/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001 Red Hat, Inc. * * Created by David Woodhouse * * The original JFFS, from which the design for JFFS2 was derived, * was designed and implemented by Axis Communications AB. * * The contents of this file are subject to the Red Hat eCos Public * License Version 1.1 (the "Licence"); you may not use this file * except in compliance with the Licence. You may obtain a copy of * the Licence at http://www.redhat.com/ * * Software distributed under the Licence is distributed on an "AS IS" * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. * See the Licence for the specific language governing rights and * limitations under the Licence. * * The Original Code is JFFS2 - Journalling Flash File System, version 2 * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License version 2 (the "GPL"), in * which case the provisions of the GPL are applicable instead of the * above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the RHEPL, indicate your decision by * deleting the provisions above and replace them with the notice and * other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file * under either the RHEPL or the GPL. * * $Id: gc.c,v 1.52 2001/09/19 21:53:47 dwmw2 Exp $ * */ #include #include #include #include #include #include #include #include "nodelist.h" #include "crc32.h" static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct inode *inode, struct jffs2_full_dnode *fd); static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct inode *inode, struct jffs2_full_dirent *fd); static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct inode *inode, struct jffs2_full_dirent *fd); static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct inode *indeo, struct jffs2_full_dnode *fn, __u32 start, __u32 end); static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct inode *inode, struct jffs2_full_dnode *fn, __u32 start, __u32 end); /* Called with erase_completion_lock held */ static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c) { struct jffs2_eraseblock *ret; struct list_head *nextlist = NULL; /* Pick an eraseblock to garbage collect next. This is where we'll put the clever wear-levelling algorithms. Eventually. */ if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > JFFS2_RESERVED_BLOCKS_GCBAD) { D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n")); nextlist = &c->bad_used_list; } else if (jiffies % 100 && !list_empty(&c->dirty_list)) { /* Most of the time, pick one off the dirty list */ D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n")); nextlist = &c->dirty_list; } else if (!list_empty(&c->clean_list)) { D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n")); nextlist = &c->clean_list; } else if (!list_empty(&c->dirty_list)) { D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n")); nextlist = &c->dirty_list; } else { /* Eep. Both were empty */ printk(KERN_NOTICE "jffs2: No clean _or_ dirty blocks to GC from! Where are they all?\n"); return NULL; } ret = list_entry(nextlist->next, struct jffs2_eraseblock, list); list_del(&ret->list); c->gcblock = ret; ret->gc_node = ret->first_node; if (!ret->gc_node) { printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset); BUG(); } return ret; } /* jffs2_garbage_collect_pass * Make a single attempt to progress GC. Move one node, and possibly * start erasing one eraseblock. */ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c) { struct jffs2_eraseblock *jeb; struct jffs2_inode_info *f; struct jffs2_raw_node_ref *raw; struct jffs2_node_frag *frag; struct jffs2_full_dnode *fn = NULL; struct jffs2_full_dirent *fd; __u32 start = 0, end = 0, nrfrags = 0; __u32 inum; struct inode *inode; int ret = 0; if (down_interruptible(&c->alloc_sem)) return -EINTR; spin_lock_bh(&c->erase_completion_lock); /* First, work out which block we're garbage-collecting */ jeb = c->gcblock; if (!jeb) jeb = jffs2_find_gc_block(c); if (!jeb) { printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"); spin_unlock_bh(&c->erase_completion_lock); up(&c->alloc_sem); return -EIO; } D1(printk(KERN_DEBUG "garbage collect from block at phys 0x%08x\n", jeb->offset)); if (!jeb->used_size) goto eraseit; raw = jeb->gc_node; while(raw->flash_offset & 1) { D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", raw->flash_offset &~3)); jeb->gc_node = raw = raw->next_phys; if (!raw) { printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n"); printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size); spin_unlock_bh(&c->erase_completion_lock); up(&c->alloc_sem); BUG(); } } D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", raw->flash_offset &~3)); if (!raw->next_in_ino) { /* Inode-less node. Clean marker, snapshot or something like that */ spin_unlock_bh(&c->erase_completion_lock); jffs2_mark_node_obsolete(c, raw); goto