/* $Id: traps.c,v 1.82 2001/11/18 00:12:56 davem Exp $ * arch/sparc64/kernel/traps.c * * Copyright (C) 1995,1997 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com) */ /* * I like traps on v9, :)))) */ #include #include /* for jiffies */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_KMOD #include #endif void bad_trap (struct pt_regs *regs, long lvl) { char buffer[32]; siginfo_t info; if (lvl < 0x100) { sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl); die_if_kernel(buffer, regs); } lvl -= 0x100; if (regs->tstate & TSTATE_PRIV) { sprintf(buffer, "Kernel bad sw trap %lx", lvl); die_if_kernel (buffer, regs); } if ((current->thread.flags & SPARC_FLAG_32BIT) != 0) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGILL; info.si_errno = 0; info.si_code = ILL_ILLTRP; info.si_addr = (void *)regs->tpc; info.si_trapno = lvl; force_sig_info(SIGILL, &info, current); } void bad_trap_tl1 (struct pt_regs *regs, long lvl) { char buffer[24]; sprintf (buffer, "Bad trap %lx at tl>0", lvl); die_if_kernel (buffer, regs); } #ifdef CONFIG_DEBUG_BUGVERBOSE void do_BUG(const char *file, int line) { bust_spinlocks(1); printk("kernel BUG at %s:%d!\n", file, line); } #endif void instruction_access_exception (struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) { siginfo_t info; if (regs->tstate & TSTATE_PRIV) { printk("instruction_access_exception: SFSR[%016lx] SFAR[%016lx], going.\n", sfsr, sfar); die_if_kernel("Iax", regs); } if ((current->thread.flags & SPARC_FLAG_32BIT) != 0) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = SEGV_MAPERR; info.si_addr = (void *)regs->tpc; info.si_trapno = 0; force_sig_info(SIGSEGV, &info, current); } void data_access_exception (struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) { siginfo_t info; if (regs->tstate & TSTATE_PRIV) { /* Test if this comes from uaccess places. */ unsigned long fixup, g2; g2 = regs->u_regs[UREG_G2]; if ((fixup = search_exception_table (regs->tpc, &g2))) { /* Ouch, somebody is trying ugly VM hole tricks on us... */ #ifdef DEBUG_EXCEPTIONS printk("Exception: PC<%016lx> faddr\n", regs->tpc); printk("EX_TABLE: insn<%016lx> fixup<%016lx> " "g2<%016lx>\n", regs->tpc, fixup, g2); #endif regs->tpc = fixup; regs->tnpc = regs->tpc + 4; regs->u_regs[UREG_G2] = g2; return; } /* Shit... */ printk("data_access_exception: SFSR[%016lx] SFAR[%016lx], going.\n", sfsr, sfar); die_if_kernel("Dax", regs); } info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = SEGV_MAPERR; info.si_addr = (void *)sfar; info.si_trapno = 0; force_sig_info(SIGSEGV, &info, current); } #ifdef CONFIG_PCI /* This is really pathetic... */ extern volatile int pci_poke_in_progress; extern volatile int pci_poke_cpu; extern volatile int pci_poke_faulted; #endif /* When access exceptions happen, we must do this. */ static void clean_and_reenable_l1_caches(void) { unsigned long va; if (tlb_type == spitfire) { /* Clean 'em. */ for (va = 0; va < (PAGE_SIZE << 1); va += 32) { spitfire_put_icache_tag(va, 0x0); spitfire_put_dcache_tag(va, 0x0); } /* Re-enable in LSU. */ __asm__ __volatile__("flush %%g6\n\t" "membar #Sync\n\t" "stxa %0, [%%g0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC | LSU_CONTROL_IM | LSU_CONTROL_DM), "i" (ASI_LSU_CONTROL) : "memory"); } else if (tlb_type == cheetah) { /* Flush D-cache */ for (va = 0; va < (1 << 16); va += (1 << 5)) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (va), "i" (ASI_DCACHE_TAG)); } } } void do_iae(struct pt_regs *regs) { siginfo_t info; clean_and_reenable_l1_caches(); info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_OBJERR; info.si_addr = (void *)0; info.si_trapno = 0; force_sig_info(SIGBUS, &info, current); } void do_dae(struct pt_regs *regs) { #ifdef CONFIG_PCI if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { clean_and_reenable_l1_caches(); pci_poke_faulted = 1; /* Why the fuck did they have to change this? */ if (tlb_type == cheetah) regs->tpc += 4; regs->tnpc = regs->tpc + 4; return; } #endif do_iae(regs); } static char ecc_syndrome_table[] = { 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49, 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a, 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48, 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c, 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48, 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29, 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b, 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48, 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48, 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e, 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b, 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36, 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48, 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48, 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b, 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32, 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48, 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b, 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48, 