/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001 Red Hat, Inc. * * Created by David Woodhouse * * The original JFFS, from which the design for JFFS2 was derived, * was designed and implemented by Axis Communications AB. * * The contents of this file are subject to the Red Hat eCos Public * License Version 1.1 (the "Licence"); you may not use this file * except in compliance with the Licence. You may obtain a copy of * the Licence at http://www.redhat.com/ * * Software distributed under the Licence is distributed on an "AS IS" * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. * See the Licence for the specific language governing rights and * limitations under the Licence. * * The Original Code is JFFS2 - Journalling Flash File System, version 2 * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License version 2 (the "GPL"), in * which case the provisions of the GPL are applicable instead of the * above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the RHEPL, indicate your decision by * deleting the provisions above and replace them with the notice and * other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file * under either the RHEPL or the GPL. * * $Id: write.c,v 1.28 2001/05/01 16:25:25 dwmw2 Exp $ * */ #include #include #include #include #include "nodelist.h" #include "crc32.h" /* jffs2_new_inode: allocate a new inode and inocache, add it to the hash, fill in the raw_inode while you're at it. */ struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_inode *ri) { struct inode *inode; struct super_block *sb = dir_i->i_sb; struct jffs2_inode_cache *ic; struct jffs2_sb_info *c; struct jffs2_inode_info *f; D1(printk(KERN_DEBUG "jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i->i_ino, mode)); c = JFFS2_SB_INFO(sb); memset(ri, 0, sizeof(*ri)); ic = jffs2_alloc_inode_cache(); if (!ic) { return ERR_PTR(-ENOMEM); } memset(ic, 0, sizeof(*ic)); inode = new_inode(sb); if (!inode) { jffs2_free_inode_cache(ic); return ERR_PTR(-ENOMEM); } /* Alloc jffs2_inode_info when that's split in 2.5 */ f = JFFS2_INODE_INFO(inode); memset(f, 0, sizeof(*f)); init_MUTEX_LOCKED(&f->sem); f->inocache = ic; inode->i_nlink = f->inocache->nlink = 1; f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache; f->inocache->ino = ri->ino = inode->i_ino = ++c->highest_ino; D1(printk(KERN_DEBUG "jffs2_new_inode(): Assigned ino# %d\n", ri->ino)); jffs2_add_ino_cache(c, f->inocache); ri->magic = JFFS2_MAGIC_BITMASK; ri->nodetype = JFFS2_NODETYPE_INODE; ri->totlen = PAD(sizeof(*ri)); ri->hdr_crc = crc32(0, ri, sizeof(struct jffs2_unknown_node)-4); ri->mode = mode; f->highest_version = ri->version = 1; ri->uid = current->fsuid; if (dir_i->i_mode & S_ISGID) { ri->gid = dir_i->i_gid; if (S_ISDIR(mode)) ri->mode |= S_ISGID; } else { ri->gid = current->fsgid; } inode->i_mode = ri->mode; inode->i_gid = ri->gid; inode->i_uid = ri->uid; inode->i_atime = inode->i_ctime = inode->i_mtime = ri->atime = ri->mtime = ri->ctime = CURRENT_TIME; inode->i_blksize = PAGE_SIZE; inode->i_blocks = 0; inode->i_size = 0; insert_inode_hash(inode); return inode; } /* This ought to be in core MTD code. All registered MTD devices without writev should have this put in place. Bug the MTD maintainer */ static int mtd_fake_writev(struct mtd_info *mtd, const struct iovec *vecs, unsigned long count, loff_t to, size_t *retlen) { unsigned long i; size_t totlen = 0, thislen; int ret = 0; for (i=0; iwrite(mtd, to, vecs[i].iov_len, &thislen, vecs[i].iov_base); totlen += thislen; if (ret || thislen != vecs[i].iov_len) break; to += vecs[i].iov_len; } if (retlen) *retlen = totlen; return ret; } static inline int mtd_writev(struct mtd_info *mtd, const struct iovec *vecs, unsigned long count, loff_t to, size_t *retlen) { if (mtd->writev) return mtd->writev(mtd,vecs,count,to,retlen); else return mtd_fake_writev(mtd, vecs, count, to, retlen); } static void writecheck(struct mtd_info *mtd, __u32 ofs) { unsigned char buf[16]; ssize_t retlen; int ret, i; ret = mtd->read(mtd, ofs, 16, &retlen, buf); if (ret && retlen != 16) { D1(printk(KERN_DEBUG "read failed or short in writecheck(). ret %d, retlen %d\n", ret, retlen)); return; } ret = 0; for (i=0; i<16; i++) { if (buf[i] != 0xff) ret = 1; } if (ret) { printk(KERN_WARNING "ARGH. About to write node to 0x%08x on flash, but there's data already there:\n", ofs); printk(KERN_WARNING "0x%08x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", ofs, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]); } } /* jffs2_write_dnode - given a raw_inode, allocate