/* * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README */ #include #include #include #include #include #include #include /* args for the create parameter of reiserfs_get_block */ #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ #define GET_BLOCK_NO_ISEM 8 /* i_sem is not held, don't preallocate */ static int reiserfs_get_block (struct inode * inode, long block, struct buffer_head * bh_result, int create); // // initially this function was derived from minix or ext2's analog and // evolved as the prototype did // void reiserfs_delete_inode (struct inode * inode) { int jbegin_count = JOURNAL_PER_BALANCE_CNT * 2; int windex ; struct reiserfs_transaction_handle th ; lock_kernel() ; /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ if (INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ down (&inode->i_sem); journal_begin(&th, inode->i_sb, jbegin_count) ; reiserfs_update_inode_transaction(inode) ; windex = push_journal_writer("delete_inode") ; reiserfs_delete_object (&th, inode); pop_journal_writer(windex) ; journal_end(&th, inode->i_sb, jbegin_count) ; up (&inode->i_sem); /* all items of file are deleted, so we can remove "save" link */ remove_save_link (inode, 0/* not truncate */); } else { /* no object items are in the tree */ ; } clear_inode (inode); /* note this must go after the journal_end to prevent deadlock */ inode->i_blocks = 0; unlock_kernel() ; } static void _make_cpu_key (struct cpu_key * key, int version, __u32 dirid, __u32 objectid, loff_t offset, int type, int length ) { key->version = version; key->on_disk_key.k_dir_id = dirid; key->on_disk_key.k_objectid = objectid; set_cpu_key_k_offset (key, offset); set_cpu_key_k_type (key, type); key->key_length = length; } /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set offset and type of key */ void make_cpu_key (struct cpu_key * key, const struct inode * inode, loff_t offset, int type, int length ) { _make_cpu_key (key, get_inode_item_key_version (inode), le32_to_cpu (INODE_PKEY (inode)->k_dir_id), le32_to_cpu (INODE_PKEY (inode)->k_objectid), offset, type, length); } // // when key is 0, do not set version and short key // inline void make_le_item_head (struct item_head * ih, const struct cpu_key * key, int version, loff_t offset, int type, int length, int entry_count/*or ih_free_space*/) { if (key) { ih->ih_key.k_dir_id = cpu_to_le32 (key->on_disk_key.k_dir_id); ih->ih_key.k_objectid = cpu_to_le32 (key->on_disk_key.k_objectid); } put_ih_version( ih, version ); set_le_ih_k_offset (ih, offset); set_le_ih_k_type (ih, type); put_ih_item_len( ih, length ); /* set_ih_free_space (ih, 0);*/ // for directory items it is entry count, for directs and stat // datas - 0xffff, for indirects - 0 put_ih_entry_count( ih, entry_count ); } static void add_to_flushlist(struct inode *inode, struct buffer_head *bh) { struct inode *jinode = &(SB_JOURNAL(inode->i_sb)->j_dummy_inode) ; buffer_insert_inode_queue(bh, jinode) ; } // // FIXME: we might cache recently accessed indirect item (or at least // first 15 pointers just like ext2 does // Ugh. Not too eager for that.... // I cut the code until such time as I see a convincing argument (benchmark). // I don't want a bloated inode struct..., and I don't like code complexity.... /* cutting the code is fine, since it really isn't in use yet and is easy ** to add back in. But, Vladimir has a really good idea here. Think ** about what happens for reading a file. For each page, ** The VFS layer calls reiserfs_readpage, who searches the tree to find ** an indirect item. This indirect item has X number of pointers, where ** X is a big number if we've done the block allocation right. But, ** we only use one or two of these pointers during each call to readpage, ** needlessly researching again later on. ** ** The size of the cache could be dynamic based on the size of the file. ** ** I'd also like to see us cache the location the stat data item, since ** we are needlessly researching for that frequently. ** ** --chris */ /* If this page has a file tail in