/* * linux/fs/proc/base.c * * Copyright (C) 1991, 1992 Linus Torvalds * * proc base directory handling functions * * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. * Instead of using magical inumbers to determine the kind of object * we allocate and fill in-core inodes upon lookup. They don't even * go into icache. We cache the reference to task_struct upon lookup too. * Eventually it should become a filesystem in its own. We don't use the * rest of procfs anymore. */ #include #include #include #include #include #include #include #include #include /* * For hysterical raisins we keep the same inumbers as in the old procfs. * Feel free to change the macro below - just keep the range distinct from * inumbers of the rest of procfs (currently those are in 0x0000--0xffff). * As soon as we'll get a separate superblock we will be able to forget * about magical ranges too. */ #define fake_ino(pid,ino) (((pid)<<16)|(ino)) ssize_t proc_pid_read_maps(struct task_struct*,struct file*,char*,size_t,loff_t*); int proc_pid_stat(struct task_struct*,char*); int proc_pid_status(struct task_struct*,char*); int proc_pid_statm(struct task_struct*,char*); int proc_pid_cpu(struct task_struct*,char*); static int proc_fd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) { if (inode->u.proc_i.file) { *mnt = mntget(inode->u.proc_i.file->f_vfsmnt); *dentry = dget(inode->u.proc_i.file->f_dentry); return 0; } return -ENOENT; } static int proc_exe_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) { struct mm_struct * mm; struct vm_area_struct * vma; int result = -ENOENT; struct task_struct *task = inode->u.proc_i.task; task_lock(task); mm = task->mm; if (mm) atomic_inc(&mm->mm_users); task_unlock(task); if (!mm) goto out; down_read(&mm->mmap_sem); vma = mm->mmap; while (vma) { if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file) { *mnt = mntget(vma->vm_file->f_vfsmnt); *dentry = dget(vma->vm_file->f_dentry); result = 0; break; } vma = vma->vm_next; } up_read(&mm->mmap_sem); mmput(mm); out: return result; } static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) { struct fs_struct *fs; int result = -ENOENT; task_lock(inode->u.proc_i.task); fs = inode->u.proc_i.task->fs; if(fs) atomic_inc(&fs->count); task_unlock(inode->u.proc_i.task); if (fs) { read_lock(&fs->lock); *mnt = mntget(fs->pwdmnt); *dentry = dget(fs->pwd); read_unlock(&fs->lock); result = 0; put_fs_struct(fs); } return result; } static int proc_root_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) { struct fs_struct *fs; int result = -ENOENT; task_lock(inode->u.proc_i.task); fs = inode->u.proc_i.task->fs; if(fs) atomic_inc(&fs->count); task_unlock(inode->u.proc_i.task); if (fs) { read_lock(&fs->lock); *mnt = mntget(fs->rootmnt); *dentry = dget(fs->root); read_unlock(&fs->lock); result = 0; put_fs_struct(fs); } return result; } static int proc_pid_environ(struct task_struct *task, char * buffer) { struct mm_struct *mm; int res = 0; task_lock(task); mm = task->mm; if (mm) atomic_inc(&mm->mm_users); task_unlock(task); if (mm) { int len = mm->env_end - mm->env_start; if (len > PAGE_SIZE) len = PAGE_SIZE; res = access_process_vm(task, mm->env_start, buffer, len, 0); mmput(mm); } return res; } static int proc_pid_cmdline(struct task_struct *task, char * buffer) { struct mm_struct *mm; int res = 0; task_lock(task); mm = task->mm; if (mm) atomic_inc(&mm->mm_users); task_unlock(task); if (mm) { int len = mm->arg_end - mm->arg_start; if (len > PAGE_SIZE) len = PAGE_SIZE; res = access_process_vm(task, mm->arg_start, buffer, len, 0); // If the nul at the end of args has been overwritten, then // assume application