/* $Id: cache-sh4.c,v 1.16 2001/09/10 11:06:35 dwmw2 Exp $ * * linux/arch/sh/mm/cache.c * * Copyright (C) 1999, 2000 Niibe Yutaka * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CCR 0xff00001c /* Address of Cache Control Register */ #define CCR_CACHE_OCE 0x0001 /* Operand Cache Enable */ #define CCR_CACHE_WT 0x0002 /* Write-Through (for P0,U0,P3) (else writeback)*/ #define CCR_CACHE_CB 0x0004 /* Copy-Back (for P1) (else writethrough) */ #define CCR_CACHE_OCI 0x0008 /* OC Invalidate */ #define CCR_CACHE_ORA 0x0020 /* OC RAM Mode */ #define CCR_CACHE_OIX 0x0080 /* OC Index Enable */ #define CCR_CACHE_ICE 0x0100 /* Instruction Cache Enable */ #define CCR_CACHE_ICI 0x0800 /* IC Invalidate */ #define CCR_CACHE_IIX 0x8000 /* IC Index Enable */ /* Default CCR setup: 8k+16k-byte cache,P1-wb,enable */ #define CCR_CACHE_VAL (CCR_CACHE_ICE|CCR_CACHE_CB|CCR_CACHE_OCE) #define CCR_CACHE_INIT (CCR_CACHE_VAL|CCR_CACHE_OCI|CCR_CACHE_ICI) #define CCR_CACHE_ENABLE (CCR_CACHE_OCE|CCR_CACHE_ICE) #define CACHE_IC_ADDRESS_ARRAY 0xf0000000 #define CACHE_OC_ADDRESS_ARRAY 0xf4000000 #define CACHE_VALID 1 #define CACHE_UPDATED 2 #define CACHE_OC_WAY_SHIFT 13 #define CACHE_IC_WAY_SHIFT 13 #define CACHE_OC_ENTRY_SHIFT 5 #define CACHE_IC_ENTRY_SHIFT 5 #define CACHE_OC_ENTRY_MASK 0x3fe0 #define CACHE_OC_ENTRY_PHYS_MASK 0x0fe0 #define CACHE_IC_ENTRY_MASK 0x1fe0 #define CACHE_IC_NUM_ENTRIES 256 #define CACHE_OC_NUM_ENTRIES 512 static void __init detect_cpu_and_cache_system(void) { #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 cpu_data->type = CPU_ST40STB1; #elif defined(CONFIG_CPU_SUBTYPE_SH7750) || defined(CONFIG_CPU_SUBTYPE_SH7751) cpu_data->type = CPU_SH7750; #else #error Unknown SH4 CPU type #endif } void __init cache_init(void) { unsigned long ccr; detect_cpu_and_cache_system(); jump_to_P2(); ccr = ctrl_inl(CCR); if (ccr & CCR_CACHE_ENABLE) { /* * XXX: Should check RA here. * If RA was 1, we only need to flush the half of the caches. */ unsigned long addr, data; for (addr = CACHE_OC_ADDRESS_ARRAY; addr < (CACHE_OC_ADDRESS_ARRAY+ (CACHE_OC_NUM_ENTRIES << CACHE_OC_ENTRY_SHIFT)); addr += (1 << CACHE_OC_ENTRY_SHIFT)) { data = ctrl_inl(addr); if ((data & (CACHE_UPDATED|CACHE_VALID)) == (CACHE_UPDATED|CACHE_VALID)) ctrl_outl(data & ~CACHE_UPDATED, addr); } } ctrl_outl(CCR_CACHE_INIT, CCR); back_to_P1(); } /* * SH-4 has virtually indexed and physically tagged cache. */ static struct semaphore p3map_sem[4]; void __init p3_cache_init(void) { /* In ioremap.c */ extern int remap_area_pages(unsigned long address, unsigned long phys_addr, unsigned long size, unsigned long flags); if (remap_area_pages(P3SEG, 0, PAGE_SIZE*4, _PAGE_CACHABLE)) panic("p3_cachie_init failed."); sema_init (&p3map_sem[0], 1); sema_init (&p3map_sem[1], 1); sema_init (&p3map_sem[2], 1); sema_init (&p3map_sem[3], 1); } /* * Write back the dirty D-caches, but not invalidate them. * * START: Virtual Address (U0, P1, or P3) * SIZE: Size of the region. */ void __flush_wback_region(void *start, int size) { unsigned long v; unsigned long begin, end; begin = (unsigned long)start & ~(L1_CACHE_BYTES-1); end = ((unsigned long)start + size + L1_CACHE_BYTES-1) & ~(L1_CACHE_BYTES-1); for (v = begin; v < end; v+=L1_CACHE_BYTES) { asm volatile("ocbwb %0" : /* no output */ : "m" (__m(v))); } } /* * Write back the dirty D-caches and invalidate them. * * START: Virtual Address (U0, P1, or P3) * SIZE: Size of the region. */ void __flush_purge_region(void *start, int size) { unsigned long v; unsigned long begin, end; begin = (unsigned long)start & ~(L1_CACHE_BYTES-1); end = ((unsigned long)start + size + L1_CACHE_BYTES-1) & ~(L1_CACHE_BYTES-1); for (v = begin; v < end; v+=L1_CACHE_BYTES) { asm volatile("ocbp %0" : /* no output */ : "m" (__m(v))); } } /* * No write back please */ void __flush_invalidate_region(void *start, int size) { unsigned long v; unsigned long begin, end; begin = (unsigned long)start & ~(L1_CACHE_BYTES-1); end = ((unsigned long)start + size + L1_CACHE_BYTES-1) & ~(L1_CACHE_BYTES-1); for (v = begin; v < end; v+=L1_CACHE_BYTES) { asm volatile("ocbi %0" : /* no output */ : "m" (__m(v))); } } /* * Write back the range of D-cache, and purge the I-cache. * * Called from kernel/module.c:sys_init_module and routine for a.out format. */ void flush_icache_range(unsigned long start, unsigned long end) { flush_cache_all(); } /* * Write back the D-cache and purge the I-cache for signal trampoline. */ void flush_cache_sigtramp(unsigned long addr) { unsigned long v, index; unsigned long flags; v = addr & ~(L1_CACHE_BYTES-1); asm volatile("ocbwb %0" : /* no output */ : "m" (__m(v))); index = CACHE_IC_ADDRESS_ARRAY| (v&CACHE_IC_ENTRY_MASK); save_and_cli(flags); jump_to_P2(); ctrl_outl(0, index); /* Clear out Valid-bit */ back_to_P1(); restore_flags(flags); } /* * Writeback&Invalidate the D-cache of the page */ static void __flush_dcache_page(unsigned long phys) { unsigned long addr, data; unsigned long flags; phys |= CACHE_VALID; save_and_cli(flags); jump_to_P2(); /* Loop all the D-cache */ for (addr = CACHE_OC_ADDRESS_ARRAY; addr < (CACHE_OC_ADDRESS_ARRAY +(CACHE_OC_NUM_ENTRIES<< CACHE_OC_ENTRY_SHIFT)); addr += (1<flags)) __flush_dcache_page(PHYSADDR(page_address(page))); } void flush_cache_all(void) { extern unsigned long empty_zero_page[1024]; unsigned long flags; unsigned long addr; save_and_cli(flags); /* Prefetch the data to write back D-cache */ for (addr = (unsigned long)empty_zero_page; addr < (unsigned long)empty_zero_page + 1024*16; addr += L1_CACHE_BYTES) asm volatile("pref @%0"::"r" (addr)); jump_to_P2(); /* Flush D-cache/I-cache */ ctrl_outl(CCR_CACHE_INIT, CCR); back_to_P1(); restore_flags(flags); } void flush_cache_mm(struct mm_struct *mm) { /* Is there any good way? */ /* XXX: possibly call flush_cache_range for each vm area */ flush_cache_all(); } /* * Write back and invalidate D-caches. * * START, END: Virtual Address (U0 address) * * NOTE: We need to flush the _physical_ page entry. * Flushing the cache lines for U0 only isn't enough. * We need to flush for P1 too, which may contain aliases. */ void flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end) { /* * We could call flush_cache_page for the pages of these range, * but