it, and ** it was read in by get_block_create_0, the page data is valid, ** but tail is still sitting in a direct item, and we can't write to ** it. So, look through this page, and check all the mapped buffers ** to make sure they have valid block numbers. Any that don't need ** to be unmapped, so that block_prepare_write will correctly call ** reiserfs_get_block to convert the tail into an unformatted node */ static inline void fix_tail_page_for_writing(struct page *page) { struct buffer_head *head, *next, *bh ; if (page && page->buffers) { head = page->buffers ; bh = head ; do { next = bh->b_this_page ; if (buffer_mapped(bh) && bh->b_blocknr == 0) { reiserfs_unmap_buffer(bh) ; } bh = next ; } while (bh != head) ; } } /* we need to allocate a block for new unformatted node. Try to figure out what point in bitmap reiserfs_new_blocknrs should start from. */ static b_blocknr_t find_tag (struct buffer_head * bh, struct item_head * ih, __u32 * item, int pos_in_item) { __u32 block ; if (!is_indirect_le_ih (ih)) /* something more complicated could be here */ return bh->b_blocknr; /* for indirect item: go to left and look for the first non-hole entry in the indirect item */ if (pos_in_item == I_UNFM_NUM (ih)) pos_in_item --; while (pos_in_item >= 0) { block = get_block_num(item, pos_in_item) ; if (block) return block ; pos_in_item --; } return bh->b_blocknr; } /* reiserfs_get_block does not need to allocate a block only if it has been done already or non-hole position has been found in the indirect item */ static inline int allocation_needed (int retval, b_blocknr_t allocated, struct item_head * ih, __u32 * item, int pos_in_item) { if (allocated) return 0; if (retval == POSITION_FOUND && is_indirect_le_ih (ih) && get_block_num(item, pos_in_item)) return 0; return 1; } static inline int indirect_item_found (int retval, struct item_head * ih) { return (retval == POSITION_FOUND) && is_indirect_le_ih (ih); } static inline void set_block_dev_mapped (struct buffer_head * bh, b_blocknr_t block, struct inode * inode) { bh->b_dev = inode->i_dev; bh->b_blocknr = block; bh->b_state |= (1UL << BH_Mapped); } // // files which were created in the earlier version can not be longer, // than 2 gb // static int file_capable (struct inode * inode, long block) { if (get_inode_item_key_version (inode) != KEY_FORMAT_3_5 || // it is new file. block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb return 1; return 0; } /*static*/ void restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path) { struct super_block *s = th->t_super ; int len = th->t_blocks_allocated ; pathrelse(path) ; reiserfs_update_sd(th, inode) ; journal_end(th, s, len) ; journal_begin(th, s, len) ; reiserfs_update_inode_transaction(inode) ; } // it is called by get_block when create == 0. Returns block number // for 'block'-th logical block of file. When it hits direct item it // returns 0 (being called from bmap) or read direct item into piece // of page (bh_result) // Please improve the english/clarity in the comment above, as it is // hard to understand. static int _get_block_create_0 (struct inode * inode, long block, struct buffer_head * bh_result, int args) { INITIALIZE_PATH (path); struct cpu_key key; struct buffer_head * bh; struct item_head * ih, tmp_ih; int fs_gen ; int blocknr; char * p = NULL; int chars; int ret ; int done = 0 ; unsigned long offset ; // prepare the key to look for the 'block'-th block of file make_cpu_key (&key, inode, (loff_t)block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 3); research: if (search_for_position_by_key (inode->i_sb, &key, &path) != POSITION_FOUND) { pathrelse (&path); if (p) kunmap(bh_result->b_page) ; if ((args & GET_BLOCK_NO_HOLE)) { return -ENOENT ; } return 0 ; } // bh = get_last_bh (&path); ih = get_ih (&path); if (is_indirect_le_ih (ih)) { __u32 * ind_item = (__u32 *)B_I_PITEM (bh, ih); /* FIXME: here we could cache indirect item or part of it in the inode to avoid search_by_key in case of subsequent access to file */ blocknr = get_block_num(ind_item, path.pos_in_item) ; ret = 0 ; if (blocknr) { bh_result->b_dev = inode->i_dev; bh_result->b_blocknr = blocknr; bh_result->b_state |= (1UL << BH_Mapped); } else if ((args & GET_BLOCK_NO_HOLE)) { ret = -ENOENT ; } pathrelse (&path); if (p) kunmap(bh_result->b_page) ; return ret ; } // requested data are in direct item(s) if (!