interfacing to the Open Firmware PROM on * Power Macintosh computers. * * In particular, we are interested in the device tree * and in using some of its services (exit, write to stdout). * * Paul Mackerras August 1996. * Copyright (C) 1996 Paul Mackerras. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "open_pic.h" #ifdef CONFIG_FB #include #endif /* * Properties whose value is longer than this get excluded from our * copy of the device tree. This way we don't waste space storing * things like "driver,AAPL,MacOS,PowerPC" properties. But this value * does need to be big enough to ensure that we don't lose things * like the interrupt-map property on a PCI-PCI bridge. */ #define MAX_PROPERTY_LENGTH 4096 struct prom_args { const char *service; int nargs; int nret; void *args[10]; }; struct pci_address { unsigned a_hi; unsigned a_mid; unsigned a_lo; }; struct pci_reg_property { struct pci_address addr; unsigned size_hi; unsigned size_lo; }; struct pci_range { struct pci_address addr; unsigned phys; unsigned size_hi; unsigned size_lo; }; struct isa_reg_property { unsigned space; unsigned address; unsigned size; }; struct pci_intr_map { struct pci_address addr; unsigned dunno; phandle int_ctrler; unsigned intr; }; typedef unsigned long interpret_func(struct device_node *, unsigned long, int, int); static interpret_func interpret_pci_props; static interpret_func interpret_dbdma_props; static interpret_func interpret_isa_props; static interpret_func interpret_macio_props; static interpret_func interpret_root_props; #ifndef FB_MAX /* avoid pulling in all of the fb stuff */ #define FB_MAX 8 #endif char *prom_display_paths[FB_MAX] __initdata = { 0, }; phandle prom_display_nodes[FB_MAX] __initdata; unsigned int prom_num_displays __initdata = 0; char *of_stdout_device __initdata = 0; ihandle prom_disp_node __initdata = 0; prom_entry prom __initdata = 0; ihandle prom_chosen __initdata = 0; ihandle prom_stdout __initdata = 0; extern char *klimit; char *bootpath; char *bootdevice; unsigned int rtas_data; /* physical pointer */ unsigned int rtas_entry; /* physical pointer */ unsigned int rtas_size; unsigned int old_rtas; /* Set for a newworld or CHRP machine */ int use_of_interrupt_tree; struct device_node *dflt_interrupt_controller; int num_interrupt_controllers; int pmac_newworld; static struct device_node *allnodes; static void *call_prom(const char *service, int nargs, int nret, ...); static void prom_exit(void); static unsigned long copy_device_tree(unsigned long, unsigned long); static unsigned long inspect_node(phandle, struct device_node *, unsigned long, unsigned long, struct device_node ***); static unsigned long finish_node(struct device_node *, unsigned long, interpret_func *, int, int); static unsigned long finish_node_interrupts(struct device_node *, unsigned long); static unsigned long check_display(unsigned long); static int prom_next_node(phandle *); static void *early_get_property(unsigned long, unsigned long, char *); static struct device_node *find_phandle(phandle); #ifdef CONFIG_BOOTX_TEXT static void setup_disp_fake_bi(ihandle dp); #endif extern void enter_rtas(void *); void phys_call_rtas(int, int, int, ...); extern char cmd_line[512]; /* XXX */ boot_infos_t *boot_infos; unsigned long dev_tree_size; #define ALIGN(x) (((x) + sizeof(unsigned long)-1) & -sizeof(unsigned long)) /* Is boot-info compatible ? */ #define BOOT_INFO_IS_COMPATIBLE(bi) ((bi)->compatible_version <= BOOT_INFO_VERSION) #define BOOT_INFO_IS_V2_COMPATIBLE(bi) ((bi)->version >= 2) #define BOOT_INFO_IS_V4_COMPATIBLE(bi) ((bi)->version >= 4) /* * Note that prom_init() and anything called from prom_init() must * use the RELOC/PTRRELOC macros to access any static data in * memory, since the kernel may be running at an address that is * different from the address that it was linked at. * (Note that strings count as static variables.) */ static void __init prom_exit() { struct prom_args args; unsigned long offset = reloc_offset(); args.service = "exit"; args.nargs = 0; args.nret = 0; RELOC(prom)(&args); for (;;) /* should never get here */ ; } void __init prom_enter(void) { struct prom_args args; unsigned long offset = reloc_offset(); args.service = RELOC("enter"); args.nargs = 0; args.nret = 0; RELOC(prom)(&args); } static void * __init call_prom(const char *service, int nargs, int nret, ...) { va_list list; int i; unsigned long offset = reloc_offset(); struct prom_args prom_args; prom_args.service = service; prom_args.nargs = nargs; prom_args.nret = nret; va_start(list, nret); for (i = 0; i < nargs; ++i) prom_args.args[i] = va_arg(list, void *); va_end(list); for (i = 0; i < nret; ++i) prom_args.args[i + nargs] = 0; RELOC(prom)(&prom_args); return prom_args.args[nargs]; } void __init prom_print(const char *msg) { const char *p, *q; unsigned long offset = reloc_offset(); if (RELOC(prom_stdout) == 0) return; for (p = msg; *p != 0; p = q) { for (q = p; *q != 0 && *q != '\n'; ++q) ; if (q > p) call_prom(RELOC("write"), 3, 1, RELOC(prom_stdout), p, q - p); if (*q != 0) { ++q; call_prom(RELOC("write"), 3, 1, RELOC(prom_stdout), RELOC("\r\n"), 2); } } } static void __init prom_print_hex(unsigned int v) { char buf[16]; int i, c; for (i = 0; i < 8; ++i) { c = (v >> ((7-i)*4)) & 0xf; c += (c >= 10)? ('a' - 10): '0'; buf[i] = c; } buf[i] = ' '; buf[i+1] = 0; prom_print(buf); } unsigned long smp_chrp_cpu_nr __initdata = 0; #ifdef CONFIG_SMP /* * With CHRP SMP we need to use the OF to start the other * processors so we can't wait until smp_boot_cpus (the OF is * trashed by then) so we have to put the processors into * a holding pattern controlled by the kernel (not OF) before * we destroy the OF. * * This uses a chunk of high memory, puts some holding pattern * code there and sends the other processors off to there until * smp_boot_cpus tells them to do something. We do that by using * physical address 0x0. The holding pattern checks that