eraseit_lock; } inum = jffs2_raw_ref_to_inum(raw); D1(printk(KERN_DEBUG "Inode number is #%u\n", inum)); spin_unlock_bh(&c->erase_completion_lock); D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x, ino #%u\n", jeb->offset, raw->flash_offset&~3, inum)); inode = iget(OFNI_BS_2SFFJ(c), inum); if (is_bad_inode(inode)) { printk(KERN_NOTICE "Eep. read_inode() failed for ino #%u\n", inum); /* NB. This will happen again. We need to do something appropriate here. */ iput(inode); up(&c->alloc_sem); return -EIO; } f = JFFS2_INODE_INFO(inode); down(&f->sem); /* Now we have the lock for this inode. Check that it's still the one at the head of the list. */ if (raw->flash_offset & 1) { D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n")); /* They'll call again */ goto upnout; } /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */ if (f->metadata && f->metadata->raw == raw) { fn = f->metadata; ret = jffs2_garbage_collect_metadata(c, jeb, inode, fn); goto upnout; } for (frag = f->fraglist; frag; frag = frag->next) { if (frag->node && frag->node->raw == raw) { fn = frag->node; end = frag->ofs + frag->size; if (!nrfrags++) start = frag->ofs; if (nrfrags == frag->node->frags) break; /* We've found them all */ } } if (fn) { /* We found a datanode. Do the GC */ if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) { /* It crosses a page boundary. Therefore, it must be a hole. */ ret = jffs2_garbage_collect_hole(c, jeb, inode, fn, start, end); } else { /* It could still be a hole. But we GC the page this way anyway */ ret = jffs2_garbage_collect_dnode(c, jeb, inode, fn, start, end); } goto upnout; } /* Wasn't a dnode. Try dirent */ for (fd = f->dents; fd; fd=fd->next) { if (fd->raw == raw) break; } if (fd && fd->ino) { ret = jffs2_garbage_collect_dirent(c, jeb, inode, fd); } else if (fd) { ret = jffs2_garbage_collect_deletion_dirent(c, jeb, inode, fd); } else { printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%lu\n", raw->flash_offset&~3, inode->i_ino); if (raw->flash_offset & 1) { printk(KERN_WARNING "But it's obsolete so we don't mind too much\n"); } else { ret = -EIO; } } upnout: up(&f->sem); iput(inode); eraseit_lock: /* If we've finished this block, start it erasing */ spin_lock_bh(&c->erase_completion_lock); eraseit: if (c->gcblock && !c->gcblock->used_size) { D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset)); /* We're GC'ing an empty block? */ list_add_tail(&c->gcblock->list, &c->erase_pending_list); c->gcblock = NULL; c->nr_erasing_blocks++; jffs2_erase_pending_trigger(c); } spin_unlock_bh(&c->erase_completion_lock); up(&c->alloc_sem); return ret; } static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct inode *inode, struct jffs2_full_dnode *fn) { struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode); struct jffs2_full_dnode *new_fn; struct jffs2_raw_inode ri; unsigned short dev; char *mdata = NULL, mdatalen = 0; __u32 alloclen, phys_ofs; int ret; if ((inode->i_mode & S_IFMT) == S_IFBLK || (inode->i_mode & S_IFMT) == S_IFCHR) { /* For these, we don't actually need to read the old node */ dev = (MAJOR(to_kdev_t(inode->i_rdev)) << 8) | MINOR(to_kdev_t(inode->i_rdev)); mdata = (char *)&dev; mdatalen = sizeof(dev); D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen)); } else if ((inode->i_mode & S_IFMT) == S_IFLNK) { mdatalen = fn->size; mdata = kmalloc(fn->size, GFP_KERNEL); if (!mdata) { printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n"); return -ENOMEM; } ret = jffs2_read_dnode(c, fn, mdata, 0, mdatalen); if (ret) { printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret); kfree(mdata); return ret; } D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen)); } ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen); if (ret) { printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_metadata failed: %d\n", sizeof(ri)+ mdatalen, ret); goto out; } memset(&ri, 0, sizeof(ri)); ri.magic = JFFS2_MAGIC_BITMASK; ri.nodetype = JFFS2_NODETYPE_INODE; ri.totlen = sizeof(ri) + mdatalen; ri.hdr_crc = crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4); ri.ino = inode->i_ino; ri.version = ++f->highest_version; ri.mode = inode->i_mode; ri.uid = inode->i_uid; ri.gid = inode->i_gid; ri.isize = inode->i_size; ri.atime = inode->i_atime; ri.ctime = inode->i_ctime; ri.mtime = inode->i_mtime; ri.offset = 0; ri.csize = mdatalen; ri.dsize = mdatalen; ri.compr = JFFS2_COMPR_NONE; ri.node_crc = crc32(0, &ri, sizeof(ri)-8); ri.data_crc = crc32(0, mdata, mdatalen); new_fn = jffs2_write_dnode(inode, &ri, mdata, mdatalen, phys_ofs, NULL); if (IS_ERR(new_fn)) { printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); ret = PTR_ERR(new_fn); goto out; } jffs2_mark_node_obsolete(c, fn->raw); jffs2_free_full_dnode(fn); f->metadata = new_fn; out: if ((inode->i_mode & S_IFMT) == S_IFLNK) kfree(mdata); return ret; } static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct inode *inode, struct jffs2_full_dirent *fd) { struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode); struct jffs2_full_dirent *new_fd; struct jffs2_raw_dirent rd; __u32 alloclen, phys_ofs; int ret; rd.magic = JFFS2_MAGIC_BITMASK; rd.nodetype = JFFS2_NODETYPE_DIRENT; rd.nsize = strlen(fd->name); rd.totlen = sizeof(rd) + rd.nsize; rd.hdr_crc = crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4); rd.pino = inode->i_ino; rd.version = ++f->highest_version; rd.ino = fd->ino; rd.mctime = max(inode->i_mtime, inode->i_ctime); rd.type = fd->type; rd.node_crc = crc32(0, &rd, sizeof(rd)-8); rd.name_crc = crc32(0, fd->name, rd.nsize); ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen); if (ret) { printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_dirent failed: %d\n", sizeof(rd)+rd.nsize, ret); return ret; } new_fd = jffs2_write_dirent(inode, &rd, fd->name, rd.nsize, phys_ofs, NULL); if (IS_ERR(new_fd)) { printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd)); return PTR_ERR(new_fd); } jffs2_add_fd_to_list(c, new_fd, &f->dents); return 0; } static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct inode *inode, struct jffs2_full_dirent *fd) { struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode); struct jffs2_full_dirent **fdp = &f->dents; int found = 0; /* FIXME: When we run on NAND flash, we need to work out whether this deletion dirent is still needed to actively delete a 'real' dirent with the same name that's still somewhere else on the flash. For now, we know that we've actually obliterated all the older dirents when they became obsolete, so we didn't really need to write the deletion to flash in the first place. */ while (*fdp) { if ((*fdp) == fd) { found = 1; *fdp = fd->next; break; } fdp = &(*fdp)->next; } if (!found) { printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%lu\n", fd->name, inode->i_ino); } jffs2_mark_node_obsolete(c, fd->raw); jffs2_free_full_dirent(fd); return 0; } static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct inode *inode, struct jffs2_full_dnode *fn, __u32 start, __u32 end) { struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode); struct jffs2_raw_inode ri; struct jffs2_node_frag *frag; struct jffs2_full_dnode *new_fn; __u32 alloclen, phys_ofs; int ret; D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%lu from offset 0x%x to 0x%x\n", inode->i_ino, start, end)); memset(&ri, 0, sizeof(ri)); if(fn->frags > 1) { size_t readlen; __u32 crc; /* It's partially obsoleted by a later write. So we have to write it out again with the _same_ version as before */ ret = c->mtd->read(c->mtd, fn->raw->flash_offset & ~3, sizeof(ri), &readlen, (char *)&ri); if (readlen != sizeof(ri) || ret) { printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %d. Data will be lost by writing new hold node\n", ret, readlen); goto fill; } if (ri.nodetype != JFFS2_NODETYPE_INODE) { printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n", fn->raw->flash_offset & ~3, ri.nodetype, JFFS2_NODETYPE_INODE); return -EIO; } if (ri.totlen != sizeof(ri)) { printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%x\n", fn->raw->flash_offset & ~3, ri.totlen, sizeof(ri)); return -EIO; } crc = crc32(0, &ri, sizeof(ri)-8); if (crc != ri.node_crc) { printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n", fn->raw->flash_offset & ~3, ri.node_crc, crc); /* FIXME: We could possibly deal with this by writing new holes for each frag */ printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%lu will be lost\n", start, end, inode->i_ino); goto fill; } if (ri.compr != JFFS2_COMPR_ZERO) { printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", fn->raw->flash_offset & ~3); printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%lu will be lost\n", start, end, inode->i_ino); goto fill; } } else { fill: ri.magic = JFFS2_MAGIC_BITMASK; ri.nodetype = JFFS2_NODETYPE_INODE; ri.totlen = sizeof(ri); ri.hdr_crc = crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4); ri.ino = inode->i_ino; ri.version = ++f->highest_version; ri.offset = start; ri.csize = end - start; ri.dsize = 0; ri.compr = JFFS2_COMPR_ZERO; } ri.mode = inode->i_mode; ri.uid = inode->i_uid; ri.gid = inode->i_gid; ri.isize = inode->i_size; ri.atime = inode->i_atime; ri.ctime = inode->i_ctime; ri.mtime = inode->i_mtime; ri.data_crc = 0; ri.node_crc = crc32(0, &ri, sizeof(ri)-8); ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen); if (ret) { printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_hole failed: %d\n", sizeof(ri), ret); return ret; } new_fn = jffs2_write_dnode(inode, &ri, NULL, 0, phys_ofs, NULL); if (IS_ERR(new_fn)) { printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn)); return