(args & GET_BLOCK_READ_DIRECT)) { // we are called by bmap. FIXME: we can not map block of file // when it is stored in direct item(s) pathrelse (&path); if (p) kunmap(bh_result->b_page) ; return -ENOENT; } /* if we've got a direct item, and the buffer was uptodate, ** we don't want to pull data off disk again. skip to the ** end, where we map the buffer and return */ if (buffer_uptodate(bh_result)) { goto finished ; } // read file tail into part of page offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1) ; fs_gen = get_generation(inode->i_sb) ; copy_item_head (&tmp_ih, ih); /* we only want to kmap if we are reading the tail into the page. ** this is not the common case, so we don't kmap until we are ** sure we need to. But, this means the item might move if ** kmap schedules */ if (!p) { p = (char *)kmap(bh_result->b_page) ; if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) { goto research; } } p += offset ; memset (p, 0, inode->i_sb->s_blocksize); do { if (!is_direct_le_ih (ih)) { BUG (); } /* make sure we don't read more bytes than actually exist in ** the file. This can happen in odd cases where i_size isn't ** correct, and when direct item padding results in a few ** extra bytes at the end of the direct item */ if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) break ; if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { chars = inode->i_size - (le_ih_k_offset(ih) - 1) - path.pos_in_item; done = 1 ; } else { chars = ih_item_len(ih) - path.pos_in_item; } memcpy (p, B_I_PITEM (bh, ih) + path.pos_in_item, chars); if (done) break ; p += chars; if (PATH_LAST_POSITION (&path) != (B_NR_ITEMS (bh) - 1)) // we done, if read direct item is not the last item of // node FIXME: we could try to check right delimiting key // to see whether direct item continues in the right // neighbor or rely on i_size break; // update key to look for the next piece set_cpu_key_k_offset (&key, cpu_key_k_offset (&key) + chars); if (search_for_position_by_key (inode->i_sb, &key, &path) != POSITION_FOUND) // we read something from tail, even if now we got IO_ERROR break; bh = get_last_bh (&path); ih = get_ih (&path); } while (1); flush_dcache_page(bh_result->b_page) ; kunmap(bh_result->b_page) ; finished: pathrelse (&path); bh_result->b_blocknr = 0 ; bh_result->b_dev = inode->i_dev; mark_buffer_uptodate (bh_result, 1); bh_result->b_state |= (1UL << BH_Mapped); return 0; } // this is called to create file map. So, _get_block_create_0 will not // read direct item int reiserfs_bmap (struct inode * inode, long block, struct buffer_head * bh_result, int create) { if (!file_capable (inode, block)) return -EFBIG; lock_kernel() ; /* do not read the direct item */ _get_block_create_0 (inode, block, bh_result, 0) ; unlock_kernel() ; return 0; } /* special version of get_block that is only used by grab_tail_page right ** now. It is sent to block_prepare_write, and when you try to get a ** block past the end of the file (or a block from a hole) it returns ** -ENOENT instead of a valid buffer. block_prepare_write expects to ** be able to do i/o on the buffers returned, unless an error value ** is also returned. ** ** So, this allows block_prepare_write to be used for reading a single block ** in a page. Where it does not produce a valid page for holes, or past the ** end of the file. This turns out to be exactly what we need for reading ** tails for conversion. ** ** The point of the wrapper is forcing a certain value for create, even ** though the VFS layer is calling this function with create==1. If you ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, ** don't use this function. */ static int reiserfs_get_block_create_0 (struct inode * inode, long block, struct