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49, 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48, 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48, 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b, 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a }; /* cee_trap in entry.S encodes AFSR/UDBH/UDBL error status * in the following format. The AFAR is left as is, with * reserved bits cleared, and is a raw 40-bit physical * address. */ #define CE_STATUS_UDBH_UE (1UL << (43 + 9)) #define CE_STATUS_UDBH_CE (1UL << (43 + 8)) #define CE_STATUS_UDBH_ESYNDR (0xffUL << 43) #define CE_STATUS_UDBH_SHIFT 43 #define CE_STATUS_UDBL_UE (1UL << (33 + 9)) #define CE_STATUS_UDBL_CE (1UL << (33 + 8)) #define CE_STATUS_UDBL_ESYNDR (0xffUL << 33) #define CE_STATUS_UDBL_SHIFT 33 #define CE_STATUS_AFSR_MASK (0x1ffffffffUL) #define CE_STATUS_AFSR_ME (1UL << 32) #define CE_STATUS_AFSR_PRIV (1UL << 31) #define CE_STATUS_AFSR_ISAP (1UL << 30) #define CE_STATUS_AFSR_ETP (1UL << 29) #define CE_STATUS_AFSR_IVUE (1UL << 28) #define CE_STATUS_AFSR_TO (1UL << 27) #define CE_STATUS_AFSR_BERR (1UL << 26) #define CE_STATUS_AFSR_LDP (1UL << 25) #define CE_STATUS_AFSR_CP (1UL << 24) #define CE_STATUS_AFSR_WP (1UL << 23) #define CE_STATUS_AFSR_EDP (1UL << 22) #define CE_STATUS_AFSR_UE (1UL << 21) #define CE_STATUS_AFSR_CE (1UL << 20) #define CE_STATUS_AFSR_ETS (0xfUL << 16) #define CE_STATUS_AFSR_ETS_SHIFT 16 #define CE_STATUS_AFSR_PSYND (0xffffUL << 0) #define CE_STATUS_AFSR_PSYND_SHIFT 0 /* Layout of Ecache TAG Parity Syndrome of AFSR */ #define AFSR_ETSYNDROME_7_0 0x1UL /* E$-tag bus bits <7:0> */ #define AFSR_ETSYNDROME_15_8 0x2UL /* E$-tag bus bits <15:8> */ #define AFSR_ETSYNDROME_21_16 0x4UL /* E$-tag bus bits <21:16> */ #define AFSR_ETSYNDROME_24_22 0x8UL /* E$-tag bus bits <24:22> */ static char *syndrome_unknown = ""; asmlinkage void cee_log(unsigned long ce_status, unsigned long afar, struct pt_regs *regs) { char memmod_str[64]; char *p; unsigned short scode, udb_reg; printk(KERN_WARNING "CPU[%d]: Correctable ECC Error " "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx]\n", smp_processor_id(), (ce_status & CE_STATUS_AFSR_MASK), afar, ((ce_status >> CE_STATUS_UDBL_SHIFT) & 0x3ffUL), ((ce_status >> CE_STATUS_UDBH_SHIFT) & 0x3ffUL)); udb_reg = ((ce_status >> CE_STATUS_UDBL_SHIFT) & 0x3ffUL); if (udb_reg & (1 << 8)) { scode = ecc_syndrome_table[udb_reg & 0xff]; if (prom_getunumber(scode, afar, memmod_str, sizeof(memmod_str)) == -1) p = syndrome_unknown; else p = memmod_str; printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] " "Memory Module \"%s\"\n", smp_processor_id(), scode, p); } udb_reg = ((ce_status >> CE_STATUS_UDBH_SHIFT) & 0x3ffUL); if (udb_reg & (1 << 8)) { scode = ecc_syndrome_table[udb_reg & 0xff]; if (prom_getunumber(scode, afar, memmod_str, sizeof(memmod_str)) == -1) p = syndrome_unknown; else p = memmod_str; printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] " "Memory Module \"%s\"\n", smp_processor_id(), scode, p); } } /* Cheetah error trap handling. */ static unsigned long ecache_flush_physbase; static unsigned long ecache_flush_linesize; static unsigned long ecache_flush_size; /* WARNING: The error trap handlers in assembly know the precise * layout of the following structure. * * C-level handlers below use this information to log the error * and then determine how to recover (if possible). */ struct cheetah_err_info { /*0x00*/u64 afsr; /*0x08*/u64 afar; /* D-cache state */ /*0x10*/u64 dcache_data[4]; /* The actual data */ /*0x30*/u64 dcache_index; /* D-cache index */ /*0x38*/u64 dcache_tag; /* D-cache tag/valid */ /*0x40*/u64 dcache_utag; /* D-cache microtag */ /*0x48*/u64 dcache_stag; /* D-cache snooptag */ /* I-cache state */ /*0x50*/u64 icache_data[8]; /* The actual insns + predecode */ /*0x90*/u64 icache_index; /* I-cache index */ /*0x98*/u64 icache_tag; /* I-cache phys tag */ /*0xa0*/u64 icache_utag; /* I-cache microtag */ /*0xa8*/u64 icache_stag; /* I-cache snooptag */ /*0xb0*/u64 icache_upper; /* I-cache upper-tag */ /*0xb8*/u64 icache_lower; /* I-cache lower-tag */ /* E-cache state */ /*0xc0*/u64 ecache_data[4]; /* 32 bytes from staging registers */ /*0xe0*/u64 ecache_index; /* E-cache index */ /*0xe8*/u64 ecache_tag; /* E-cache tag/state */ /*0xf0*/u64 __pad[32 - 30]; }; #define CHAFSR_INVALID ((u64)-1L) /* This is allocated at boot time based upon the largest hardware * cpu ID in the system. We allocate two entries per cpu, one for * TL==0 logging and one for TL >= 1 logging. */ struct cheetah_err_info *cheetah_error_log; static __inline__ struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr) { struct cheetah_err_info *p; int cpu = smp_processor_id(); if (!cheetah_error_log) return NULL; p = cheetah_error_log + (cpu * 2); if ((afsr & CHAFSR_TL1) != 0UL) p++; return p; } extern unsigned int tl0_fecc[], tl1_fecc[]; extern unsigned int tl0_cee[], tl1_cee[]; extern unsigned int tl0_iae[], tl1_iae[]; extern unsigned int tl0_dae[], tl1_dae[]; extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[]; extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[]; extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[]; void