address * until its cpu # is there, when it is that cpu jumps to * __secondary_start(). smp_boot_cpus() takes care of setting those * values. * * We also use physical address 0x4 here to tell when a cpu * is in its holding pattern code. * * -- Cort */ static void __init prom_hold_cpus(unsigned long mem) { extern void __secondary_hold(void); unsigned long i; int cpu; phandle node; unsigned long offset = reloc_offset(); char type[16], *path; unsigned int reg; /* * XXX: hack to make sure we're chrp, assume that if we're * chrp we have a device_type property -- Cort */ node = call_prom(RELOC("finddevice"), 1, 1, RELOC("/")); if ( (int)call_prom(RELOC("getprop"), 4, 1, node, RELOC("device_type"),type, sizeof(type)) <= 0) return; /* copy the holding pattern code to someplace safe (0) */ /* the holding pattern is now within the first 0x100 bytes of the kernel image -- paulus */ memcpy((void *)0, (void *)(KERNELBASE + offset), 0x100); flush_icache_range(0, 0x100); /* look for cpus */ *(unsigned long *)(0x0) = 0; asm volatile("dcbf 0,%0": : "r" (0) : "memory"); for (node = 0; prom_next_node(&node); ) { type[0] = 0; call_prom(RELOC("getprop"), 4, 1, node, RELOC("device_type"), type, sizeof(type)); if (strcmp(type, RELOC("cpu")) != 0) continue; path = (char *) mem; memset(path, 0, 256); if ((int) call_prom(RELOC("package-to-path"), 3, 1, node, path, 255) < 0) continue; reg = -1; call_prom(RELOC("getprop"), 4, 1, node, RELOC("reg"), ®, sizeof(reg)); cpu = RELOC(smp_chrp_cpu_nr)++; RELOC(smp_hw_index)[cpu] = reg; /* XXX: hack - don't start cpu 0, this cpu -- Cort */ if (cpu == 0) continue; prom_print(RELOC("starting cpu ")); prom_print(path); *(ulong *)(0x4) = 0; call_prom(RELOC("start-cpu"), 3, 0, node, __pa(__secondary_hold), cpu); prom_print(RELOC("...")); for ( i = 0 ; (i < 10000) && (*(ulong *)(0x4) == 0); i++ ) ; if (*(ulong *)(0x4) == cpu) prom_print(RELOC("ok\n")); else { prom_print(RELOC("failed: ")); prom_print_hex(*(ulong *)0x4); prom_print(RELOC("\n")); } } } #endif /* CONFIG_SMP */ void __init bootx_init(unsigned long r4, unsigned long phys) { boot_infos_t *bi = (boot_infos_t *) r4; unsigned long space; unsigned long ptr, x; char *model; unsigned long offset = reloc_offset(); RELOC(boot_infos) = PTRUNRELOC(bi); if (!BOOT_INFO_IS_V2_COMPATIBLE(bi)) bi->logicalDisplayBase = 0; #ifdef CONFIG_BOOTX_TEXT btext_init(bi); /* * Test if boot-info is compatible. Done only in config * CONFIG_BOOTX_TEXT since there is nothing much we can do * with an incompatible version, except display a message * and eventually hang the processor... * * I'll try to keep enough of boot-info compatible in the * future to always allow display of this message; */ if (!BOOT_INFO_IS_COMPATIBLE(bi)) { btext_drawstring(RELOC(" !!! WARNING - Incompatible version of BootX !!!\n\n\n")); btext_flushscreen(); } #endif /* CONFIG_BOOTX_TEXT */ /* New BootX enters kernel with MMU off, i/os are not allowed here. This hack will have been done by the boostrap anyway. */ if (bi->version < 4) { /* * XXX If this is an iMac, turn off the USB controller. */ model = (char *) early_get_property (r4 + bi->deviceTreeOffset, 4, RELOC("model")); if (model && (strcmp(model, RELOC("iMac,1")) == 0 || strcmp(model, RELOC("PowerMac1,1")) == 0)) { out_le32((unsigned *)0x80880008, 1); /* XXX */ } } /* Move klimit to enclose device tree, args, ramdisk, etc... */ if (bi->version < 5) { space = bi->deviceTreeOffset + bi->deviceTreeSize; if (bi->ramDisk) space = bi->ramDisk + bi->ramDiskSize; } else space = bi->totalParamsSize; RELOC(klimit) = PTRUNRELOC((char *) bi + space); /* New BootX will have flushed all TLBs and enters kernel with MMU switched OFF, so this should not be useful anymore. */ if (bi->version < 4) { /* * Touch each page to make sure the PTEs for them * are in the hash table - the aim is to try to avoid * getting DSI exceptions while copying the kernel image. */ for (ptr = (KERNELBASE + offset) & PAGE_MASK; ptr < (unsigned long)bi + space; ptr += PAGE_SIZE) x = *(volatile unsigned long *)ptr; } #ifdef CONFIG_BOOTX_TEXT /* * Note that after we call prepare_disp_BAT, we can't do * prom_draw*, flushscreen or clearscreen until we turn the MMU * on, since prepare_disp_BAT sets disp_bi->logicalDisplayBase * to a virtual address. */ btext_prepare_BAT(); #endif } #ifdef CONFIG_PPC64BRIDGE /* * Set up a hash table with a set of entries in it to map the * first 64MB of RAM. This is used on 64-bit machines since * some of them don't have BATs. * We assume the PTE will fit in the primary PTEG. */ static inline void make_pte(unsigned long htab, unsigned int hsize, unsigned int va, unsigned int pa, int mode) { unsigned int *pteg; unsigned int hash, i, vsid; vsid = ((va >> 28) * 0x111) << 12; hash = ((va ^ vsid) >> 5) & 0x7fff80; pteg = (unsigned int *)(htab + (hash & (hsize - 1))); for (i = 0; i < 8; ++i, pteg += 4) { if ((pteg[1] & 1) == 0) { pteg[1] = vsid | ((va >> 16) & 0xf80) | 1; pteg[3] = pa | mode; break; } } } extern unsigned long _SDR1; extern PTE *Hash; extern unsigned long Hash_size; static void __init prom_alloc_htab(void) { unsigned int hsize; unsigned long htab; unsigned int addr; unsigned long offset = reloc_offset(); /* * Because of OF bugs we can't use the "claim" client * interface to allocate memory for the hash table. * This code is only used on 64-bit PPCs, and the only * 64-bit PPCs at the moment are RS/6000s, and their * OF is based at 0xc00000 (the 12M point), so we just * arbitrarily use the 0x800000 - 0xc00000 region for the * hash table. * -- paulus. */ #ifdef CONFIG_POWER4 hsize = 4 << 20; /* POWER4 has no BATs */ #else hsize = 2 << 20; #endif /* CONFIG_POWER4 */ htab = (8 << 20); RELOC(Hash) = (void *)(htab + KERNELBASE); RELOC(Hash_size) = hsize; RELOC(_SDR1) = htab + __ilog2(hsize) - 18; /* * Put in PTEs for the first 64MB of RAM */ cacheable_memzero((void *)htab, hsize); for (addr = 0; addr < 0x4000000; addr += 0x1000) make_pte(htab, hsize, addr + KERNELBASE, addr, _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX); } #endif /* CONFIG_PPC64BRIDGE */ static void __init prom_instantiate_rtas(void) { ihandle prom_rtas; unsigned int i; struct prom_args prom_args; unsigned long offset = reloc_offset(); prom_rtas = call_prom(RELOC("finddevice"), 1, 1, RELOC("/rtas")); if (prom_rtas == (void *) -1) return; RELOC(rtas_size) = 0; call_prom(RELOC("getprop"), 4, 1, prom_rtas, RELOC("rtas-size"), &RELOC(rtas_size), sizeof(rtas_size)); prom_print(RELOC("instantiating rtas")); if (RELOC(rtas_size) == 0) { RELOC(rtas_data) = 0; } else { /* * Ask OF for some space for RTAS. * Actually OF has bugs so we just arbitrarily * use memory at the 6MB point. */ RELOC(rtas_data) = 6 << 20; prom_print(RELOC(" at ")); prom_print_hex(RELOC(rtas_data)); } prom_rtas = call_prom(RELOC("open"), 1, 1, RELOC("/rtas")); prom_print(RELOC("...")); prom_args.service = RELOC("call-method"); prom_args.nargs = 3; prom_args.nret = 2; prom_args.args[0] = RELOC("instantiate-rtas"); prom_args.args[1] = prom_rtas; prom_args.args[2] = (void *) RELOC(rtas_data); RELOC(prom)(&prom_args); i = 0; if (prom_args.args[3] == 0) i = (unsigned int)prom_args.args[4]; RELOC(rtas_entry) = i; if ((RELOC(rtas_entry) == -1) || (RELOC(rtas_entry) == 0)) prom_print(RELOC(" failed\n")); else prom_print(RELOC(" done\n")); } /* * We enter here early on, when the Open Firmware prom is still * handling exceptions and the MMU hash table for us. */ unsigned long __init prom_init(int r3, int r4, prom_entry pp) { unsigned long mem; ihandle prom_mmu; unsigned long offset = reloc_offset(); int l; char *p, *d; unsigned long phys; /* Default */ phys = offset + KERNELBASE; /* First get a handle for the stdout device */ RELOC(prom) = pp; RELOC(prom_chosen) = call_prom(RELOC("finddevice"), 1, 1, RELOC("/chosen")); if (RELOC(prom_chosen) == (void *)-1) prom_exit(); if ((int) call_prom(RELOC("getprop"), 4, 1, RELOC(prom_chosen), RELOC("stdout"), &RELOC(prom_stdout), sizeof(prom_stdout)) <= 0) prom_exit(); /* Get the full OF pathname of the stdout device */ mem = (unsigned long) RELOC(klimit) + offset; p = (char *) mem; memset(p, 0, 256); call_prom(RELOC("instance-to-path"), 3, 1, RELOC(prom_stdout), p, 255); RELOC(of_stdout_device) = PTRUNRELOC(p); mem += strlen(p) + 1; /* Get the boot device and translate it to a full OF pathname. */ p = (char *) mem; l = (int) call_prom(RELOC("getprop"), 4, 1, RELOC(prom_chosen), RELOC("bootpath"), p, 1<<20); if (l > 0) { p[l] = 0; /* should already be null-terminated */ RELOC(bootpath) = PTRUNRELOC(p); mem += l + 1; d = (char *) mem; *d = 0; call_prom(RELOC("canon"), 3, 1, p, d, 1<<20); RELOC(bootdevice) = PTRUNRELOC(d); mem = ALIGN(mem + strlen(d) + 1); } prom_instantiate_rtas(); #ifdef CONFIG_PPC64BRIDGE /* * Find out how much memory we have and allocate a * suitably-sized hash table. */ prom_alloc_htab(); #endif mem = check_display(mem); prom_print(RELOC("copying OF device tree...")); mem = copy_device_tree(mem, mem + (1<<20)); prom_print(RELOC("done\n")); #ifdef CONFIG_SMP prom_hold_cpus(mem); #endif RELOC(klimit) = (char *) (mem - offset); /* If we are already running at 0xc0000000, we assume we were loaded by * an OF bootloader which did set a BAT for us. This breaks OF translate * so we force phys to be 0 */ if (offset == 0) phys = 0; else { if ((int) call_prom(RELOC("getprop"), 4, 1, RELOC(prom_chosen), RELOC("mmu"), &prom_mmu, sizeof(prom_mmu)) <= 0) { prom_print(RELOC(" no MMU found\n")); } else { int nargs; struct prom_args prom_args; nargs = 4; prom_args.service = RELOC("call-method"); prom_args.nargs = nargs; prom_args.nret = 4; prom_args.args[0] = RELOC("translate"); prom_args.args[1] = prom_mmu; prom_args.args[2] = (void *)(offset + KERNELBASE); prom_args.args[3] = (void *)1; RELOC(prom)(&prom_args); /* We assume the phys. address size is 3 cells */ if (prom_args.args[nargs] != 0) prom_print(RELOC(" (translate failed)\n")); else phys = (unsigned long)prom_args.args[nargs+3]; } } #ifdef CONFIG_BOOTX_TEXT if (RELOC(prom_disp_node) != 0) setup_disp_fake_bi(RELOC(prom_disp_node)); #endif /* Use quiesce call to get OF to shut down any devices it's using */ prom_print(RELOC("Calling quiesce ...\n")); call_prom(RELOC("quiesce"), 0, 0); #ifdef CONFIG_BOOTX_TEXT btext_prepare_BAT(); #endif prom_print(RELOC("returning ")); prom_print_hex(phys); prom_print(RELOC(" from prom_init\n")); RELOC(prom_stdout) = 0; return phys; } void phys_call_rtas(int service, int nargs, int nret, ...) { va_list list; union { unsigned long words[16]; double align; } u; unsigned long offset = reloc_offset(); void (*rtas)(void *, unsigned long); int i; u.words[0] = service; u.words[1] = nargs; u.words[2] = nret; va_start(list, nret); for (i = 0; i < nargs; ++i) u.words[i+3] = va_arg(list, unsigned long); va_end(list); rtas = (void (*)(void *, unsigned long)) RELOC(rtas_entry); rtas(&u, RELOC(rtas_data)); } static int __init prom_set_color(ihandle ih, int i, int r, int g, int b) { struct prom_args prom_args; unsigned long offset = reloc_offset(); prom_args.service = RELOC("call-method"); prom_args.nargs = 6; prom_args.nret = 1; prom_args.args[0] = RELOC("color!"); prom_args.args[1] = ih; prom_args.args[2] = (void *) i; prom_args.args[3] = (void *) b; prom_args.args[4] = (void *) g; prom_args.args[5] = (void *) r; RELOC(prom)(&prom_args); return (int) prom_args.args[6]; } /* * If we have a display that we don't know how to drive, * we will want to try to execute OF's open method for it * later. However, OF will probably fall over if we do that * we've taken over the MMU. * So we check whether we will need to open the display, * and if so, open it now. */ static unsigned long __init check_display(unsigned long mem) { phandle node; ihandle ih; int i; unsigned long offset = reloc_offset(); char type[16], *path; static unsigned char default_colors[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0xaa, 