buffer_head * bh_result, int create) { return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE) ; } /* ** helper function for when reiserfs_get_block is called for a hole ** but the file tail is still in a direct item ** bh_result is the buffer head for the hole ** tail_offset is the offset of the start of the tail in the file ** ** This calls prepare_write, which will start a new transaction ** you should not be in a transaction, or have any paths held when you ** call this. */ static int convert_tail_for_hole(struct inode *inode, struct buffer_head *bh_result, loff_t tail_offset) { unsigned long index ; unsigned long tail_end ; unsigned long tail_start ; struct page * tail_page ; struct page * hole_page = bh_result->b_page ; int retval = 0 ; if ((tail_offset & (bh_result->b_size - 1)) != 1) return -EIO ; /* always try to read until the end of the block */ tail_start = tail_offset & (PAGE_CACHE_SIZE - 1) ; tail_end = (tail_start | (bh_result->b_size - 1)) + 1 ; index = tail_offset >> PAGE_CACHE_SHIFT ; if (index != hole_page->index) { tail_page = grab_cache_page(inode->i_mapping, index) ; retval = -ENOMEM; if (!tail_page) { goto out ; } } else { tail_page = hole_page ; } /* we don't have to make sure the conversion did not happen while ** we were locking the page because anyone that could convert ** must first take i_sem. ** ** We must fix the tail page for writing because it might have buffers ** that are mapped, but have a block number of 0. This indicates tail ** data that has been read directly into the page, and block_prepare_write ** won't trigger a get_block in this case. */ fix_tail_page_for_writing(tail_page) ; retval = block_prepare_write(tail_page, tail_start, tail_end, reiserfs_get_block) ; if (retval) goto unlock ; /* tail conversion might change the data in the page */ flush_dcache_page(tail_page) ; retval = generic_commit_write(NULL, tail_page, tail_start, tail_end) ; unlock: if (tail_page != hole_page) { UnlockPage(tail_page) ; page_cache_release(tail_page) ; } out: return retval ; } static inline int _allocate_block(struct reiserfs_transaction_handle *th, struct inode *inode, b_blocknr_t *allocated_block_nr, unsigned long tag, int flags) { #ifdef REISERFS_PREALLOCATE if (!(flags & GET_BLOCK_NO_ISEM)) { return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, tag); } #endif return reiserfs_new_unf_blocknrs (th, allocated_block_nr, tag); } // // initially this function was derived from ext2's analog and evolved // as the prototype did. You'll need to look at the ext2 version to // determine which parts are derivative, if any, understanding that // there are only so many ways to code to a given interface. // static int reiserfs_get_block (struct inode * inode, long block, struct buffer_head * bh_result, int create) { int repeat, retval; unsigned long tag; b_blocknr_t allocated_block_nr = 0;// b_blocknr_t is unsigned long INITIALIZE_PATH(path); int pos_in_item; struct cpu_key key; struct buffer_head * bh, * unbh = 0; struct item_head * ih, tmp_ih; __u32 * item; int done; int fs_gen; int windex ; struct reiserfs_transaction_handle th ; /* space reserved in transaction batch: . 3 balancings in direct->indirect conversion . 1 block involved into reiserfs_update_sd() XXX in practically impossible worst case direct2indirect() can incur (much) more that 3 balancings. */ int jbegin_count = JOURNAL_PER_BALANCE_CNT * 3 + 1; int version; int transaction_started = 0 ; loff_t new_offset = (((loff_t)block) << inode->i_sb->s_blocksize_bits) + 1 ; /* bad.... */ lock_kernel() ; th.t_trans_id = 0 ; version = get_inode_item_key_version (inode); if (block < 0) { unlock_kernel(); return -EIO; } if (!file_capable (inode, block)) { unlock_kernel() ; return -EFBIG; } /* if !create, we aren't changing the FS, so we don't need to ** log anything, so we don't need to start a transaction */ if (!