cheetah_ecache_flush_init(void) { unsigned long largest_size, smallest_linesize, order; char type[16]; int node, highest_cpu, i; /* Scan all cpu device tree nodes, note two values: * 1) largest E-cache size * 2) smallest E-cache line size */ largest_size = 0UL; smallest_linesize = ~0UL; node = prom_getchild(prom_root_node); while ((node = prom_getsibling(node)) != 0) { prom_getstring(node, "device_type", type, sizeof(type)); if (!strcmp(type, "cpu")) { unsigned long val; val = prom_getintdefault(node, "ecache-size", (2 * 1024 * 1024)); if (val > largest_size) largest_size = val; val = prom_getintdefault(node, "ecache-line-size", 64); if (val < smallest_linesize) smallest_linesize = val; } } if (largest_size == 0UL || smallest_linesize == ~0UL) { prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache " "parameters.\n"); prom_halt(); } ecache_flush_size = (2 * largest_size); ecache_flush_linesize = smallest_linesize; /* Discover a physically contiguous chunk of physical * memory in 'sp_banks' of size ecache_flush_size calculated * above. Store the physical base of this area at * ecache_flush_physbase. */ for (node = 0; ; node++) { if (sp_banks[node].num_bytes == 0) break; if (sp_banks[node].num_bytes >= ecache_flush_size) { ecache_flush_physbase = sp_banks[node].base_addr; break; } } /* Note: Zero would be a valid value of ecache_flush_physbase so * don't use that as the success test. :-) */ if (sp_banks[node].num_bytes == 0) { prom_printf("cheetah_ecache_flush_init: Cannot find %d byte " "contiguous physical memory.\n", ecache_flush_size); prom_halt(); } /* Now allocate error trap reporting scoreboard. */ highest_cpu = 0; #ifdef CONFIG_SMP for (i = 0; i < NR_CPUS; i++) { if ((1UL << i) & cpu_present_map) highest_cpu = i; } #endif highest_cpu++; node = highest_cpu * (2 * sizeof(struct cheetah_err_info)); for (order = 0; order < MAX_ORDER; order++) { if ((PAGE_SIZE << order) >= node) break; } cheetah_error_log = (struct cheetah_err_info *) __get_free_pages(GFP_KERNEL, order); if (!cheetah_error_log) { prom_printf("cheetah_ecache_flush_init: Failed to allocate " "error logging scoreboard (%d bytes).\n", node); prom_halt(); } memset(cheetah_error_log, 0, PAGE_SIZE << order); /* Mark all AFSRs as invalid so that the trap handler will * log new new information there. */ for (i = 0; i < 2 * highest_cpu; i++) cheetah_error_log[i].afsr = CHAFSR_INVALID; /* Now patch trap tables. */ memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4)); memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4)); memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4)); memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4)); memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4)); memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4)); memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4)); memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4)); flushi(PAGE_OFFSET); } static void cheetah_flush_ecache(void) { unsigned long flush_base = ecache_flush_physbase; unsigned long flush_linesize = ecache_flush_linesize; unsigned long flush_size = ecache_flush_size; __asm__ __volatile__("1: subcc %0, %4, %0\n\t" " bne,pt %%xcc, 1b\n\t" " ldxa [%2 + %0] %3, %%g0\n\t" : "=&r" (flush_size) : "0" (flush_size), "r" (flush_base), "i" (ASI_PHYS_USE_EC), "r" (flush_linesize)); } static void cheetah_flush_ecache_line(unsigned long physaddr) { unsigned long alias; physaddr &= ~(8UL - 1UL); physaddr = (ecache_flush_physbase + (physaddr & ((ecache_flush_size>>1UL) - 1UL))); alias = physaddr + (ecache_flush_size >> 1UL); __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t" "ldxa [%1] %2, %%g0\n\t" "membar #Sync" : /* no outputs */ : "r" (physaddr), "r" (alias), "i" (ASI_PHYS_USE_EC)); } /* Unfortunately, the diagnostic access to the I-cache tags we need to * use to clear the thing interferes with I-cache coherency transactions. * * So we must only flush the I-cache when it is disabled. */ static void cheetah_flush_icache(void) { unsigned long dcu_save, i; /* Save current DCU, disable I-cache. */ __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" "or %0, %2, %%g1\n\t" "stxa %%g1, [%%g0] %1\n\t" "membar #Sync" : "=r" (dcu_save) : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) : "g1"); /* Clear the valid bits in all the tags. */ for (i = 0; i < (1 << 16); i += (1 << 5)) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (i | (2 << 3)), "i" (ASI_IC_TAG)); } /* Restore DCU register */ __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG)); } static void cheetah_flush_dcache(void) { unsigned long i; for (i = 0; i < (1 << 16); i += (1 << 5)) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (i), "i" (ASI_DCACHE_TAG)); } } /* Conversion tables used to frob Cheetah AFSR syndrome values into * something palatable to the memory controller driver get_unumber * routine. */ #define MT0 137 #define MT1 138 #define MT2 139 #define NONE 254 #define MTC0 140 #define MTC1 141 #define MTC2 142 #define MTC3 143 #define C0 128 #define C1 129 #define C2 130 #define C3 