0x00, 0xaa, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0xaa, 0x00, 0xaa, 0xaa, 0xaa, 0x00, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0x55, 0xff, 0x55, 0xff, 0x55, 0x55, 0xff, 0xff, 0xff, 0x55, 0x55, 0xff, 0x55, 0xff, 0xff, 0xff, 0x55, 0xff, 0xff, 0xff }; RELOC(prom_disp_node) = 0; for (node = 0; prom_next_node(&node); ) { type[0] = 0; call_prom(RELOC("getprop"), 4, 1, node, RELOC("device_type"), type, sizeof(type)); if (strcmp(type, RELOC("display")) != 0) continue; /* It seems OF doesn't null-terminate the path :-( */ path = (char *) mem; memset(path, 0, 256); if ((int) call_prom(RELOC("package-to-path"), 3, 1, node, path, 255) < 0) continue; /* * If this display is the device that OF is using for stdout, * move it to the front of the list. */ mem += strlen(path) + 1; i = RELOC(prom_num_displays)++; if (RELOC(of_stdout_device) != 0 && i > 0 && strcmp(PTRRELOC(RELOC(of_stdout_device)), path) == 0) { for (; i > 0; --i) { RELOC(prom_display_paths[i]) = RELOC(prom_display_paths[i-1]); RELOC(prom_display_nodes[i]) = RELOC(prom_display_nodes[i-1]); } } RELOC(prom_display_paths[i]) = PTRUNRELOC(path); RELOC(prom_display_nodes[i]) = node; if (i == 0) RELOC(prom_disp_node) = node; if (RELOC(prom_num_displays) >= FB_MAX) break; } try_again: /* * Open the first display and set its colormap. */ if (RELOC(prom_num_displays) > 0) { path = PTRRELOC(RELOC(prom_display_paths[0])); prom_print(RELOC("opening display ")); prom_print(path); ih = call_prom(RELOC("open"), 1, 1, path); if (ih == 0 || ih == (ihandle) -1) { prom_print(RELOC("... failed\n")); for (i=1; i 0) RELOC(prom_disp_node) = RELOC(prom_display_nodes[0]); else RELOC(prom_disp_node) = NULL; goto try_again; } else { prom_print(RELOC("... ok\n")); /* * Setup a usable color table when the appropriate * method is available. * Should update this to use set-colors. */ for (i = 0; i < 32; i++) if (prom_set_color(ih, i, RELOC(default_colors)[i*3], RELOC(default_colors)[i*3+1], RELOC(default_colors)[i*3+2]) != 0) break; #ifdef CONFIG_FB for (i = 0; i < LINUX_LOGO_COLORS; i++) if (prom_set_color(ih, i + 32, RELOC(linux_logo_red)[i], RELOC(linux_logo_green)[i], RELOC(linux_logo_blue)[i]) != 0) break; #endif /* CONFIG_FB */ } } return ALIGN(mem); } /* This function will enable the early boot text when doing OF booting. This * way, xmon output should work too */ #ifdef CONFIG_BOOTX_TEXT static void __init setup_disp_fake_bi(ihandle dp) { int width = 640, height = 480, depth = 8, pitch; unsigned address; unsigned long offset = reloc_offset(); struct pci_reg_property addrs[8]; int i, naddrs; char name[32]; char *getprop = RELOC("getprop"); prom_print(RELOC("Initializing fake screen: ")); memset(name, 0, sizeof(name)); call_prom(getprop, 4, 1, dp, RELOC("name"), name, sizeof(name)); name[sizeof(name)-1] = 0; prom_print(name); prom_print(RELOC("\n")); call_prom(getprop, 4, 1, dp, RELOC("width"), &width, sizeof(width)); call_prom(getprop, 4, 1, dp, RELOC("height"), &height, sizeof(height)); call_prom(getprop, 4, 1, dp, RELOC("depth"), &depth, sizeof(depth)); pitch = width * ((depth + 7) / 8); call_prom(getprop, 4, 1, dp, RELOC("linebytes"), &pitch, sizeof(pitch)); if (pitch == 1) pitch = 0x1000; /* for strange IBM display */ address = 0; call_prom(getprop, 4, 1, dp, RELOC("address"), &address, sizeof(address)); if (address == 0) { /* look for an assigned address with a size of >= 1MB */ naddrs = (int) call_prom(getprop, 4, 1, dp, RELOC("assigned-addresses"), addrs, sizeof(addrs)); naddrs /= sizeof(struct pci_reg_property); for (i = 0; i < naddrs; ++i) { if (addrs[i].size_lo >= (1 << 20)) { address = addrs[i].addr.a_lo; /* use the BE aperture if possible */ if (addrs[i].size_lo >= (16 << 20)) address += (8 << 20); break; } } if (address == 0) { prom_print(RELOC("Failed to get address\n")); return; } } /* kludge for valkyrie */ if (strcmp(name, RELOC("valkyrie")) == 0) address += 0x1000; btext_setup_display(width, height, depth, pitch, address); } #endif static int __init prom_next_node(phandle *nodep) { phandle node; unsigned long offset = reloc_offset(); if ((node = *nodep) != 0 && (*nodep = call_prom(RELOC("child"), 1, 1, node)) != 0) return 1; if ((*nodep = call_prom(RELOC("peer"), 1, 1, node)) != 0) return 1; for (;;) { if ((node = call_prom(RELOC("parent"), 1, 1, node)) == 0) return 0; if ((*nodep = call_prom(RELOC("peer"), 1, 1, node)) != 0) return 1; } } /* * Make a copy of the device tree from the PROM. */ static unsigned long __init copy_device_tree(unsigned long mem_start, unsigned long mem_end) { phandle root; unsigned long new_start; struct device_node **allnextp; unsigned long offset = reloc_offset(); root = call_prom(RELOC("peer"), 1, 1, (phandle)0); if (root == (phandle)0) { prom_print(RELOC("couldn't get device tree root\n")); prom_exit(); } allnextp = &RELOC(allnodes); mem_start = ALIGN(mem_start); new_start = inspect_node(root, 0, mem_start, mem_end, &allnextp); *allnextp = 0; return new_start; } static unsigned long __init inspect_node(phandle node, struct device_node *dad, unsigned long mem_start, unsigned long mem_end, struct device_node ***allnextpp) { int l; phandle child; struct device_node *np; struct property *pp, **prev_propp; char *prev_name, *namep; unsigned char *valp; unsigned long offset = reloc_offset(); np = (struct device_node *) mem_start; mem_start += sizeof(struct device_node); memset(np, 0, sizeof(*np)); np->node = node; **allnextpp = PTRUNRELOC(np); *allnextpp = &np->allnext; if (dad != 0) { np->parent = PTRUNRELOC(dad); /* we temporarily use the `next' field as `last_child'. */ if (dad->next == 0) dad->child = PTRUNRELOC(np); else dad->next->sibling = PTRUNRELOC(np); dad->next = np; } /* get and store all properties */ prev_propp = &np->properties; prev_name = RELOC(""); for (;;) { pp = (struct property *) mem_start; namep = (char *) (pp + 1); pp->name = PTRUNRELOC(namep); if ((int) call_prom(RELOC("nextprop"), 