/* * BK Id: %F% %I% %G% %U% %#% */ /* * This file contains the routines for handling the MMU on those * PowerPC implementations where the MMU substantially follows the * architecture specification. This includes the 6xx, 7xx, 7xxx, * 8260, and POWER3 implementations but excludes the 8xx and 4xx. * Although the iSeries hardware does comply with the architecture * specification, the need to work through the hypervisor makes * things sufficiently different that it is handled elsewhere. * -- paulus * * Derived from arch/ppc/mm/init.c: * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include "mmu_decl.h" #include "mem_pieces.h" PTE *Hash, *Hash_end; unsigned long Hash_size, Hash_mask; unsigned long _SDR1; union ubat { /* BAT register values to be loaded */ BAT bat; #ifdef CONFIG_PPC64BRIDGE u64 word[2]; #else u32 word[2]; #endif } BATS[4][2]; /* 4 pairs of IBAT, DBAT */ struct batrange { /* stores address ranges mapped by BATs */ unsigned long start; unsigned long limit; unsigned long phys; } bat_addrs[4]; /* * Return PA for this VA if it is mapped by a BAT, or 0 */ unsigned long v_mapped_by_bats(unsigned long va) { int b; for (b = 0; b < 4; ++b) if (va >= bat_addrs[b].start && va < bat_addrs[b].limit) return bat_addrs[b].phys + (va - bat_addrs[b].start); return 0; } /* * Return VA for a given PA or 0 if not mapped */ unsigned long p_mapped_by_bats(unsigned long pa) { int b; for (b = 0; b < 4; ++b) if (pa >= bat_addrs[b].phys && pa < (bat_addrs[b].limit-bat_addrs[b].start) +bat_addrs[b].phys) return bat_addrs[b].start+(pa-bat_addrs[b].phys); return 0; } void __init bat_mapin_ram(void) { unsigned long tot, bl, done; unsigned long max_size = (256<<20); unsigned long align; /* Set up BAT2 and if necessary BAT3 to cover RAM. */ /* Make sure we don't map a block larger than the smallest alignment of the physical address. */ /* alignment of ram_phys_base */ align = ~(ram_phys_base-1) & ram_phys_base; /* set BAT block size to MIN(max_size, align) */ if (align && align < max_size) max_size = align; tot = total_lowmem; for (bl = 128<<10; bl < max_size; bl <<= 1) { if (bl * 2 > tot) break; } setbat(2, KERNELBASE, ram_phys_base, bl, _PAGE_KERNEL); done = (unsigned long)bat_addrs[2].limit - KERNELBASE + 1; if ((done < tot) && !bat_addrs[3].limit) { /* use BAT3 to cover a bit more */ tot -= done; for (bl = 128<<10; bl < max_size; bl <<= 1) if (bl * 2 > tot) break; setbat(3, KERNELBASE+done, ram_phys_base+done, bl, _PAGE_KERNEL); } } /* * Set up one of the I/D BAT (block address translation) register pairs. * The parameters are not checked; in particular size must be a power * of 2 between 128k and 256M. */ void __init setbat(int index, unsigned long virt, unsigned long phys, unsigned int size, int flags) { unsigned int bl; int wimgxpp; union ubat *bat = BATS[index]; #ifdef CONFIG_SMP if ((flags & _PAGE_NO_CACHE) == 0) flags |= _PAGE_COHERENT; #endif bl = (size >> 17) - 1; if (PVR_VER(mfspr(PVR)) != 1) { /* 603, 604, etc. */ /* Do DBAT first */ wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE | _PAGE_COHERENT | _PAGE_GUARDED); wimgxpp |= (flags & _PAGE_RW)? BPP_RW: BPP_RX; bat[1].word[0] = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */ bat[1].word[1] = phys | wimgxpp; #ifndef CONFIG_KGDB /* want user access for breakpoints */ if (flags & _PAGE_USER) #endif bat[1].bat.batu.vp = 1; if (flags & _PAGE_GUARDED) { /* G bit must be zero in IBATs */ bat[0].word[0] = bat[0].word[1] = 0; } else { /* make IBAT same as DBAT */ bat[0] = bat[1]; } } else { /* 601 cpu */ if (bl > BL_8M) bl = BL_8M; wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE | _PAGE_COHERENT); wimgxpp |= (flags & _PAGE_RW)? ((flags & _PAGE_USER)? PP_RWRW: PP_RWXX): PP_RXRX; bat->word[0] = virt | wimgxpp | 4; /* Ks=0, Ku=1 */ bat->word[1] = phys | bl | 0x40; /* V=1 */ } bat_addrs[index].start = virt; bat_addrs[index].limit = virt + ((bl + 