is using setproctitle(3). if ( res > 0 && buffer[res-1] != '\0' ) { len = strnlen( buffer, res ); if ( len < res ) { res = len; } else { len = mm->env_end - mm->env_start; if (len > PAGE_SIZE - res) len = PAGE_SIZE - res; res += access_process_vm(task, mm->env_start, buffer+res, len, 0); res = strnlen( buffer, res ); } } mmput(mm); } return res; } /************************************************************************/ /* Here the fs part begins */ /************************************************************************/ /* permission checks */ static int proc_check_root(struct inode *inode) { struct dentry *de, *base, *root; struct vfsmount *our_vfsmnt, *vfsmnt, *mnt; int res = 0; if (proc_root_link(inode, &root, &vfsmnt)) /* Ewww... */ return -ENOENT; read_lock(¤t->fs->lock); our_vfsmnt = mntget(current->fs->rootmnt); base = dget(current->fs->root); read_unlock(¤t->fs->lock); spin_lock(&dcache_lock); de = root; mnt = vfsmnt; while (vfsmnt != our_vfsmnt) { if (vfsmnt == vfsmnt->mnt_parent) goto out; de = vfsmnt->mnt_mountpoint; vfsmnt = vfsmnt->mnt_parent; } if (!is_subdir(de, base)) goto out; spin_unlock(&dcache_lock); exit: dput(base); mntput(our_vfsmnt); dput(root); mntput(mnt); return res; out: spin_unlock(&dcache_lock); res = -EACCES; goto exit; } static int proc_permission(struct inode *inode, int mask) { if (vfs_permission(inode, mask) != 0) return -EACCES; return proc_check_root(inode); } static ssize_t pid_maps_read(struct file * file, char * buf, size_t count, loff_t *ppos) { struct inode * inode = file->f_dentry->d_inode; struct task_struct *task = inode->u.proc_i.task; ssize_t res; res = proc_pid_read_maps(task, file, buf, count, ppos); return res; } static struct file_operations proc_maps_operations = { read: pid_maps_read, }; #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ static ssize_t proc_info_read(struct file * file, char * buf, size_t count, loff_t *ppos) { struct inode * inode = file->f_dentry->d_inode; unsigned long page; ssize_t length; ssize_t end; struct task_struct *task = inode->u.proc_i.task; if (count > PROC_BLOCK_SIZE) count = PROC_BLOCK_SIZE; if (!(page = __get_free_page(GFP_KERNEL))) return -ENOMEM; length = inode->u.proc_i.op.proc_read(task, (char*)page); if (length < 0) { free_page(page); return length; } /* Static 4kB (or whatever) block capacity */ if (*ppos >= length) { free_page(page); return 0; } if (count + *ppos > length) count = length - *ppos; end = count + *ppos; copy_to_user(buf, (char *) page + *ppos, count); *ppos = end; free_page(page); return count; } static struct file_operations proc_info_file_operations = { read: proc_info_read, }; #define MAY_PTRACE(p) \ (p==current||(p->p_pptr==current&&(p->ptrace & PT_PTRACED)&&p->state==TASK_STOPPED)) static int mem_open(struct inode* inode, struct file* file) { file->private_data = (void*)((long)current->self_exec_id); return 0; } static ssize_t mem_read(struct file * file, char * buf, size_t count, loff_t *ppos) { struct task_struct *task = file->f_dentry->d_inode->u.proc_i.task; char *page; unsigned long src = *ppos; int copied = 0; struct mm_struct *mm; if (!MAY_PTRACE(task)) return -ESRCH; page = (char *)__get_free_page(GFP_USER); if (!page) return -ENOMEM; task_lock(task); mm = task->mm; if (mm) atomic_inc(&mm->mm_users); task_unlock(task); if (!mm) return 0; if (file->private_data != (void*)((long)current->self_exec_id) ) { mmput(mm); return -EIO; } while (count > 0) { int this_len, retval; this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; retval = access_process_vm(task, src, page, this_len, 0); if (!retval) { if (!copied) copied = -EIO; break; } if (copy_to_user(buf, page, retval)) { copied = -EFAULT; break; } copied += retval; src += retval; buf += retval; count -= retval; } *ppos = src; mmput(mm); free_page((unsigned long) page); return copied; } #define mem_write NULL #ifndef mem_write /* This is a security hazard */ static ssize_t mem_write(struct file * file, const char * buf, size_t count, loff_t *ppos) { int copied = 0; char *page; struct task_struct *task = file->f_dentry->d_inode->u.proc_i.task; unsigned long dst = *ppos; if (!MAY_PTRACE(task)) return -ESRCH; page = (char *)__get_free_page(GFP_USER); if (!page) return -ENOMEM; while (count > 0) { int this_len, retval; this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; if (copy_from_user(page, buf, this_len)) { copied = -EFAULT; break; } retval = access_process_vm(task, dst, page, this_len, 1); if (!retval) { if (!copied) copied = -EIO; break; } copied += retval; buf += retval; dst += retval; count -= retval; } *ppos = dst; free_page((unsigned long) page); return copied; } #endif static struct file_operations proc_mem_operations = { read: mem_read, write: mem_write, open: mem_open, }; static struct inode_operations proc_mem_inode_operations = { permission: proc_permission, }; static int proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) { struct inode *inode = dentry->d_inode; int error = -EACCES; /* We don't need a base pointer in the /proc filesystem */ path_release(nd); if (current->fsuid != inode->i_uid && !capable(CAP_DAC_OVERRIDE)) goto out; error = proc_check_root(inode); if (error) goto out; error = inode->u.proc_i.op.proc_get_link(inode, &nd->dentry, &nd->mnt); nd->last_type = LAST_BIND; out: return error; } static int do_proc_readlink(struct dentry *dentry, struct vfsmount *mnt, char * buffer, int buflen) { struct inode * inode; char * tmp = (char*)__get_free_page(GFP_KERNEL), *path; int len; if (!tmp) return -ENOMEM; inode = dentry->d_inode; path = d_path(dentry, mnt, tmp, PAGE_SIZE); len = tmp + PAGE_SIZE - 1 - path; if (len < buflen) buflen = len; copy_to_user(buffer, path, buflen); free_page((unsigned long)tmp); return buflen; } static int proc_pid_readlink(struct dentry * dentry, char * buffer, int buflen) { int error = -EACCES; struct inode *inode = dentry->d_inode; struct dentry *de; struct vfsmount *mnt = NULL; if (current->fsuid != inode->i_uid && !capable(CAP_DAC_OVERRIDE)) goto out; error = proc_check_root(inode); if (error) goto out; error = inode->u.proc_i.op.proc_get_link(inode, &de, &mnt); if (error) goto out; error = do_proc_readlink(de, mnt, buffer, buflen); dput(de); mntput(mnt); out: return error; } static struct inode_operations proc_pid_link_inode_operations = { readlink: proc_pid_readlink, follow_link: proc_pid_follow_link }; struct pid_entry { int type; int len; char *name; mode_t mode; }; enum pid_directory_inos { PROC_PID_INO = 2, PROC_PID_STATUS, PROC_PID_MEM, PROC_PID_CWD, PROC_PID_ROOT, PROC_PID_EXE, PROC_PID_FD, PROC_PID_ENVIRON, PROC_PID_CMDLINE, PROC_PID_STAT, PROC_PID_STATM, PROC_PID_MAPS, PROC_PID_CPU, PROC_PID_FD_DIR = 0x8000, /* 0x8000-0xffff */ }; #define E(type,name,mode) {(type),sizeof(name)-1,(name),(mode)} static struct pid_entry base_stuff[] = { E(PROC_PID_FD, "fd", S_IFDIR|S_IRUSR|S_IXUSR), E(PROC_PID_ENVIRON, "environ", S_IFREG|S_IRUSR), E(PROC_PID_STATUS, "status", S_IFREG|S_IRUGO), E(PROC_PID_CMDLINE, "cmdline", S_IFREG|S_IRUGO), E(PROC_PID_STAT, "stat", S_IFREG|S_IRUGO), E(PROC_PID_STATM, "statm", S_IFREG|S_IRUGO), #ifdef CONFIG_SMP E(PROC_PID_CPU, "cpu", S_IFREG|S_IRUGO), #endif