/* * arch/s390/mm/fault.c * * S390 version * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Hartmut Penner (hp@de.ibm.com) * Ulrich Weigand (uweigand@de.ibm.com) * * Derived from "arch/i386/mm/fault.c" * Copyright (C) 1995 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SYSCTL extern int sysctl_userprocess_debug; #endif extern void die(const char *,struct pt_regs *,long); static void force_sigsegv(struct task_struct *tsk, int code, void *address); extern spinlock_t timerlist_lock; /* * Unlock any spinlocks which will prevent us from getting the * message out (timerlist_lock is acquired through the * console unblank code) */ void bust_spinlocks(int yes) { spin_lock_init(&timerlist_lock); if (yes) { oops_in_progress = 1; } else { int loglevel_save = console_loglevel; oops_in_progress = 0; console_unblank(); /* * OK, the message is on the console. Now we call printk() * without oops_in_progress set so that printk will give klogd * a poke. Hold onto your hats... */ console_loglevel = 15; printk(" "); console_loglevel = loglevel_save; } } /* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. * * error_code: * ****0004 Protection -> Write-Protection (suprression) * ****0010 Segment translation -> Not present (nullification) * ****0011 Page translation -> Not present (nullification) */ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code) { struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct * vma; unsigned long address; unsigned long fixup; int write; int si_code = SEGV_MAPERR; int kernel_address = 0; tsk = current; mm = tsk->mm; /* * Check for low-address protection. This needs to be treated * as a special case because the translation exception code * field is not guaranteed to contain valid data in this case. */ if ((error_code & 0xff) == 4 && !(S390_lowcore.trans_exc_code & 4)) { /* Low-address protection hit in kernel mode means NULL pointer write access in kernel mode. */ if (!(regs->psw.mask & PSW_PROBLEM_STATE)) { address = 0; kernel_address = 1; goto no_context; } /* Low-address protection hit in user mode 'cannot happen'. */ die ("Low-address protection", regs, error_code); do_exit(SIGKILL); } /* * get the failing address * more specific the segment and page table portion of * the address */ address = S390_lowcore.trans_exc_code&0x7ffff000; /* * Check which address space the address belongs to */ switch (S390_lowcore.trans_exc_code & 3) { case 0: /* Primary Segment Table Descriptor */ kernel_address = 1; goto no_context; case 1: /* STD determined via access register */ if (S390_lowcore.exc_access_id == 0) { kernel_address = 1; goto no_context; } if (regs && S390_lowcore.exc_access_id < NUM_ACRS) { if (regs->acrs[S390_lowcore.exc_access_id] == 0) { kernel_address = 1; goto no_context; } if (regs->acrs[S390_lowcore.exc_access_id] == 1) { /* user space address */ break; } } die("page fault via unknown access register", regs, error_code); do_exit(SIGKILL); break; case 2: /* Secondary Segment Table Descriptor */ case 3: /* Home Segment Table Descriptor */ /* user space address */ break; } /* * Check whether we have a user MM in the first place. */ if (in_interrupt() || !mm || !(regs->psw.mask & _PSW_IO_MASK_BIT)) goto no_context; /* * When we get here, the fault happened in the current * task's user address space, so we can switch on the * interrupts again and then search the VMAs */ __sti(); down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: write = 0; si_code = SEGV_ACCERR; switch (error_code & 0xFF) { case 0x04: /* write, present*/ write = 1; break; case 0x10: /* not present*/ case 0x11: /* not present*/ if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) goto bad_area; break; default: printk("code should be 4, 10 or 11 (%lX) \n",error_code&0xFF); goto bad_area; } survive: /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ switch (handle_mm_fault(mm, vma, address, write)) { case 1: tsk->min_flt++; break; case 2: tsk->maj_flt++; break; case 0: goto do_sigbus; default: goto out_of_memory; } up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); /* User mode accesses just cause a SIGSEGV */ if (regs->psw.mask & PSW_PROBLEM_STATE) { tsk->thread.prot_addr = address; tsk->thread.trap_no = error_code; #ifndef CONFIG_SYSCTL #ifdef CONFIG_PROCESS_DEBUG printk("User process fault: interruption code 0x%lX\n",error_code); printk("failing address: %lX\n",address); show_regs(regs); #endif #else if (sysctl_userprocess_debug) { printk("User process fault: interruption code 0x%lX\n", error_code); printk("failing address: %lX\n", address); show_regs(regs); } #endif force_sigsegv(tsk, si_code, (void *)address); return; } no_context: /* Are we prepared to handle this kernel fault? */ if ((fixup = search_exception_table(regs->psw.addr)) != 0) { regs->psw.addr = fixup; return; } /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ if (kernel_address) printk(KERN_ALERT "Unable to handle kernel pointer dereference" " at virtual kernel address %08lx\n", address); else printk(KERN_ALERT "Unable to handle kernel paging request" " at virtual user address %08lx\n", address); die("Oops", regs, error_code); do_exit(SIGKILL); /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (tsk->pid == 1) { tsk->policy |= SCHED_YIELD; schedule(); down_read(&mm->mmap_sem); goto survive; } printk("VM: killing process %s\n", tsk->comm); if (regs->psw.mask & PSW_PROBLEM_STATE) do_exit(SIGKILL); goto no_context; do_sigbus: up_read(&mm->mmap_sem); /* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ tsk->thread.prot_addr = address; tsk->thread.trap_no = error_code; force_sig(SIGBUS, tsk); /* Kernel mode? Handle exceptions or die */ if (!(regs->psw.mask & PSW_PROBLEM_STATE)) goto no_context; } /* * Send SIGSEGV to task. This is an external routine * to keep the stack usage of do_page_fault small. */ static void force_sigsegv(struct task_struct *tsk, int code, void *address) { struct siginfo si; si.si_signo = SIGSEGV; si.si_code = code; si.si_addr = address; force_sig_info(SIGSEGV, &si, tsk); } typedef struct _pseudo_wait_t { struct _pseudo_wait_t *next; wait_queue_head_t queue; unsigned long address; int resolved; } pseudo_wait_t; static pseudo_wait_t *pseudo_lock_queue = NULL; static spinlock_t pseudo_wait_spinlock; /* spinlock to protect lock queue */ /* * This routine handles 'pagex' pseudo page faults. */ asmlinkage void do_pseudo_page_fault(struct pt_regs *regs, unsigned long error_code) { pseudo_wait_t wait_struct; pseudo_wait_t *ptr, *last, *next; unsigned long address; int kernel_address; /* * get the failing address * more specific the segment and page table portion of * the address */ address = S390_lowcore.trans_exc_code & 0xfffff000; if (address & 0x80000000) { /* high bit set -> a page has been swapped in by VM */ address &= 0x7fffffff; spin_lock(&pseudo_wait_spinlock); last = NULL; ptr = pseudo_lock_queue; while (ptr != NULL) { next = ptr->next; if (address == ptr->address) { /* * This is one of the processes waiting * for the page. Unchain from the queue. * There can be more than one process * waiting for the same page. VM presents * an initial and a completion interrupt for * every process that tries to access a * page swapped out by VM. */ if (last == NULL) pseudo_lock_queue = next; else last->next = next; /* now wake up the process */ ptr->resolved = 1; wake_up(&ptr->queue); } else last = ptr; ptr = next; } spin_unlock(&pseudo_wait_spinlock); } else { /* Pseudo page faults in kernel mode is a bad idea */ if (!