(create & GET_BLOCK_CREATE)) { int ret ; /* find number of block-th logical block of the file */ ret = _get_block_create_0 (inode, block, bh_result, create | GET_BLOCK_READ_DIRECT) ; unlock_kernel() ; return ret; } inode->u.reiserfs_i.i_flags |= i_pack_on_close_mask; windex = push_journal_writer("reiserfs_get_block") ; /* set the key of the first byte in the 'block'-th block of file */ make_cpu_key (&key, inode, new_offset, TYPE_ANY, 3/*key length*/); if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { journal_begin(&th, inode->i_sb, jbegin_count) ; reiserfs_update_inode_transaction(inode) ; transaction_started = 1 ; } research: retval = search_for_position_by_key (inode->i_sb, &key, &path); if (retval == IO_ERROR) { retval = -EIO; goto failure; } bh = get_last_bh (&path); ih = get_ih (&path); item = get_item (&path); pos_in_item = path.pos_in_item; fs_gen = get_generation (inode->i_sb); copy_item_head (&tmp_ih, ih); if (allocation_needed (retval, allocated_block_nr, ih, item, pos_in_item)) { /* we have to allocate block for the unformatted node */ tag = find_tag (bh, ih, item, pos_in_item); if (!transaction_started) { pathrelse(&path) ; journal_begin(&th, inode->i_sb, jbegin_count) ; reiserfs_update_inode_transaction(inode) ; transaction_started = 1 ; goto research ; } repeat = _allocate_block(&th, inode, &allocated_block_nr, tag, create); if (repeat == NO_DISK_SPACE) { /* restart the transaction to give the journal a chance to free ** some blocks. releases the path, so we have to go back to ** research if we succeed on the second try */ restart_transaction(&th, inode, &path) ; repeat = _allocate_block(&th, inode,&allocated_block_nr,tag,create); if (repeat != NO_DISK_SPACE) { goto research ; } retval = -ENOSPC; goto failure; } if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) { goto research; } } if (indirect_item_found (retval, ih)) { b_blocknr_t unfm_ptr; /* 'block'-th block is in the file already (there is corresponding cell in some indirect item). But it may be zero unformatted node pointer (hole) */ unfm_ptr = get_block_num (item, pos_in_item); if (unfm_ptr == 0) { /* use allocated block to plug the hole */ reiserfs_prepare_for_journal(inode->i_sb, bh, 1) ; if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) { reiserfs_restore_prepared_buffer(inode->i_sb, bh) ; goto research; } bh_result->b_state |= (1UL << BH_New); put_block_num(item, pos_in_item, allocated_block_nr) ; unfm_ptr = allocated_block_nr; journal_mark_dirty (&th, inode->i_sb, bh); inode->i_blocks += (inode->i_sb->s_blocksize / 512) ; reiserfs_update_sd(&th, inode) ; } set_block_dev_mapped(bh_result, unfm_ptr, inode); pathrelse (&path); pop_journal_writer(windex) ; if (transaction_started) journal_end(&th, inode->i_sb, jbegin_count) ; unlock_kernel() ; /* the item was found, so new blocks were not added to the file ** there is no need to make sure the inode is updated with this ** transaction */ return 0; } if (!transaction_started) { /* if we don't pathrelse, we could vs-3050 on the buffer if ** someone is waiting for it (they can't finish until the buffer ** is released, we can start a new transaction until they finish) */ pathrelse(&path) ; journal_begin(&th, inode->i_sb, jbegin_count) ; reiserfs_update_inode_transaction(inode) ; transaction_started = 1 ; goto research; } /* desired position is not found or is in the direct item. We have to append file with holes up to 'block'-th block converting direct items to indirect one if necessary */ done = 0; do { if (is_statdata_le_ih (ih)) { __u32 unp = 0; struct cpu_key tmp_key; /* indirect item has to be inserted */ make_le_item_head (&tmp_ih, &key, version, 1, TYPE_INDIRECT, UNFM_P_SIZE, 0/* free_space */); if (cpu_key_k_offset (&key) == 1) { /* we are going to add 'block'-th block to the file. Use allocated block for that */ unp = cpu_to_le32 (allocated_block_nr); set_block_dev_mapped (bh_result, allocated_block_nr, inode); bh_result->b_state |= (1UL << BH_New); done = 1; } tmp_key = key; // ;) set_cpu_key_k_offset (&tmp_key, 1); PATH_LAST_POSITION(&path) ++; retval = reiserfs_insert_item (&th, &path, &tmp_key, &tmp_ih, (char *)&unp); if (retval) { reiserfs_free_block (&th, allocated_block_nr); goto