E(PROC_PID_MAPS, "maps", S_IFREG|S_IRUGO), E(PROC_PID_MEM, "mem", S_IFREG|S_IRUSR|S_IWUSR), E(PROC_PID_CWD, "cwd", S_IFLNK|S_IRWXUGO), E(PROC_PID_ROOT, "root", S_IFLNK|S_IRWXUGO), E(PROC_PID_EXE, "exe", S_IFLNK|S_IRWXUGO), {0,0,NULL,0} }; #undef E #define NUMBUF 10 static int proc_readfd(struct file * filp, void * dirent, filldir_t filldir) { struct inode *inode = filp->f_dentry->d_inode; struct task_struct *p = inode->u.proc_i.task; unsigned int fd, pid, ino; int retval; char buf[NUMBUF]; struct files_struct * files; retval = 0; pid = p->pid; fd = filp->f_pos; switch (fd) { case 0: if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) goto out; filp->f_pos++; case 1: ino = fake_ino(pid, PROC_PID_INO); if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) goto out; filp->f_pos++; default: task_lock(p); files = p->files; if (files) atomic_inc(&files->count); task_unlock(p); if (!files) goto out; for (fd = filp->f_pos-2; fd < files->max_fds; fd++, filp->f_pos++) { unsigned int i,j; if (!fcheck_files(files, fd)) continue; j = NUMBUF; i = fd; do { j--; buf[j] = '0' + (i % 10); i /= 10; } while (i); ino = fake_ino(pid, PROC_PID_FD_DIR + fd); if (filldir(dirent, buf+j, NUMBUF-j, fd+2, ino, DT_LNK) < 0) break; } put_files_struct(files); } out: return retval; } static int proc_base_readdir(struct file * filp, void * dirent, filldir_t filldir) { int i; int pid; struct inode *inode = filp->f_dentry->d_inode; struct pid_entry *p; pid = inode->u.proc_i.task->pid; if (!pid) return -ENOENT; i = filp->f_pos; switch (i) { case 0: if (filldir(dirent, ".", 1, i, inode->i_ino, DT_DIR) < 0) return 0; i++; filp->f_pos++; /* fall through */ case 1: if (filldir(dirent, "..", 2, i, PROC_ROOT_INO, DT_DIR) < 0) return 0; i++; filp->f_pos++; /* fall through */ default: i -= 2; if (i>=sizeof(base_stuff)/sizeof(base_stuff[0])) return 1; p = base_stuff + i; while (p->name) { if (filldir(dirent, p->name, p->len, filp->f_pos, fake_ino(pid, p->type), p->mode >> 12) < 0) return 0; filp->f_pos++; p++; } } return 1; } /* building an inode */ static int task_dumpable(struct task_struct *task) { int dumpable = 0; struct mm_struct *mm; task_lock(task); mm = task->mm; if (mm) dumpable = mm->dumpable; task_unlock(task); return dumpable; } static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task, int ino) { struct inode * inode; /* We need a new inode */ inode = new_inode(sb); if (!inode) goto out; /* Common stuff */ inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; inode->i_ino = fake_ino(task->pid, ino); if (!task->pid) goto out_unlock; /* * grab the reference to task. */ get_task_struct(task); inode->u.proc_i.task = task; inode->i_uid = 0; inode->i_gid = 0; if (ino == PROC_PID_INO || task_dumpable(task)) { inode->i_uid = task->euid; inode->i_gid = task->egid; } out: return inode; out_unlock: iput(inode); return NULL; } /* dentry stuff */ static int pid_fd_revalidate(struct dentry * dentry, int flags) { return 0; } /* * Exceptional case: normally we are not allowed to unhash a busy * directory. In this case, however, we can do it - no aliasing problems * due to the way we treat inodes. */ static int pid_base_revalidate(struct dentry * dentry, int flags) { if (dentry->d_inode->u.proc_i.task->pid) return 1; d_drop(dentry); return 0; } static int pid_delete_dentry(struct dentry * dentry) { return 1; } static struct dentry_operations pid_fd_dentry_operations = { d_revalidate: pid_fd_revalidate, d_delete: pid_delete_dentry, }; static struct dentry_operations pid_dentry_operations = { d_delete: pid_delete_dentry, }; static struct dentry_operations pid_base_dentry_operations = { d_revalidate: pid_base_revalidate, d_delete: pid_delete_dentry, }; /* Lookups */ #define MAX_MULBY10 ((~0U-9)/10) static struct dentry *proc_lookupfd(struct inode * dir, struct dentry * dentry) { unsigned int fd, c; struct task_struct *task = dir->u.proc_i.task; struct file * file; struct files_struct * files; struct inode *inode; const char *name; int len; fd = 0; len = dentry->d_name.len; name = dentry->d_name.name; if (len > 1 && *name == '0') goto out; while (len-- > 0) { c = *name - '0'; name++; if (c > 9) goto out; if (fd >= MAX_MULBY10) goto out; fd *= 10; fd += c; } inode = proc_pid_make_inode(dir->i_sb, task, PROC_PID_FD_DIR+fd); if (!inode) goto out; task_lock(task); files = task->files; if (files) atomic_inc(&files->count); task_unlock(task); if (!files) goto out_unlock; read_lock(&files->file_lock); file = inode->u.proc_i.file = fcheck_files(files, fd); if (!file) goto out_unlock2; get_file(file); read_unlock(&files->file_lock); put_files_struct(files); inode->i_op = &proc_pid_link_inode_operations; inode->i_size = 64; inode->i_mode = S_IFLNK; inode->u.proc_i.op.proc_get_link = proc_fd_link; if (file->f_mode & 1) inode->i_mode |= S_IRUSR | S_IXUSR; if (file->f_mode & 2) inode->i_mode |= S_IWUSR | S_IXUSR; dentry->d_op = &pid_fd_dentry_operations; d_add(dentry, inode); return NULL; out_unlock2: put_files_struct(files); read_unlock(&files->file_lock); out_unlock: iput(inode); out: return ERR_PTR(-ENOENT); } static struct file_operations proc_fd_operations = { read: generic_read_dir, readdir: proc_readfd, }; /* * proc directories can do almost nothing.. */ static struct inode_operations proc_fd_inode_operations = { lookup: proc_lookupfd, permission: proc_permission, }; static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) { struct inode *inode; int error; struct task_struct *task = dir->u.proc_i.task; struct pid_entry *p; error = -ENOENT; inode = NULL; for (p = base_stuff; p->name; p++) { if (p->len != dentry->d_name.len) continue; if (!memcmp(dentry->d_name.name, p->name, p->len)) break; } if (!p->name) goto out; error = -EINVAL; inode = proc_pid_make_inode(dir->i_sb, task, p->type); if (!inode) goto out; inode->i_mode = p->mode; /* * Yes, it does not scale. And it should not. Don't add * new entries into /proc// without very good reasons. */ switch(p->type) { case PROC_PID_FD: inode->i_nlink = 2; inode->i_op = &proc_fd_inode_operations; inode->i_fop = &proc_fd_operations; break; case PROC_PID_EXE: inode->i_op = &proc_pid_link_inode_operations; inode->u.proc_i.op.proc_get_link = proc_exe_link; break; case PROC_PID_CWD: inode->i_op = &proc_pid_link_inode_operations; inode->u.proc_i.op.proc_get_link = proc_cwd_link; break; case PROC_PID_ROOT: inode->i_op = &proc_pid_link_inode_operations; inode->u.proc_i.op.proc_get_link = proc_root_link; break; case PROC_PID_ENVIRON: inode->i_fop = &proc_info_file_operations; inode->u.proc_i.op.proc_read = proc_pid_environ; break; case PROC_PID_STATUS: inode->i_fop = &proc_info_file_operations; inode->u.proc_i.op.proc_read = proc_pid_status; break; case PROC_PID_STAT: inode->i_fop = &proc_info_file_operations; inode->u.proc_i.op.proc_read = proc_pid_stat; break; case PROC_PID_CMDLINE: inode->i_fop = &proc_info_file_operations; inode->u.proc_i.op.proc_read = proc_pid_cmdline; break; case PROC_PID_STATM: inode->i_fop = &proc_info_file_operations; inode->u.proc_i.op.proc_read = proc_pid_statm; break; case PROC_PID_MAPS: inode->i_fop = &proc_maps_operations; break; #ifdef CONFIG_SMP case PROC_PID_CPU: inode->i_fop = &proc_info_file_operations; inode->u.proc_i.op.proc_read = proc_pid_cpu; break; #endif case PROC_PID_MEM: inode->i_op = &proc_mem_inode_operations; inode->i_fop = &proc_mem_operations; break; default: printk("procfs: impossible type (%d)",p->type); iput(inode); return ERR_PTR(-EINVAL); } dentry->d_op = &pid_dentry_operations; d_add(dentry, inode); return NULL; out: return ERR_PTR(error); } static struct file_operations proc_base_operations = { read: generic_read_dir, readdir: proc_base_readdir, }; static struct inode_operations proc_base_inode_operations = { lookup: proc_base_lookup, }; /* * /proc/self: */ static int proc_self_readlink(struct dentry *dentry, char *buffer, int buflen) { char tmp[30]; sprintf(tmp, "%d", current->pid); return vfs_readlink(dentry,buffer,buflen,tmp); } static int proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) { char tmp[30]; sprintf(tmp, "%d", current->pid); return vfs_follow_link(nd,tmp); } static struct inode_operations proc_self_inode_operations = { readlink: proc_self_readlink, follow_link: proc_self_follow_link, }; struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry) { unsigned int pid, c; struct task_struct *task; const char *name; struct inode *inode; int len; pid = 0; name = dentry->d_name.name; len = dentry->d_name.len; if (len == 4 && !memcmp(name, "self", 4)) { inode = new_inode(dir->i_sb); if (!inode) return ERR_PTR(-ENOMEM); inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; inode->i_ino = fake_ino(0, PROC_PID_INO); inode->u.proc_i.file = NULL; inode->u.proc_i.task = NULL; inode->i_mode = S_IFLNK|S_IRWXUGO; inode->i_uid = inode->i_gid = 0; inode->i_size = 64; inode->i_op = &proc_self_inode_operations; d_add(dentry, inode); return NULL; } while (len-- > 0) { c = *name - '0'; name++; if (c > 9) goto out; if (pid >= MAX_MULBY10) goto out; pid *= 10; pid += c; if (!pid) goto out; } read_lock(&tasklist_lock); task = find_task_by_pid(pid); if (task) get_task_struct(task); read_unlock(&tasklist_lock); if (!task) goto out; inode = proc_pid_make_inode(dir->i_sb, task, PROC_PID_INO); free_task_struct(task); if (!inode) goto out; inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; inode->i_op = &proc_base_inode_operations; inode->i_fop = &proc_base_operations; inode->i_nlink = 3; inode->i_flags|=S_IMMUTABLE; dentry->d_op = &pid_base_dentry_operations; d_add(dentry, inode); return NULL; out: return ERR_PTR(-ENOENT); } void proc_pid_delete_inode(struct inode *inode) { if (inode->u.proc_i.file) fput(inode->u.proc_i.file); if (inode->u.proc_i.task) free_task_struct(inode->u.proc_i.task); } #define PROC_NUMBUF 10 #define PROC_MAXPIDS 20 /* * Get a few pid's to return for filldir - we need to hold the * tasklist lock while doing this, and we must release it before * we actually do the filldir itself, so we use a temp buffer.. */ static int get_pid_list(int index, unsigned int *pids) { struct task_struct *p; int nr_pids = 0; index--; read_lock(&tasklist_lock); for_each_task(p) { int pid = p->pid; if (!pid) continue; if (--index >= 0) continue; pids[nr_pids] = pid; nr_pids++; if (nr_pids >= PROC_MAXPIDS) break; } read_unlock(&tasklist_lock); return nr_pids; } int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) { unsigned int pid_array[PROC_MAXPIDS]; char buf[PROC_NUMBUF]; unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY; unsigned int nr_pids, i; if (!nr) { ino_t ino = fake_ino(0,PROC_PID_INO); if (filldir(dirent, "self", 4, filp->f_pos, ino, DT_LNK) < 0) return 0; filp->f_pos++; nr++; } nr_pids = get_pid_list(nr, pid_array); for (i = 0; i < nr_pids; i++) { int pid = pid_array[i]; ino_t ino = fake_ino(pid,PROC_PID_INO); unsigned long j = PROC_NUMBUF; do buf[--j] = '0' + (pid % 10); while (pid/=10); if (filldir(dirent, buf+j, PROC_NUMBUF-j, filp->f_pos, ino, DT_DIR) < 0) break; filp->f_pos++; } return 0; }