3, 1, node, prev_name, namep) <= 0) break; mem_start = ALIGN((unsigned long)namep + strlen(namep) + 1); prev_name = namep; valp = (unsigned char *) mem_start; pp->value = PTRUNRELOC(valp); pp->length = (int) call_prom(RELOC("getprop"), 4, 1, node, namep, valp, mem_end - mem_start); if (pp->length < 0) continue; #ifdef MAX_PROPERTY_LENGTH if (pp->length > MAX_PROPERTY_LENGTH) continue; /* ignore this property */ #endif mem_start = ALIGN(mem_start + pp->length); *prev_propp = PTRUNRELOC(pp); prev_propp = &pp->next; } if (np->node != NULL) { /* Add a "linux,phandle" property" */ pp = (struct property *) mem_start; *prev_propp = PTRUNRELOC(pp); prev_propp = &pp->next; namep = (char *) (pp + 1); pp->name = PTRUNRELOC(namep); strcpy(namep, RELOC("linux,phandle")); mem_start = ALIGN((unsigned long)namep + strlen(namep) + 1); pp->value = (unsigned char *) PTRUNRELOC(&np->node); pp->length = sizeof(np->node); } *prev_propp = NULL; /* get the node's full name */ l = (int) call_prom(RELOC("package-to-path"), 3, 1, node, (char *) mem_start, mem_end - mem_start); if (l >= 0) { np->full_name = PTRUNRELOC((char *) mem_start); *(char *)(mem_start + l) = 0; mem_start = ALIGN(mem_start + l + 1); } /* do all our children */ child = call_prom(RELOC("child"), 1, 1, node); while (child != (void *)0) { mem_start = inspect_node(child, np, mem_start, mem_end, allnextpp); child = call_prom(RELOC("peer"), 1, 1, child); } return mem_start; } /* * finish_device_tree is called once things are running normally * (i.e. with text and data mapped to the address they were linked at). * It traverses the device tree and fills in the name, type, * {n_}addrs and {n_}intrs fields of each node. */ void __init finish_device_tree(void) { unsigned long mem = (unsigned long) klimit; struct device_node *np; /* All newworld pmac machines and CHRPs now use the interrupt tree */ for (np = allnodes; np != NULL; np = np->allnext) { if (get_property(np, "interrupt-parent", 0)) { use_of_interrupt_tree = 1; break; } } if (_machine == _MACH_Pmac && use_of_interrupt_tree) pmac_newworld = 1; #ifdef CONFIG_BOOTX_TEXT if (boot_infos && pmac_newworld) { prom_print("WARNING ! BootX/miBoot booting is not supported on this machine\n"); prom_print(" You should use an Open Firmware bootloader\n"); } #endif /* CONFIG_BOOTX_TEXT */ if (use_of_interrupt_tree) { /* * We want to find out here how many interrupt-controller * nodes there are, and if we are booted from BootX, * we need a pointer to the first (and hopefully only) * such node. But we can't use find_devices here since * np->name has not been set yet. -- paulus */ int n = 0; char *name, *ic; int iclen; for (np = allnodes; np != NULL; np = np->allnext) { ic = get_property(np, "interrupt-controller", &iclen); name = get_property(np, "name", NULL); /* checking iclen makes sure we don't get a false match on /chosen.interrupt_controller */ if ((name != NULL && strcmp(name, "interrupt-controller") == 0) || (ic != NULL && iclen == 0)) { if (n == 0) dflt_interrupt_controller = np; ++n; } } num_interrupt_controllers = n; } mem = finish_node(allnodes, mem, NULL, 1, 1); dev_tree_size = mem - (unsigned long) allnodes; klimit = (char *) mem; } /* * early_get_property is used to access the device tree image prepared * by BootX very early on, before the pointers in it have been relocated. */ static void * __init early_get_property(unsigned long base, unsigned long node, char *prop) { struct device_node *np = (struct device_node *)(base + node); struct property *pp; for (pp = np->properties; pp != 0; pp = pp->next) { pp = (struct property *) (base + (unsigned long)pp); if (strcmp((char *)((unsigned long)pp->name + base), prop) == 0) { return (void *)((unsigned long)pp->value + base); } } return 0; } static unsigned long __init finish_node(struct device_node *np, unsigned long mem_start, interpret_func *ifunc, int naddrc, int nsizec) { struct device_node *child; int *ip; np->name = get_property(np, "name", 0); np->type = get_property(np, "device_type", 0); /* get the device addresses and interrupts */ if (ifunc != NULL) { mem_start = ifunc(np, mem_start, naddrc, nsizec); } if (use_of_interrupt_tree) mem_start = finish_node_interrupts(np, mem_start); /* Look for #address-cells and #size-cells properties. */ ip = (int *) get_property(np, "#address-cells", 0); if (ip != NULL) naddrc = *ip; ip = (int *) get_property(np, "#size-cells", 0); if (ip != NULL) nsizec = *ip; /* the f50 sets the name to 'display' and 'compatible' to what we * expect for the name -- Cort */ if (!strcmp(np->name, "display")) np->name = get_property(np, "compatible", 0); if (np->parent == NULL) ifunc = interpret_root_props; else if (np->type == 0) ifunc = NULL; else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci")) ifunc = interpret_pci_props; else if (!strcmp(np->type, "dbdma")) ifunc = interpret_dbdma_props; else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props) ifunc = interpret_macio_props; else if (!strcmp(np->type, "isa")) ifunc = interpret_isa_props; else if (!