a full_dnode for it, write it to the flash, link it into the existing inode/fragment list */ struct jffs2_full_dnode *jffs2_write_dnode(struct inode *inode, struct jffs2_raw_inode *ri, const unsigned char *data, __u32 datalen, __u32 flash_ofs, __u32 *writelen) { struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb); struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode); struct jffs2_raw_node_ref *raw; struct jffs2_full_dnode *fn; ssize_t retlen; struct iovec vecs[2]; int ret; D1(if(ri->hdr_crc != crc32(0, ri, sizeof(struct jffs2_unknown_node)-4)) { printk(KERN_CRIT "Eep. CRC not correct in jffs2_write_dnode()\n"); BUG(); } ); vecs[0].iov_base = ri; vecs[0].iov_len = sizeof(*ri); vecs[1].iov_base = (unsigned char *)data; vecs[1].iov_len = datalen; writecheck(c->mtd, flash_ofs); if (ri->totlen != sizeof(*ri) + datalen) { printk(KERN_WARNING "jffs2_write_dnode: ri->totlen (0x%08x) != sizeof(*ri) (0x%08x) + datalen (0x%08x)\n", ri->totlen, sizeof(*ri), datalen); } raw = jffs2_alloc_raw_node_ref(); if (!raw) return ERR_PTR(-ENOMEM); fn = jffs2_alloc_full_dnode(); if (!fn) { jffs2_free_raw_node_ref(raw); return ERR_PTR(-ENOMEM); } raw->flash_offset = flash_ofs; raw->totlen = PAD(ri->totlen); raw->next_in_ino = f->inocache->nodes; f->inocache->nodes = raw; raw->next_phys = NULL; fn->ofs = ri->offset; fn->size = ri->dsize; fn->frags = 0; fn->raw = raw; ret = mtd_writev(c->mtd, vecs, 2, flash_ofs, &retlen); if (ret || (retlen != sizeof(*ri) + datalen)) { printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %d\n", sizeof(*ri)+datalen, flash_ofs, ret, retlen); /* Mark the space as dirtied */ if (retlen) { jffs2_add_physical_node_ref(c, raw, sizeof(*ri)+datalen, 1); jffs2_mark_node_obsolete(c, raw); } else { printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", raw->flash_offset); jffs2_free_raw_node_ref(raw); } /* Release the full_dnode which is now useless, and return */ jffs2_free_full_dnode(fn); if (writelen) *writelen = retlen; return ERR_PTR(ret?ret:-EIO); } /* Mark the space used */ jffs2_add_physical_node_ref(c, raw, retlen, 0); D1(printk(KERN_DEBUG "jffs2_write_dnode wrote node at 0x%08x with dsize 0x%x, csize 0x%x, node_crc 0x%08x, data_crc 0x%08x, totlen 0x%08x\n", flash_ofs, ri->dsize, ri->csize, ri->node_crc, ri->data_crc, ri->totlen)); if (writelen) *writelen = retlen; f->inocache->nodes = raw; return fn; } struct jffs2_full_dirent *jffs2_write_dirent(struct inode *inode, struct jffs2_raw_dirent *rd, const unsigned char *name, __u32 namelen, __u32 flash_ofs, __u32 *writelen) { struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb); struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode); struct jffs2_raw_node_ref *raw; struct jffs2_full_dirent *fd; ssize_t retlen; struct iovec vecs[2]; int ret; D1(printk(KERN_DEBUG "jffs2_write_dirent(ino #%u, name at *0x%p \"%s\"->ino #%u, name_crc 0x%08x)\n", rd->pino, name, name, rd->ino, rd->name_crc)); writecheck(c->mtd, flash_ofs); D1(if(rd->hdr_crc != crc32(0, rd, sizeof(struct jffs2_unknown_node)-4)) { printk(KERN_CRIT "Eep. CRC not correct in jffs2_write_dirent()\n"); BUG(); } ); vecs[0].iov_base = rd; vecs[0].iov_len = sizeof(*rd); vecs[1].iov_base = (unsigned char *)name; vecs[1].iov_len = namelen; raw = jffs2_alloc_raw_node_ref(); if (!raw) return ERR_PTR(-ENOMEM); fd = jffs2_alloc_full_dirent(namelen+1); if (!fd) { jffs2_free_raw_node_ref(raw); return ERR_PTR(-ENOMEM); } raw->flash_offset = flash_ofs; raw->totlen = PAD(rd->totlen); raw->next_in_ino = f->inocache->nodes; f->inocache->nodes = raw; raw->next_phys = NULL; fd->version = rd->version; fd->ino = rd->ino; fd->nhash = full_name_hash(name, strlen(name)); fd->type = rd->type; memcpy(fd->name, name, namelen); fd->name[namelen]=0; fd->raw = raw; ret = mtd_writev(c->mtd, vecs, 2, flash_ofs, &retlen); if (ret || (retlen != sizeof(*rd) + namelen)) { printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %d\n", sizeof(*rd)+namelen, flash_ofs, ret, retlen); /* Mark the space as dirtied */ if (retlen) { jffs2_add_physical_node_ref(c, raw, sizeof(*rd)+namelen, 1); jffs2_mark_node_obsolete(c, raw); } else { printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", raw->flash_offset); jffs2_free_raw_node_ref(raw); } /* Release the full_dnode which is now useless, and return */ jffs2_free_full_dirent(fd); if (writelen) *writelen = retlen; return ERR_PTR(ret?ret:-EIO); } /* Mark the space used */ jffs2_add_physical_node_ref(c, raw, retlen, 0); if (writelen) *writelen = retlen; f->inocache->nodes = raw; return fd; }