131 #define C4 132 #define C5 133 #define C6 134 #define C7 135 #define C8 136 #define M2 144 #define M3 145 #define M4 146 #define M 147 static unsigned char cheetah_ecc_syntab[] = { /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M, /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16, /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10, /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M, /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6, /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4, /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4, /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3, /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5, /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M, /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2, /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3, /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M, /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3, /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M, /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M, /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4, /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M, /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2, /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M, /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4, /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3, /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3, /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2, /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4, /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M, /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3, /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M, /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3, /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M, /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M, /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M }; static unsigned char cheetah_mtag_syntab[] = { NONE, MTC0, MTC1, NONE, MTC2, NONE, NONE, MT0, MTC3, NONE, NONE, MT1, NONE, MT2, NONE, NONE }; /* This table is ordered in priority of errors and matches the * AFAR overwrite policy as well. */ static struct { unsigned long mask; char *name; } cheetah_error_table[] = { { CHAFSR_PERR, "System interface protocol error" }, { CHAFSR_IERR, "Internal processor error" }, { CHAFSR_ISAP, "System request parity error on incoming addresss" }, { CHAFSR_UCU, "Uncorrectable E-cache ECC error for ifetch/data" }, { CHAFSR_UCC, "SW Correctable E-cache ECC error for ifetch/data" }, { CHAFSR_UE, "Uncorrectable system bus data ECC error for read" }, { CHAFSR_EDU, "Uncorrectable E-cache ECC error for stmerge/blkld" }, { CHAFSR_EMU, "Uncorrectable system bus MTAG error" }, { CHAFSR_WDU, "Uncorrectable E-cache ECC error for writeback" }, { CHAFSR_CPU, "Uncorrectable ECC error for copyout" }, { CHAFSR_CE, "HW corrected system bus data ECC error for read" }, { CHAFSR_EDC, "HW corrected E-cache ECC error for stmerge/blkld" }, { CHAFSR_EMC, "HW corrected system bus MTAG ECC error" }, { CHAFSR_WDC, "HW corrected E-cache ECC error for writeback" }, { CHAFSR_CPC, "HW corrected ECC error for copyout" }, { CHAFSR_TO, "Unmapped error from system bus" }, { CHAFSR_BERR, "Bus error response from system bus" }, /* These two do not update the AFAR. */ { CHAFSR_IVC, "HW corrected system bus data ECC error for ivec read" }, { CHAFSR_IVU, "Uncorrectable system bus data ECC error for ivec read" }, { 0, NULL } }; /* Return the highest priority error conditon mentioned. */ static __inline__ unsigned long cheetah_get_hipri(unsigned long afsr) { unsigned long tmp = 0; int i; for (i = 0; cheetah_error_table[i].mask; i++) { if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL) return tmp; } return tmp; } static char *cheetah_get_string(unsigned long bit) { int i; for (i = 0; cheetah_error_table[i].mask; i++) { if ((bit & cheetah_error_table[i].mask) != 0UL) return cheetah_error_table[i].name; } return "???"; } extern int chmc_getunumber(int, unsigned long, char *, int); static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info, unsigned long afsr, unsigned long afar, int recoverable) { unsigned long hipri; char unum[256]; printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), afsr, afar, (afsr & CHAFSR_TL1) ? 