((ifunc == interpret_dbdma_props || ifunc == interpret_macio_props) && (!strcmp(np->type, "escc") || !strcmp(np->type, "media-bay")))) ifunc = NULL; /* if we were booted from BootX, convert the full name */ if (boot_infos && strncmp(np->full_name, "Devices:device-tree", 19) == 0) { if (np->full_name[19] == 0) { strcpy(np->full_name, "/"); } else if (np->full_name[19] == ':') { char *p = np->full_name + 19; np->full_name = p; for (; *p; ++p) if (*p == ':') *p = '/'; } } for (child = np->child; child != NULL; child = child->sibling) mem_start = finish_node(child, mem_start, ifunc, naddrc, nsizec); return mem_start; } /* * Find the interrupt parent of a node. */ static struct device_node * __init intr_parent(struct device_node *p) { phandle *parp; parp = (phandle *) get_property(p, "interrupt-parent", NULL); if (parp == NULL) return p->parent; p = find_phandle(*parp); if (p != NULL) return p; /* * On a powermac booted with BootX, we don't get to know the * phandles for any nodes, so find_phandle will return NULL. * Fortunately these machines only have one interrupt controller * so there isn't in fact any ambiguity. -- paulus */ if (num_interrupt_controllers == 1) p = dflt_interrupt_controller; return p; } /* * Find out the size of each entry of the interrupts property * for a node. */ static int __init prom_n_intr_cells(struct device_node *np) { struct device_node *p; unsigned int *icp; for (p = np; (p = intr_parent(p)) != NULL; ) { icp = (unsigned int *) get_property(p, "#interrupt-cells", NULL); if (icp != NULL) return *icp; if (get_property(p, "interrupt-controller", NULL) != NULL || get_property(p, "interrupt-map", NULL) != NULL) { printk("oops, node %s doesn't have #interrupt-cells\n", p->full_name); return 1; } } printk("prom_n_intr_cells failed for %s\n", np->full_name); return 1; } /* * Map an interrupt from a device up to the platform interrupt * descriptor. */ static int __init map_interrupt(unsigned int **irq, struct device_node **ictrler, struct device_node *np, unsigned int *ints, int nintrc) { struct device_node *p, *ipar; unsigned int *imap, *imask, *ip; int i, imaplen, match; int newintrc, newaddrc; unsigned int *reg; int naddrc; reg = (unsigned int *) get_property(np, "reg", NULL); naddrc = prom_n_addr_cells(np); p = intr_parent(np); while (p != NULL) { if (get_property(p, "interrupt-controller", NULL) != NULL) /* this node is an interrupt controller, stop here */ break; imap = (unsigned int *) get_property(p, "interrupt-map", &imaplen); if (imap == NULL) { p = intr_parent(p); continue; } imask = (unsigned int *) get_property(p, "interrupt-map-mask", NULL); if (imask == NULL) { printk("oops, %s has interrupt-map but no mask\n", p->full_name); return 0; } imaplen /= sizeof(unsigned int); match = 0; ipar = NULL; while (imaplen > 0 && !match) { /* check the child-interrupt field */ match = 1; for (i = 0; i < naddrc && match; ++i) match = ((reg[i] ^ imap[i]) & imask[i]) == 0; for (; i < naddrc + nintrc && match; ++i) match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0; imap += naddrc + nintrc; imaplen -= naddrc + nintrc; /* grab the interrupt parent */ ipar = find_phandle((phandle) *imap++); --imaplen; if (ipar == NULL && num_interrupt_controllers == 1) /* cope with BootX not giving us phandles */ ipar = dflt_interrupt_controller; if (ipar == NULL) { printk("oops, no int parent %x in map of %s\n", imap[-1], p->full_name); return 0; } /* find the parent's # addr and intr cells */ ip = (unsigned int *) get_property(ipar, "#interrupt-cells", NULL); if (ip == NULL) { printk("oops, no #interrupt-cells on %s\n", ipar->full_name); return 0; } newintrc = *ip; ip = (unsigned int *) get_property(ipar, "#address-cells", NULL); newaddrc = (ip == NULL)? 0: *ip; imap += newaddrc + newintrc; imaplen -= newaddrc + newintrc; } if (imaplen < 0) { printk("oops, error decoding int-map on %s, len=%d\n", p->full_name, imaplen); return 0; } if (!match) { printk("oops, no match in %s int-map for %s\n", p->full_name, np->full_name); return 0; } p = ipar; naddrc = newaddrc; nintrc = newintrc; ints = imap - nintrc; reg = ints - naddrc; } if (p == NULL) printk("hmmm, int tree for %s doesn't have ctrler\n", np->full_name); *irq = ints; *ictrler = p; return nintrc; } /* * New version of finish_node_interrupts. */ static unsigned long __init finish_node_interrupts(struct device_node *np, unsigned long mem_start) { unsigned int *ints; int intlen, intrcells; int i, j, n, offset; unsigned int *irq; struct device_node *ic; ints = (unsigned int *) get_property(np, "interrupts", &intlen); if (ints == NULL) return mem_start; intrcells = prom_n_intr_cells(np); intlen /= intrcells * sizeof(unsigned int); np->n_intrs = intlen; np->intrs = (struct interrupt_info *) mem_start; mem_start += intlen * sizeof(struct interrupt_info); for (i = 0; i < intlen; ++i) { np->intrs[i].line = 0; np->intrs[i].sense = 1; n = map_interrupt(&irq, &ic, np, ints, intrcells); if (n <= 0) continue; offset = 0; /* * On a CHRP we have an 8259 which is subordinate to * the openpic in the interrupt tree, but we want the * openpic's interrupt numbers offsetted, not the 8259's. * So we apply the offset if the controller is at the * root of the interrupt tree, i.e. has no interrupt-parent. * This doesn't cope with the general case of multiple * cascaded interrupt controllers, but then neither will * irq.c at the moment either. -- paulus */ if (num_interrupt_controllers > 1 && ic != NULL && get_property(ic, "interrupt-parent", NULL) == NULL) offset = 16; np->intrs[i].line = irq[0] + offset; if (n > 1) np->intrs[i].sense = irq[1]; if (n > 2) { printk("hmmm, got %d intr cells for %s:", n, np->full_name); for (j = 0; j < n; ++j) printk(" %d", irq[j]); printk("\n"); } ints += intrcells; } return mem_start; } /* * When BootX makes a copy of the device tree from the MacOS * Name Registry, it is in the format we use but all of the pointers * are offsets from the start of the tree. * This procedure updates the pointers. */ void __init relocate_nodes(void) { unsigned long base; struct device_node *np; struct property *pp; #define ADDBASE(x) (x = (x)? ((typeof (x))((unsigned long)(x) + base)): 0) base = (unsigned long) boot_infos + boot_infos->deviceTreeOffset; allnodes = (struct device_node *)(base + 4); for (np = allnodes; np != 0; np = np->allnext) { ADDBASE(np->full_name); ADDBASE(np->properties); ADDBASE(np->parent); ADDBASE(np->child); ADDBASE(np->sibling); ADDBASE(np->allnext); for (pp = np->properties; pp != 0; pp = pp->next) { ADDBASE(pp->name); ADDBASE(pp->value); ADDBASE(pp->next); } } } int prom_n_addr_cells(struct device_node* np) { int* ip; do { if (np->parent) np = np->parent; ip = (int *) get_property(np, "#address-cells", 0); if (ip != NULL) return *ip; } while (np->parent); /* No #address-cells