(regs->psw.mask & PSW_PROBLEM_STATE)) { /* * VM presents pseudo page faults if the interrupted * state was not disabled for interrupts. So we can * get pseudo page fault interrupts while running * in kernel mode. We simply access the page here * while we are running disabled. VM will then swap * in the page synchronously. */ kernel_address = 0; switch (S390_lowcore.trans_exc_code & 3) { case 0: /* Primary Segment Table Descriptor */ kernel_address = 1; break; case 1: /* STD determined via access register */ if (S390_lowcore.exc_access_id == 0 || regs->acrs[S390_lowcore.exc_access_id]==0) kernel_address = 1; break; case 2: /* Secondary Segment Table Descriptor */ case 3: /* Home Segment Table Descriptor */ break; } if (kernel_address) /* dereference a virtual kernel address */ __asm__ __volatile__ ( " ic 0,0(%0)" : : "a" (address) : "0"); else /* dereference a virtual user address */ __asm__ __volatile__ ( " la 2,0(%0)\n" " sacf 512\n" " ic 2,0(2)\n" "0:sacf 0\n" ".section __ex_table,\"a\"\n" " .align 4\n" " .long 0b,0b\n" ".previous" : : "a" (address) : "2" ); return; } /* initialize and add element to pseudo_lock_queue */ init_waitqueue_head (&wait_struct.queue); wait_struct.address = address; wait_struct.resolved = 0; spin_lock(&pseudo_wait_spinlock); wait_struct.next = pseudo_lock_queue; pseudo_lock_queue = &wait_struct; spin_unlock(&pseudo_wait_spinlock); /* go to sleep */ wait_event(wait_struct.queue, wait_struct.resolved); } } #ifdef CONFIG_PFAULT /* * 'pfault' pseudo page faults routines. */ static int pfault_disable = 0; static int __init nopfault(char *str) { pfault_disable = 1; return 1; } __setup("nopfault", nopfault); typedef struct { __u16 refdiagc; __u16 reffcode; __u16 refdwlen; __u16 refversn; __u64 refgaddr; __u64 refselmk; __u64 refcmpmk; __u64 reserved; } __attribute__ ((packed)) pfault_refbk_t; int pfault_init(void) { pfault_refbk_t refbk = { 0x258, 0, 5, 2, __LC_KERNEL_STACK, 1ULL << 48, 1ULL << 48, 0ULL }; int rc; if (pfault_disable) return -1; __asm__ __volatile__( " diag %1,%0,0x258\n" "0: j 2f\n" "1: la %0,8\n" "2:\n" ".section __ex_table,\"a\"\n" " .align 4\n" " .long 0b,1b\n" ".previous" : "=d" (rc) : "a" (&refbk) : "cc" ); __ctl_set_bit(0, 9); return rc; } void pfault_fini(void) { pfault_refbk_t refbk = { 0x258, 1, 5, 2, 0ULL, 0ULL, 0ULL, 0ULL }; if (pfault_disable) return; __ctl_clear_bit(0,9); __asm__ __volatile__( " diag %0,0,0x258\n" "0:\n" ".section __ex_table,\"a\"\n" " .align 4\n" " .long 0b,0b\n" ".previous" : : "a" (&refbk) : "cc" ); } asmlinkage void pfault_interrupt(struct pt_regs *regs, __u16 error_code) { struct task_struct *tsk; wait_queue_head_t queue; wait_queue_head_t *qp; __u16 subcode; /* * Get the external interruption subcode & pfault * initial/completion signal bit. VM stores this * in the 'cpu address' field associated with the * external interrupt. */ subcode = S390_lowcore.cpu_addr; if ((subcode & 0xff00) != 0x0200) return; /* * Get the token (= address of kernel stack of affected task). */ tsk = (struct task_struct *) (*((unsigned long *) __LC_PFAULT_INTPARM) - THREAD_SIZE); /* * We got all needed information from the lowcore and can * now safely switch on interrupts. */ if (regs->psw.mask & PSW_PROBLEM_STATE) __sti(); if (subcode & 0x0080) { /* signal bit is set -> a page has been swapped in by VM */ qp = (wait_queue_head_t *) xchg(&tsk->thread.pfault_wait, -1); if (qp != NULL) { /* Initial interrupt was faster than the completion * interrupt. pfault_wait is valid. Set pfault_wait * back to zero and wake up the process. This can * safely be done because the task is still sleeping * and can't procude new pfaults. */ tsk->thread.pfault_wait = 0ULL; wake_up(qp); } } else { /* signal bit not set -> a real page is missing. */ init_waitqueue_head (&queue); qp = (wait_queue_head_t *) xchg(&tsk->thread.pfault_wait, (addr_t) &queue); if (qp != NULL) { /* Completion interrupt was faster than the initial * interrupt (swapped in a -1 for pfault_wait). Set * pfault_wait back to zero and exit. This can be * done safely because tsk is running in kernel * mode and can't produce new pfaults. */ tsk->thread.pfault_wait = 0ULL; } /* go to sleep */ wait_event(queue, tsk->thread.pfault_wait == 0ULL); } } #endif