1 : 0); printk("%s" "ERROR(%d): TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT, (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT, (afsr & CHAFSR_ME) ? ", Multiple Errors" : "", (afsr & CHAFSR_PRIV) ? ", Privileged" : ""); hipri = cheetah_get_hipri(afsr); printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), hipri, cheetah_get_string(hipri)); /* Try to get unumber if relevant. */ #define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \ CHAFSR_CPC | CHAFSR_CPU | \ CHAFSR_UE | CHAFSR_CE | \ CHAFSR_EDC | CHAFSR_EDU | \ CHAFSR_UCC | CHAFSR_UCU | \ CHAFSR_WDU | CHAFSR_WDC) #define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU) if (afsr & ESYND_ERRORS) { int syndrome; int ret; syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT; syndrome = cheetah_ecc_syntab[syndrome]; ret = chmc_getunumber(syndrome, afar, unum, sizeof(unum)); if (ret != -1) printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), unum); } else if (afsr & MSYND_ERRORS) { int syndrome; int ret; syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT; syndrome = cheetah_mtag_syntab[syndrome]; ret = chmc_getunumber(syndrome, afar, unum, sizeof(unum)); if (ret != -1) printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), unum); } /* Now dump the cache snapshots. */ printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016lx] utag[%016lx] stag[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (int) info->dcache_index, info->dcache_tag, info->dcache_utag, info->dcache_stag); printk("%s" "ERROR(%d): D-cache data0[%016lx] data1[%016lx] data2[%016lx] data3[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->dcache_data[0], info->dcache_data[1], info->dcache_data[2], info->dcache_data[3]); printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016lx] utag[%016lx] stag[%016lx] " "u[%016lx] l[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (int) info->icache_index, info->icache_tag, info->icache_utag, info->icache_stag, info->icache_upper, info->icache_lower); printk("%s" "ERROR(%d): I-cache INSN0[%016lx] INSN1[%016lx] INSN2[%016lx] INSN3[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->icache_data[0], info->icache_data[1], info->icache_data[2], info->icache_data[3]); printk("%s" "ERROR(%d): I-cache INSN4[%016lx] INSN5[%016lx] INSN6[%016lx] INSN7[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->icache_data[4], info->icache_data[5], info->icache_data[6], info->icache_data[7]); printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (int) info->ecache_index, info->ecache_tag); printk("%s" "ERROR(%d): E-cache data0[%016lx] data1[%016lx] data2[%016lx] data3[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->ecache_data[0], info->ecache_data[1], info->ecache_data[2], info->ecache_data[3]); afsr = (afsr & ~hipri) & CHAFSR_ERRORS; while (afsr != 0UL) { unsigned long bit = cheetah_get_hipri(afsr); printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n", (recoverable ? KERN_WARNING : KERN_CRIT), bit, cheetah_get_string(bit)); afsr &= ~bit; } if (!recoverable) printk(KERN_CRIT "ERROR: This condition is not recoverable.\n"); } static int cheetah_recheck_errors(struct cheetah_err_info *logp) { unsigned long afsr, afar; int ret = 0; __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" : "=r" (afsr) : "i" (ASI_AFSR)); if ((afsr & CHAFSR_ERRORS) != 0) { if (logp != NULL) { __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" : "=r" (afar) : "i" (ASI_AFAR)); logp->afsr = afsr; logp->afar = afar; } ret = 1; } __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync\n\t" : : "r" (afsr), "i" (ASI_AFSR)); return ret; } void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) { struct cheetah_err_info local_snapshot, *p; int recoverable; /* Flush E-cache */ cheetah_flush_ecache(); p = cheetah_get_error_log(afsr); if (!p) { prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n", afsr, afar); prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); prom_halt(); } /* Grab snapshot of logged error. */ memcpy(&local_snapshot, p, sizeof(local_snapshot)); /* If the current trap snapshot does not match what the * trap handler passed along into our args, big trouble. * In such a case, mark the local copy as invalid. * * Else, it matches and we mark the afsr in the non-local * copy as invalid so we may log new error traps there. */ if (p->afsr != afsr || p->afar != afar) local_snapshot.afsr = CHAFSR_INVALID; else p->afsr = CHAFSR_INVALID; cheetah_flush_icache(); cheetah_flush_dcache(); /* Re-enable I-cache/D-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_DC | DCU_IC) : "g1"); /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) : "g1"); /* Decide if we can continue after handling this trap and * logging the error. */ recoverable = 1; if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) recoverable = 0; /* Re-check AFSR/AFAR. What we are looking for here is whether a new * error was logged while we had error reporting traps disabled. */ if (cheetah_recheck_errors(&local_snapshot)) { unsigned long new_afsr = local_snapshot.afsr; /* If we got a new asynchronous error, die... */ if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | CHAFSR_WDU | CHAFSR_CPU | CHAFSR_IVU | CHAFSR_UE | CHAFSR_BERR | CHAFSR_TO)) recoverable = 0; } /* Log errors. */ cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); if (!recoverable) panic("Irrecoverable Fast-ECC error trap.