property for the root node, default to 1 */ return 1; } int prom_n_size_cells(struct device_node* np) { int* ip; do { if (np->parent) np = np->parent; ip = (int *) get_property(np, "#size-cells", 0); if (ip != NULL) return *ip; } while (np->parent); /* No #size-cells property for the root node, default to 1 */ return 1; } static unsigned long __init interpret_pci_props(struct device_node *np, unsigned long mem_start, int naddrc, int nsizec) { struct address_range *adr; struct pci_reg_property *pci_addrs; int i, l, *ip; pci_addrs = (struct pci_reg_property *) get_property(np, "assigned-addresses", &l); if (pci_addrs != 0 && l >= sizeof(struct pci_reg_property)) { i = 0; adr = (struct address_range *) mem_start; while ((l -= sizeof(struct pci_reg_property)) >= 0) { /* XXX assumes PCI addresses mapped 1-1 to physical */ adr[i].space = pci_addrs[i].addr.a_hi; adr[i].address = pci_addrs[i].addr.a_lo; adr[i].size = pci_addrs[i].size_lo; ++i; } np->addrs = adr; np->n_addrs = i; mem_start += i * sizeof(struct address_range); } if (use_of_interrupt_tree) return mem_start; ip = (int *) get_property(np, "AAPL,interrupts", &l); if (ip == 0 && np->parent) ip = (int *) get_property(np->parent, "AAPL,interrupts", &l); if (ip == 0) ip = (int *) get_property(np, "interrupts", &l); if (ip != 0) { np->intrs = (struct interrupt_info *) mem_start; np->n_intrs = l / sizeof(int); mem_start += np->n_intrs * sizeof(struct interrupt_info); for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ip++; np->intrs[i].sense = 1; } } return mem_start; } static unsigned long __init interpret_dbdma_props(struct device_node *np, unsigned long mem_start, int naddrc, int nsizec) { struct reg_property *rp; struct address_range *adr; unsigned long base_address; int i, l, *ip; struct device_node *db; base_address = 0; for (db = np->parent; db != NULL; db = db->parent) { if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) { base_address = db->addrs[0].address; break; } } rp = (struct reg_property *) get_property(np, "reg", &l); if (rp != 0 && l >= sizeof(struct reg_property)) { i = 0; adr = (struct address_range *) mem_start; while ((l -= sizeof(struct reg_property)) >= 0) { adr[i].space = 0; adr[i].address = rp[i].address + base_address; adr[i].size = rp[i].size; ++i; } np->addrs = adr; np->n_addrs = i; mem_start += i * sizeof(struct address_range); } if (use_of_interrupt_tree) return mem_start; ip = (int *) get_property(np, "AAPL,interrupts", &l); if (ip == 0) ip = (int *) get_property(np, "interrupts", &l); if (ip != 0) { np->intrs = (struct interrupt_info *) mem_start; np->n_intrs = l / sizeof(int); mem_start += np->n_intrs * sizeof(struct interrupt_info); for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ip++; np->intrs[i].sense = 1; } } return mem_start; } static unsigned long __init interpret_macio_props(struct device_node *np, unsigned long mem_start, int naddrc, int nsizec) { struct reg_property *rp; struct address_range *adr; unsigned long base_address; int i, l, keylargo, *ip; struct device_node *db; base_address = 0; for (db = np->parent; db != NULL; db = db->parent) { if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) { base_address = db->addrs[0].address; keylargo = device_is_compatible(db, "Keylargo"); break; } } rp = (struct reg_property *) get_property(np, "reg", &l); if (rp != 0 && l >= sizeof(struct reg_property)) { i = 0; adr = (struct address_range *) mem_start; while ((l -= sizeof(struct reg_property)) >= 0) { adr[i].space = 0; adr[i].address = rp[i].address + base_address; adr[i].size = rp[i].size; ++i; } np->addrs = adr; np->n_addrs = i; mem_start += i * sizeof(struct address_range); } if (use_of_interrupt_tree) return mem_start; ip = (int *) get_property(np, "interrupts", &l); if (ip == 0) ip = (int *) get_property(np, "AAPL,interrupts", &l); if (ip != 0) { np->intrs = (struct interrupt_info *) mem_start; np->n_intrs = l / sizeof(int); for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ip++; np->intrs[i].sense = 1; } mem_start += np->n_intrs * sizeof(struct interrupt_info); } return mem_start; } static unsigned long __init interpret_isa_props(struct device_node *np, unsigned long mem_start, int naddrc, int nsizec) { struct isa_reg_property *rp; struct address_range *adr; int i, l, *ip; rp = (struct isa_reg_property *) get_property(np, "reg", &l); if (rp != 0 && l >= sizeof(struct isa_reg_property)) { i = 0; adr = (struct address_range *) mem_start; while ((l -= sizeof(struct reg_property)) >= 0) { adr[i].space = rp[i].space; adr[i].address = rp[i].address + (adr[i].space? 0: _ISA_MEM_BASE); adr[i].size = rp[i].size; ++i; } np->addrs = adr; np->n_addrs = i; mem_start += i * sizeof(struct address_range); } if (use_of_interrupt_tree) return mem_start; ip = (int *) get_property(np, "interrupts", &l); if (ip != 0) { np->intrs = (struct interrupt_info *) mem_start; np->n_intrs = l / (2 * sizeof(int)); mem_start += np->n_intrs * sizeof(struct interrupt_info); for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ip++; np->intrs[i].sense = *ip++; } } return mem_start; } static unsigned long __init interpret_root_props(struct device_node *np, unsigned long mem_start, int naddrc, int nsizec) { struct address_range *adr; int i, l, *ip; unsigned int *rp; int rpsize = (naddrc + nsizec) * sizeof(unsigned int); rp = (unsigned int *) get_property(np, "reg", &l); if (rp != 0 && l >= rpsize) { i = 0; adr = (struct address_range *) mem_start; while ((l -= rpsize) >= 0) { adr[i].space = (naddrc >= 2? rp[naddrc-2]: 0); adr[i].address = rp[naddrc - 1]; adr[i].size = rp[naddrc + nsizec - 1]; ++i; rp += naddrc + nsizec; } np->addrs = adr; np->n_addrs = i; mem_start += i * sizeof(struct address_range); } if (use_of_interrupt_tree) return mem_start; ip = (int *) get_property(np, "AAPL,interrupts", &l); if (ip == 0) ip = (int *) get_property(np, "interrupts", &l); if (ip != 0) { np->intrs = (struct interrupt_info *) mem_start; np->n_intrs = l / sizeof(int); mem_start += np->n_intrs * sizeof(struct interrupt_info); for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ip++; np->intrs[i].sense = 1; } } return mem_start; } /* * Work out the sense (active-low level / active-high edge) * of each interrupt from the device tree. */ void __init prom_get_irq_senses(unsigned char *senses, int off, int max) { struct device_node *np; int i, j; /* default to level-triggered */ memset(senses, 1, max - off); if (!use_of_interrupt_tree) return; for (np = allnodes; np != 0; np = np->allnext) { for (j = 0; j < np->n_intrs; j++) { i = np->intrs[j].line; if (i >= off && i < max) senses[i-off] = np->intrs[j].sense; } } } /* * Construct and return a list of the device_nodes with a given name. */ struct device_node * find_devices(const char *name) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { if (np->name != 0 && strcasecmp(np->name, name) == 0) { *prevp = np; prevp = &np->next; } } *prevp = 0; return head; } /* * Construct and return a list of the device_nodes with a given type. */ struct device_node * find_type_devices(const char *type) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { if (np->type != 0 && strcasecmp(np->type, type) == 0) { *prevp = np; prevp = &np->next; } } *prevp = 0; return head; } /* * Returns all nodes linked together */ struct device_node * __openfirmware find_all_nodes(void) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { *prevp = np; prevp = &np->next; } *prevp = 0; return head; } /* Checks if the given "compat" string matches one of the strings in * the device's "compatible" property */ int device_is_compatible(struct device_node *device, const char *compat) { const char* cp; int cplen, l; cp = (char *) get_property(device, "compatible", &cplen); if (cp == NULL) return 0; while (cplen > 0) { if (strncasecmp(cp, compat, strlen(compat)) == 0) return 1; l = strlen(cp) + 1; cp += l; cplen -= l; } return 0; } /* * Indicates whether the root node has a given value in its * compatible property. */ int machine_is_compatible(const char *compat) { struct device_node *root; root = find_path_device("/"); if (root == 0) return 0; return device_is_compatible(root, compat); } /* * Construct and return a list of the device_nodes with a given type * and compatible property. */ struct device_node * find_compatible_devices(const char *type, const char *compat) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { if (type != NULL && !(np->type != 0 && strcasecmp(np->type, type) == 0)) continue; if (device_is_compatible(np, compat)) { *prevp = np; prevp = &np->next; } } *prevp = 0; return head; } /* * Find the device_node with a given full_name. */ struct device_node * find_path_device(const char *path) { struct device_node *np; for (np = allnodes; np != 0; np = np->allnext) if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0) return np; return NULL; } /* * Find the device_node with a given phandle. */ static struct device_node * __init find_phandle(phandle ph) { struct device_node *np; for (np = allnodes; np != 0; np = np->allnext) if (np->node == ph) return np; return NULL; } /* * Find a property with a given name for a given node * and return the value. */ unsigned char * get_property(struct device_node *np, const char *name, int *lenp) { struct property *pp; for (pp = np->properties; pp != 0; pp = pp->next) if (pp->name != NULL && strcmp(pp->name, name) == 0) { if (lenp != 0) *lenp = pp->length; return pp->value; } return 0; } /* * Add a property to a node */ void __openfirmware prom_add_property(struct device_node* np, struct property* prop) { struct property **next = &np->properties; prop->next = NULL; while (*next) next = &(*next)->next; *next = prop; } #if 0 void __openfirmware print_properties(struct device_node *np) { struct property *pp; char *cp; int i, n; for (pp = np->properties; pp != 0; pp = pp->next) { printk(KERN_INFO "%s", pp->name); for (i = strlen(pp->name); i < 16; ++i) printk(" "); cp = (char *) pp->value; for (i = pp->length; i > 0; --i, ++cp) if ((i > 1 && (*cp < 0x20 || *cp > 0x7e)) || (i == 1 && *cp != 0)) break; if (i == 0 && pp->length > 1) { /* looks like a string */ printk(" %s\n", (char *) pp->value); } else { /* dump it in hex */ n = pp->length; if (n > 64) n = 64; if (pp->length % 4 == 0) { unsigned int *p = (unsigned int *) pp->value; n /= 4; for (i = 0; i < n; ++i) { if (i != 0 && (i % 4) == 0) printk("\n "); printk(" %08x", *p++); } } else { unsigned char *bp = pp->value; for (i = 0; i < n; ++i) { if (i != 0 && (i % 16) == 0) printk("\n "); printk(" %02x", *bp++); } } printk("\n"); if (pp->length > 64) printk(" ... (length = %d)\n", pp->length); } } } #endif static spinlock_t rtas_lock = SPIN_LOCK_UNLOCKED; /* this can be called after setup -- Cort */ int __openfirmware call_rtas(const char *service, int nargs, int nret, unsigned long *outputs, ...) { va_list list; int i; unsigned long s; struct device_node *rtas; int *tokp; union { unsigned long words[16]; double align; } u; rtas = find_devices("rtas"); if (rtas == NULL) return -1; tokp = (int *) get_property(rtas, service, NULL); if (tokp == NULL) { printk(KERN_ERR "No RTAS service called %s\n", service); return -1; } u.words[0] = *tokp; u.words[1] = nargs; u.words[2] = nret; va_start(list, outputs); for (i = 0; i < nargs; ++i) u.words[i+3] = va_arg(list, unsigned long); va_end(list); /* Shouldn't we enable kernel FP here ? enter_rtas will play * with MSR_FE0|MSR_FE1|MSR_FP so I assume rtas might use * floating points. If that's the case, then we need to make * sure any lazy FP context is backed up * --BenH */ spin_lock_irqsave(&rtas_lock, s); enter_rtas((void *)__pa(&u)); spin_unlock_irqrestore(&rtas_lock, s); if (nret > 1 && outputs != NULL) for (i = 0; i < nret-1; ++i) outputs[i] = u.words[i+nargs+4]; return u.words[nargs+3]; } void __init abort() { #ifdef CONFIG_XMON xmon(NULL); #endif for (;;) prom_exit(); }