it's not efficient (scan the caches all the time...). * * We can't use A-bit magic, as there's the case we don't have * valid entry on TLB. */ flush_cache_all(); } /* * Write back and invalidate I/D-caches for the page. * * ADDR: Virtual Address (U0 address) */ void flush_cache_page(struct vm_area_struct *vma, unsigned long address) { pgd_t *dir; pmd_t *pmd; pte_t *pte; pte_t entry; unsigned long phys, addr, data; unsigned long flags; dir = pgd_offset(vma->vm_mm, address); pmd = pmd_offset(dir, address); if (pmd_none(*pmd) || pmd_bad(*pmd)) return; pte = pte_offset(pmd, address); entry = *pte; if (pte_none(entry) || !pte_present(entry)) return; phys = pte_val(entry)&PTE_PHYS_MASK; phys |= CACHE_VALID; save_and_cli(flags); jump_to_P2(); /* We only need to flush D-cache when we have alias */ if ((address^phys) & CACHE_ALIAS) { /* Loop 4K of the D-cache */ for (addr = CACHE_OC_ADDRESS_ARRAY | (address & CACHE_ALIAS); addr < (CACHE_OC_ADDRESS_ARRAY + (address & CACHE_ALIAS) +(CACHE_OC_NUM_ENTRIES/4<vm_flags & VM_EXEC) /* Loop 4K of the I-cache */ for (addr = CACHE_IC_ADDRESS_ARRAY|(address&0x1000); addr < ((CACHE_IC_ADDRESS_ARRAY|(address&0x1000)) +(CACHE_IC_NUM_ENTRIES/2<flags); if (((address ^ (unsigned long)to) & CACHE_ALIAS) == 0) clear_page(to); else { pgprot_t pgprot = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_CACHABLE | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_HW_SHARED | _PAGE_FLAGS_HARD); unsigned long phys_addr = PHYSADDR(to); unsigned long p3_addr = P3SEG + (address & CACHE_ALIAS); pgd_t *dir = pgd_offset_k(p3_addr); pmd_t *pmd = pmd_offset(dir, p3_addr); pte_t *pte = pte_offset(pmd, p3_addr); pte_t entry; unsigned long flags; entry = mk_pte_phys(phys_addr, pgprot); down(&p3map_sem[(address & CACHE_ALIAS)>>12]); set_pte(pte, entry); save_and_cli(flags); __flush_tlb_page(get_asid(), p3_addr); restore_flags(flags); update_mmu_cache(NULL, p3_addr, entry); __clear_user_page((void *)p3_addr, to); pte_clear(pte); up(&p3map_sem[(address & CACHE_ALIAS)>>12]); } } /* * copy_user_page * @to: P1 address * @from: P1 address * @address: U0 address to be mapped */ void copy_user_page(void *to, void *from, unsigned long address) { struct page *page = virt_to_page(to); __set_bit(PG_mapped, &page->flags); if (((address ^ (unsigned long)to) & CACHE_ALIAS) == 0) copy_page(to, from); else { pgprot_t pgprot = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_CACHABLE | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_HW_SHARED | _PAGE_FLAGS_HARD); unsigned long phys_addr = PHYSADDR(to); unsigned long p3_addr = P3SEG + (address & CACHE_ALIAS); pgd_t *dir = pgd_offset_k(p3_addr); pmd_t *pmd = pmd_offset(dir, p3_addr); pte_t *pte = pte_offset(pmd, p3_addr); pte_t entry; unsigned long flags; entry = mk_pte_phys(phys_addr, pgprot); down(&p3map_sem[(address & CACHE_ALIAS)>>12]); set_pte(pte, entry); save_and_cli(flags); __flush_tlb_page(get_asid(), p3_addr); restore_flags(flags); update_mmu_cache(NULL, p3_addr, entry); __copy_user_page((void *)p3_addr, from, to); pte_clear(pte); up(&p3map_sem[(address & CACHE_ALIAS)>>12]); } }