\n"); /* Flush E-cache to kick the error trap handlers out. */ cheetah_flush_ecache(); } /* Try to fix a correctable error by pushing the line out from * the E-cache. Recheck error reporting registers to see if the * problem is intermittent. */ static int cheetah_fix_ce(unsigned long physaddr) { unsigned long orig_estate; unsigned long alias1, alias2; int ret; /* Make sure correctable error traps are disabled. */ __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t" "andn %0, %1, %%g1\n\t" "stxa %%g1, [%%g0] %2\n\t" "membar #Sync" : "=&r" (orig_estate) : "i" (ESTATE_ERROR_CEEN), "i" (ASI_ESTATE_ERROR_EN) : "g1"); /* We calculate alias addresses that will force the * cache line in question out of the E-cache. Then * we bring it back in with an atomic instruction so * that we get it in some modified/exclusive state, * then we displace it again to try and get proper ECC * pushed back into the system. */ physaddr &= ~(8UL - 1UL); alias1 = (ecache_flush_physbase + (physaddr & ((ecache_flush_size >> 1) - 1))); alias2 = alias1 + (ecache_flush_size >> 1); __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t" "ldxa [%1] %3, %%g0\n\t" "casxa [%2] %3, %%g0, %%g0\n\t" "membar #StoreLoad | #StoreStore\n\t" "ldxa [%0] %3, %%g0\n\t" "ldxa [%1] %3, %%g0\n\t" "membar #Sync" : /* no outputs */ : "r" (alias1), "r" (alias2), "r" (physaddr), "i" (ASI_PHYS_USE_EC)); /* Did that trigger another error? */ if (cheetah_recheck_errors(NULL)) { /* Try one more time. */ __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t" "membar #Sync" : : "r" (physaddr), "i" (ASI_PHYS_USE_EC)); if (cheetah_recheck_errors(NULL)) ret = 2; else ret = 1; } else { /* No new error, intermittent problem. */ ret = 0; } /* Restore error enables. */ __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync" : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN)); return ret; } /* Return non-zero if PADDR is a valid physical memory address. */ static int cheetah_check_main_memory(unsigned long paddr) { int i; for (i = 0; ; i++) { if (sp_banks[i].num_bytes == 0) break; if (paddr >= sp_banks[i].base_addr && paddr < (sp_banks[i].base_addr + sp_banks[i].num_bytes)) return 1; } return 0; } void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) { struct cheetah_err_info local_snapshot, *p; int recoverable, is_memory; p = cheetah_get_error_log(afsr); if (!p) { prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n", afsr, afar); prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); prom_halt(); } /* Grab snapshot of logged error. */ memcpy(&local_snapshot, p, sizeof(local_snapshot)); /* If the current trap snapshot does not match what the * trap handler passed along into our args, big trouble. * In such a case, mark the local copy as invalid. * * Else, it matches and we mark the afsr in the non-local * copy as invalid so we may log new error traps there. */ if (p->afsr != afsr || p->afar != afar) local_snapshot.afsr = CHAFSR_INVALID; else p->afsr = CHAFSR_INVALID; is_memory = cheetah_check_main_memory(afar); if (is_memory && (afsr & CHAFSR_CE) != 0UL) { /* XXX Might want to log the results of this operation * XXX somewhere... -DaveM */ cheetah_fix_ce(afar); } { int flush_all, flush_line; flush_all = flush_line = 0; if ((afsr & CHAFSR_EDC) != 0UL) { if ((afsr & CHAFSR_ERRORS) == CHAFSR_EDC) flush_line = 1; else flush_all = 1; } else if ((afsr & CHAFSR_CPC) != 0UL) { if ((afsr & CHAFSR_ERRORS) == CHAFSR_CPC) flush_line = 1; else flush_all = 1; } /* Trap handler only disabled I-cache, flush it. */ cheetah_flush_icache(); /* Re-enable I-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) : "g1"); if (flush_all) cheetah_flush_ecache(); else if (flush_line) cheetah_flush_ecache_line(afar); } /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_CEEN) : "g1"); /* Decide if we can continue after handling this trap and * logging the error. */ recoverable = 1; if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) recoverable = 0; /* Re-check AFSR/AFAR */ (void) cheetah_recheck_errors(&local_snapshot); /* Log errors. */ cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); if (!recoverable) panic("Irrecoverable Correctable-ECC error trap.\n"); } void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) { struct cheetah_err_info local_snapshot, *p; int recoverable, is_memory; #ifdef CONFIG_PCI /* Check for the special PCI poke sequence. */ if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { cheetah_flush_icache(); cheetah_flush_dcache(); /* Re-enable I-cache/D-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_DC | DCU_IC) : "g1"); /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) : "g1"); (void) cheetah_recheck_errors(NULL); pci_poke_faulted = 1; regs->tpc += 4; regs->tnpc = regs->tpc + 4; return; } #endif p = cheetah_get_error_log(afsr); if (!p) { prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n", afsr, afar); prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); prom_halt(); } /* Grab snapshot of logged error. */ memcpy(&local_snapshot, p, sizeof(local_snapshot)); /* If the current trap snapshot does not match what the * trap handler passed along into our args, big trouble. * In such a case, mark the local copy as invalid. * * Else, it matches and we mark the afsr in the non-local * copy as invalid so we may log new error traps there. */ if (p->afsr != afsr || p->afar != afar) local_snapshot.afsr = CHAFSR_INVALID; else p->afsr = CHAFSR_INVALID; is_memory = cheetah_check_main_memory(afar); { int flush_all, flush_line; flush_all = flush_line = 0; if ((afsr & CHAFSR_EDU) != 0UL) { if ((afsr & CHAFSR_ERRORS) == CHAFSR_EDU) flush_line = 1; else flush_all = 1; } else if ((afsr & CHAFSR_BERR) != 0UL) { if ((afsr & CHAFSR_ERRORS) == CHAFSR_BERR) flush_line = 1; else flush_all = 1; } cheetah_flush_icache(); cheetah_flush_dcache(); /* Re-enable I/D caches */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC | DCU_DC) : "g1"); if (flush_all) cheetah_flush_ecache(); else if (flush_line) cheetah_flush_ecache_line(afar); } /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) : "g1"); /* Decide if we can continue after handling this trap and * logging the error. */ recoverable = 1; if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) recoverable = 0; /* Re-check AFSR/AFAR. What we are looking for here is whether a new * error was logged while we had error reporting traps disabled. */ if (cheetah_recheck_errors(&local_snapshot)) { unsigned long new_afsr = local_snapshot.afsr; /* If we got a new asynchronous error, die... */ if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | CHAFSR_WDU | CHAFSR_CPU | CHAFSR_IVU | CHAFSR_UE | CHAFSR_BERR | CHAFSR_TO)) recoverable = 0; } /* Log errors. */ cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); /* "Recoverable" here means we try to yank the page from ever * being newly used again. This depends upon a few things: * 1) Must be main memory, and AFAR must be valid. * 2) If we trapped from use, OK. * 3) Else, if we trapped from kernel we must find exception * table entry (ie. we have to have been accessing user * space). * * If AFAR is not in main memory, or we trapped from kernel * and cannot find an exception table entry, it is unacceptable * to try and continue. */ if (recoverable && is_memory) { if ((regs->tstate & TSTATE_PRIV) == 0UL) { /* OK, usermode access. */ recoverable = 1; } else { unsigned long g2 = regs->u_regs[UREG_G2]; unsigned long fixup = search_exception_table(regs->tpc, &g2); if (fixup != 0UL) { /* OK, kernel access to userspace. */ recoverable = 1; } else { /* BAD, privileged state is corrupted. */ recoverable = 0; } if (recoverable) { struct page *page = virt_to_page(__va(afar)); if (VALID_PAGE(page)) get_page(page); else recoverable = 0; /* Only perform fixup if we still have a * recoverable condition. */ if (fixup != 0UL && recoverable) { regs->tpc = fixup; regs->tnpc = regs->tpc + 4; regs->u_regs[UREG_G2] = g2; } } } } else { recoverable = 0; } if (!recoverable) panic("Irrecoverable deferred error trap.\n"); } void do_fpe_common(struct pt_regs *regs) { if(regs->tstate & TSTATE_PRIV) { regs->tpc = regs->tnpc; regs->tnpc += 4; } else { unsigned long fsr = current->thread.xfsr[0]; siginfo_t info; if ((current->thread.flags & SPARC_FLAG_32BIT) != 0) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGFPE; info.si_errno = 0; info.si_addr = (void *)regs->tpc; info.si_trapno = 0; info.si_code = __SI_FAULT; if ((fsr & 0x1c000) == (1 << 14)) { if (fsr & 0x10) info.si_code = FPE_FLTINV; else if (fsr & 0x08) info.si_code = FPE_FLTOVF; else if (fsr & 0x04) info.si_code = FPE_FLTUND; else if (fsr & 0x02) info.si_code = FPE_FLTDIV; else if (fsr & 0x01) info.si_code = FPE_FLTRES; } force_sig_info(SIGFPE, &info, current); } } void do_fpieee(struct pt_regs *regs) { do_fpe_common(regs); } extern int do_mathemu(struct pt_regs *, struct fpustate *); void do_fpother(struct pt_regs *regs) { struct fpustate *f = FPUSTATE; int ret = 0; switch ((current->thread.xfsr[0] & 0x1c000)) { case (2 << 14): /* unfinished_FPop */ case (3 << 14): /* unimplemented_FPop */ ret = do_mathemu(regs, f); break; } if (ret) return; do_fpe_common(regs); } void do_tof(struct pt_regs *regs) { siginfo_t info; if(regs->tstate & TSTATE_PRIV) die_if_kernel("Penguin overflow trap from kernel mode", regs); if ((current->thread.flags & SPARC_FLAG_32BIT) != 0) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGEMT; info.si_errno = 0; info.si_code = EMT_TAGOVF; info.si_addr = (void *)regs->tpc; info.si_trapno = 0; force_sig_info(SIGEMT, &info, current); } void do_div0(struct pt_regs *regs) { siginfo_t info; if ((current->thread.flags & SPARC_FLAG_32BIT) != 0) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGFPE; info.si_errno = 0; info.si_code = FPE_INTDIV; info.si_addr = (void *)regs->tpc; info.si_trapno = 0; force_sig_info(SIGFPE, &info, current); } void instruction_dump (unsigned int *pc) { int i; if((((unsigned long) pc) & 3)) return; printk("Instruction DUMP:"); for(i = -3; i < 6; i++) printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>'); printk("\n"); } void user_instruction_dump (unsigned int *pc) { int i; unsigned int buf[9]; if((((unsigned long) pc) & 3)) return; if(copy_from_user(buf, pc - 3, sizeof(buf))) return; printk("Instruction DUMP:"); for(i = 0; i < 9; i++) printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>'); printk("\n"); } void show_trace_task(struct task_struct *tsk) { unsigned long pc, fp; unsigned long task_base = (unsigned long)tsk; struct reg_window *rw; int count = 0; if (!tsk) return; fp = tsk->thread.ksp + STACK_BIAS; do { /* Bogus frame pointer? */ if (fp < (task_base + sizeof(struct task_struct)) || fp >= (task_base + THREAD_SIZE)) break; rw = (struct reg_window *)fp; pc = rw->ins[7]; printk("[%016lx] ", pc); fp = rw->ins[6] + STACK_BIAS; } while (++count < 16); printk("\n"); } void die_if_kernel(char *str, struct pt_regs *regs) { extern void __show_regs(struct pt_regs * regs); extern void smp_report_regs(void); int count = 0; struct reg_window *lastrw; /* Amuse the user. */ printk( " \\|/ ____ \\|/\n" " \"@'/ .. \\`@\"\n" " /_| \\__/ |_\\\n" " \\__U_/\n"); printk("%s(%d): %s\n", current->comm, current->pid, str); __asm__ __volatile__("flushw"); __show_regs(regs); if(regs->tstate & TSTATE_PRIV) { struct reg_window *rw = (struct reg_window *) (regs->u_regs[UREG_FP] + STACK_BIAS); /* Stop the back trace when we hit userland or we * find some badly aligned kernel stack. */ lastrw = (struct reg_window *)current; while(rw && count++ < 30 && rw >= lastrw && (char *) rw < ((char *) current) + sizeof (union task_union) && !(((unsigned long) rw) & 0x7)) { printk("Caller[%016lx]\n", rw->ins[7]); lastrw = rw; rw = (struct reg_window *) (rw->ins[6] + STACK_BIAS); } instruction_dump ((unsigned int *) regs->tpc); } else { if ((current->thread.flags & SPARC_FLAG_32BIT) != 0) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } user_instruction_dump ((unsigned int *) regs->tpc); } #ifdef CONFIG_SMP smp_report_regs(); #endif if(regs->tstate & TSTATE_PRIV) do_exit(SIGKILL); do_exit(SIGSEGV); } extern int handle_popc(u32 insn, struct pt_regs *regs); extern int handle_ldf_stq(u32 insn, struct pt_regs *regs); void do_illegal_instruction(struct pt_regs *regs) { unsigned long pc = regs->tpc; unsigned long tstate = regs->tstate; u32 insn; siginfo_t info; if(tstate & TSTATE_PRIV) die_if_kernel("Kernel illegal instruction", regs); if(current->thread.flags & SPARC_FLAG_32BIT) pc = (u32)pc; if (get_user(insn, (u32 *)pc) != -EFAULT) { if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ { if (handle_popc(insn, regs)) return; } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ { if (handle_ldf_stq(insn, regs)) return; } } info.si_signo = SIGILL; info.si_errno = 0; info.si_code = ILL_ILLOPC; info.si_addr = (void *)pc; info.si_trapno = 0; force_sig_info(SIGILL, &info, current); } void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr) { siginfo_t info; if(regs->tstate & TSTATE_PRIV) { extern void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn, unsigned long sfar, unsigned long sfsr); return kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc), sfar, sfsr); } info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRALN; info.si_addr = (void *)sfar; info.si_trapno = 0; force_sig_info(SIGBUS, &info, current); } void do_privop(struct pt_regs *regs) { siginfo_t info; if ((current->thread.flags & SPARC_FLAG_32BIT) != 0) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGILL; info.si_errno = 0; info.si_code = ILL_PRVOPC; info.si_addr = (void *)regs->tpc; info.si_trapno = 0; force_sig_info(SIGILL, &info, current); } void do_privact(struct pt_regs *regs) { do_privop(regs); } /* Trap level 1 stuff or other traps we should never see... */ void do_cee(struct pt_regs *regs) { die_if_kernel("TL0: Cache Error Exception", regs); } void do_cee_tl1(struct pt_regs *regs) { die_if_kernel("TL1: Cache Error Exception", regs); } void do_dae_tl1(struct pt_regs *regs) { die_if_kernel("TL1: Data Access Exception", regs); } void do_iae_tl1(struct pt_regs *regs) { die_if_kernel("TL1: Instruction Access Exception", regs); } void do_div0_tl1(struct pt_regs *regs) { die_if_kernel("TL1: DIV0 Exception", regs); } void do_fpdis_tl1(struct pt_regs *regs) { die_if_kernel("TL1: FPU Disabled", regs); } void do_fpieee_tl1(struct pt_regs *regs) { die_if_kernel("TL1: FPU IEEE Exception", regs); } void do_fpother_tl1(struct pt_regs *regs) { die_if_kernel("TL1: FPU Other Exception", regs); } void do_ill_tl1(struct pt_regs *regs) { die_if_kernel("TL1: Illegal Instruction Exception", regs); } void do_irq_tl1(struct pt_regs *regs) { die_if_kernel("TL1: IRQ Exception", regs); } void do_lddfmna_tl1(struct pt_regs *regs) { die_if_kernel("TL1: LDDF Exception", regs); } void do_stdfmna_tl1(struct pt_regs *regs) { die_if_kernel("TL1: STDF Exception", regs); } void do_paw(struct pt_regs *regs) { die_if_kernel("TL0: Phys Watchpoint Exception", regs); } void do_paw_tl1(struct pt_regs *regs) { die_if_kernel("TL1: Phys Watchpoint Exception", regs); } void do_vaw(struct pt_regs *regs) { die_if_kernel("TL0: Virt Watchpoint Exception", regs); } void do_vaw_tl1(struct pt_regs *regs) { die_if_kernel("TL1: Virt Watchpoint Exception", regs); } void do_tof_tl1(struct pt_regs *regs) { die_if_kernel("TL1: Tag Overflow Exception", regs); } void do_getpsr(struct pt_regs *regs) { regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate); regs->tpc = regs->tnpc; regs->tnpc += 4; if ((current->thread.flags & SPARC_FLAG_32BIT) != 0) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } } void trap_init(void) { /* Attach to the address space of init_task. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; /* NOTE: Other cpus have this done as they are started * up on SMP. */ }