PTR_ERR(new_fn); } if (ri.version == f->highest_version) { jffs2_add_full_dnode_to_inode(c, f, new_fn); if (f->metadata) { jffs2_mark_node_obsolete(c, f->metadata->raw); jffs2_free_full_dnode(f->metadata); f->metadata = NULL; return 0; } } for (frag = f->fraglist; frag; frag = frag->next) { if (frag->ofs > fn->size + fn->ofs) break; if (frag->node == fn) { frag->node = new_fn; new_fn->frags++; fn->frags--; } } if (fn->frags) { printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n"); BUG(); } if (!new_fn->frags) { printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n"); BUG(); } jffs2_mark_node_obsolete(c, fn->raw); jffs2_free_full_dnode(fn); return 0; } static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct inode *inode, struct jffs2_full_dnode *fn, __u32 start, __u32 end) { struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode); struct jffs2_full_dnode *new_fn; struct jffs2_raw_inode ri; __u32 alloclen, phys_ofs, offset, orig_end; int ret = 0; unsigned char *comprbuf = NULL, *writebuf; struct page *pg; unsigned char *pg_ptr; memset(&ri, 0, sizeof(ri)); D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%lu from offset 0x%x to 0x%x\n", inode->i_ino, start, end)); orig_end = end; /* If we're looking at the last node in the block we're garbage-collecting, we allow ourselves to merge as if the block was already erasing. We're likely to be GC'ing a partial page, and the next block we GC is likely to have the other half of this page right at the beginning, which means we'd expand it _then_, as nr_erasing_blocks would have increased since we checked, and in doing so would obsolete the partial node which we'd have written here. Meaning that the GC would churn and churn, and just leave dirty blocks in it's wake. */ if(c->nr_free_blocks + c->nr_erasing_blocks > JFFS2_RESERVED_BLOCKS_GCMERGE - (fn->raw->next_phys?0:1)) { /* Shitloads of space */ /* FIXME: Integrate this properly with GC calculations */ start &= ~(PAGE_CACHE_SIZE-1); end = min_t(__u32, start + PAGE_CACHE_SIZE, inode->i_size); D1(printk(KERN_DEBUG "Plenty of free space, so expanding to write from offset 0x%x to 0x%x\n", start, end)); if (end < orig_end) { printk(KERN_WARNING "Eep. jffs2_garbage_collect_dnode extended node to write, but it got smaller: start 0x%x, orig_end 0x%x, end 0x%x\n", start, orig_end, end); end = orig_end; } } /* First, use readpage() to read the appropriate page into the page cache */ /* Q: What happens if we actually try to GC the _same_ page for which commit_write() * triggered garbage collection in the first place? * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the * page OK. We'll actually write it out again in commit_write, which is a little * suboptimal, but at least we're correct. */ pg = read_cache_page(inode->i_mapping, start >> PAGE_CACHE_SHIFT, (void *)jffs2_do_readpage_unlock, inode); if (IS_ERR(pg)) { printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg)); return PTR_ERR(pg); } pg_ptr = (char *)kmap(pg); comprbuf = kmalloc(end - start, GFP_KERNEL); offset = start; while(offset < orig_end) { __u32 datalen; __u32 cdatalen; char comprtype = JFFS2_COMPR_NONE; ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen); if (ret) { printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_dnode failed: %d\n", sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret); break; } cdatalen = min(alloclen - sizeof(ri), end - offset); datalen = end - offset; writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1)); if (comprbuf) { comprtype = jffs2_compress(writebuf, comprbuf, &datalen, &cdatalen); } if (comprtype) { writebuf = comprbuf; } else { datalen = cdatalen; } ri.magic = JFFS2_MAGIC_BITMASK; ri.nodetype = JFFS2_NODETYPE_INODE; ri.totlen = sizeof(ri) + cdatalen; ri.hdr_crc = crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4); ri.ino = inode->i_ino; ri.version = ++f->highest_version; ri.mode = inode->i_mode; ri.uid = inode->i_uid; ri.gid = inode->i_gid; ri.isize = inode->i_size; ri.atime = inode->i_atime; ri.ctime = inode->i_ctime; ri.mtime = inode->i_mtime; ri.offset = offset; ri.csize = cdatalen; ri.dsize = datalen; ri.compr = comprtype; ri.node_crc = crc32(0, &ri, sizeof(ri)-8); ri.data_crc = crc32(0, writebuf, cdatalen); new_fn = jffs2_write_dnode(inode, &ri, writebuf, cdatalen, phys_ofs, NULL); if (IS_ERR(new_fn)) { printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); ret = PTR_ERR(new_fn); break; } ret = jffs2_add_full_dnode_to_inode(c, f, new_fn); offset += datalen; if (f->metadata) { jffs2_mark_node_obsolete(c, f->metadata->raw); jffs2_free_full_dnode(f->metadata); f->metadata = NULL; } } if (comprbuf) kfree(comprbuf); kunmap(pg); /* XXX: Does the page get freed automatically? */ /* AAA: Judging by the unmount getting stuck in __wait_on_page, nope. */ page_cache_release(pg); return ret; }