1) << 17) - 1; bat_addrs[index].phys = phys; } /* * Initialize the hash table and patch the instructions in hashtable.S. */ void __init MMU_init_hw(void) { int Hash_bits, mb, mb2; unsigned int hmask; extern unsigned int hash_page_patch_A[]; extern unsigned int hash_page_patch_B[], hash_page_patch_C[]; extern unsigned int hash_page[]; extern unsigned int flush_hash_patch_A[], flush_hash_patch_B[]; #ifdef CONFIG_PPC64BRIDGE /* The hash table has already been allocated and initialized in prom.c */ Hash_mask = (Hash_size >> 7) - 1; hmask = Hash_mask >> 9; Hash_bits = __ilog2(Hash_size) - 7; mb = 25 - Hash_bits; if (Hash_bits > 16) Hash_bits = 16; mb2 = 25 - Hash_bits; /* Remove the hash table from the available memory */ if (Hash) reserve_phys_mem(__pa(Hash), Hash_size); #else /* CONFIG_PPC64BRIDGE */ unsigned int h; if ((cur_cpu_spec[0]->cpu_features & CPU_FTR_HPTE_TABLE) == 0) return; if ( ppc_md.progress ) ppc_md.progress("hash:enter", 0x105); /* * Allow 64k of hash table for every 16MB of memory, * up to a maximum of 2MB. */ for (h = 64<<10; h < total_memory / 256 && h < (2<<20); h *= 2) ; Hash_size = h; Hash_mask = (h >> 6) - 1; hmask = Hash_mask >> 10; Hash_bits = __ilog2(h) - 6; mb = 26 - Hash_bits; if (Hash_bits > 16) Hash_bits = 16; mb2 = 26 - Hash_bits; if ( ppc_md.progress ) ppc_md.progress("hash:find piece", 0x322); /* Find some memory for the hash table. */ if ( Hash_size ) { Hash = mem_pieces_find(Hash_size, Hash_size); cacheable_memzero(Hash, Hash_size); _SDR1 = __pa(Hash) | (Hash_mask >> 10); } else Hash = 0; #endif /* CONFIG_PPC64BRIDGE */ printk("Total memory = %ldMB; using %ldkB for hash table (at %p)\n", total_memory >> 20, Hash_size >> 10, Hash); if (Hash_size) { if ( ppc_md.progress ) ppc_md.progress("hash:patch", 0x345); Hash_end = (PTE *) ((unsigned long)Hash + Hash_size); /* * Patch up the instructions in hashtable.S:create_hpte */ hash_page_patch_A[0] = (hash_page_patch_A[0] & ~0xffff) | ((unsigned int)(Hash) >> 16); hash_page_patch_A[1] = (hash_page_patch_A[1] & ~0x7c0) | (mb << 6); hash_page_patch_A[2] = (hash_page_patch_A[2] & ~0x7c0) | (mb2 << 6); hash_page_patch_B[0] = (hash_page_patch_B[0] & ~0xffff) | hmask; hash_page_patch_C[0] = (hash_page_patch_C[0] & ~0xffff) | hmask; /* * Ensure that the locations we've patched have been written * out from the data cache and invalidated in the instruction * cache, on those machines with split caches. */ flush_icache_range((unsigned long) &hash_page_patch_A[0], (unsigned long) &hash_page_patch_C[1]); /* * Patch up the instructions in hashtable.S:flush_hash_page */ flush_hash_patch_A[0] = (flush_hash_patch_A[0] & ~0xffff) | ((unsigned int)(Hash) >> 16); flush_hash_patch_A[1] = (flush_hash_patch_A[1] & ~0x7c0) | (mb << 6); flush_hash_patch_A[2] = (flush_hash_patch_A[2] & ~0x7c0) | (mb2 << 6); flush_hash_patch_B[0] = (flush_hash_patch_B[0] & ~0xffff) | hmask; flush_icache_range((unsigned long) &flush_hash_patch_A[0], (unsigned long) &flush_hash_patch_B[1]); } else { Hash_end = 0; /* * Put a blr (procedure return) instruction at the * start of hash_page, since we can still get DSI * exceptions on a 603. */ hash_page[0] = 0x4e800020; flush_icache_range((unsigned long) &hash_page[0], (unsigned long) &hash_page[1]); } if ( ppc_md.progress ) ppc_md.progress("hash:done", 0x205); } /* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a PTE in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux PTE. */ void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) { struct mm_struct *mm; pmd_t *pmd; pte_t *ptep; static int nopreload; if (Hash == 0 || nopreload) return; /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ if (!pte_young(pte)) return; mm = (address < TASK_SIZE)? vma->vm_mm: &init_mm; pmd = pmd_offset(pgd_offset(mm, address), address); if (!pmd_none(*pmd)) { ptep = pte_offset(pmd, address); add_hash_page(mm->context, address, ptep); } }