failure; // retval == -ENOSPC or -EIO or -EEXIST } if (unp) inode->i_blocks += inode->i_sb->s_blocksize / 512; //mark_tail_converted (inode); } else if (is_direct_le_ih (ih)) { /* direct item has to be converted */ loff_t tail_offset; tail_offset = ((le_ih_k_offset (ih) - 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; if (tail_offset == cpu_key_k_offset (&key)) { /* direct item we just found fits into block we have to map. Convert it into unformatted node: use bh_result for the conversion */ set_block_dev_mapped (bh_result, allocated_block_nr, inode); unbh = bh_result; done = 1; } else { /* we have to padd file tail stored in direct item(s) up to block size and convert it to unformatted node. FIXME: this should also get into page cache */ pathrelse(&path) ; journal_end(&th, inode->i_sb, jbegin_count) ; transaction_started = 0 ; retval = convert_tail_for_hole(inode, bh_result, tail_offset) ; if (retval) { printk("clm-6004: convert tail failed inode %lu, error %d\n", inode->i_ino, retval) ; if (allocated_block_nr) reiserfs_free_block (&th, allocated_block_nr); goto failure ; } goto research ; } retval = direct2indirect (&th, inode, &path, unbh, tail_offset); /* it is important the mark_buffer_uptodate is done after ** the direct2indirect. The buffer might contain valid ** data newer than the data on disk (read by readpage, changed, ** and then sent here by writepage). direct2indirect needs ** to know if unbh was already up to date, so it can decide ** if the data in unbh needs to be replaced with data from ** the disk */ mark_buffer_uptodate (unbh, 1); if (retval) { reiserfs_free_block (&th, allocated_block_nr); goto failure; } /* we've converted the tail, so we must ** flush unbh before the transaction commits */ add_to_flushlist(inode, unbh) ; /* mark it dirty now to prevent commit_write from adding ** this buffer to the inode's dirty buffer list */ __mark_buffer_dirty(unbh) ; //inode->i_blocks += inode->i_sb->s_blocksize / 512; //mark_tail_converted (inode); } else { /* append indirect item with holes if needed, when appending pointer to 'block'-th block use block, which is already allocated */ struct cpu_key tmp_key; struct unfm_nodeinfo un = {0, 0}; RFALSE( pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, "vs-804: invalid position for append"); /* indirect item has to be appended, set up key of that position */ make_cpu_key (&tmp_key, inode, le_key_k_offset (version, &(ih->ih_key)) + op_bytes_number (ih, inode->i_sb->s_blocksize), //pos_in_item * inode->i_sb->s_blocksize, TYPE_INDIRECT, 3);// key type is unimportant if (cpu_key_k_offset (&tmp_key) == cpu_key_k_offset (&key)) { /* we are going to add target block to the file. Use allocated block for that */ un.unfm_nodenum = cpu_to_le32 (allocated_block_nr); set_block_dev_mapped (bh_result, allocated_block_nr, inode); bh_result->b_state |= (1UL << BH_New); done = 1; } else { /* paste hole to the indirect item */ } retval = reiserfs_paste_into_item (&th, &path, &tmp_key, (char *)&un, UNFM_P_SIZE); if (retval) { reiserfs_free_block (&th, allocated_block_nr); goto failure; } if (un.unfm_nodenum) inode->i_blocks += inode->i_sb->s_blocksize / 512; //mark_tail_converted (inode); } if (done == 1) break; /* this loop could log more blocks than we had originally asked ** for. So, we have to allow the transaction to end if it is ** too big or too full. Update the inode so things are ** consistent if we crash before the function returns ** ** release the path so that anybody waiting on the path before ** ending their transaction will be able to continue. */ if (journal_transaction_should_end(&th, th.t_blocks_allocated)) { restart_transaction(&th, inode, &path) ; } /* inserting indirect pointers for a hole can take a ** long time. reschedule if needed */ if (current->need_resched) schedule() ; retval = search_for_position_by_key (inode->i_sb, &key, &path); if (retval == IO_ERROR) { retval = -EIO; goto failure; } if (retval == POSITION_FOUND) { reiserfs_warning ("vs-825: reiserfs_get_block: " "%k should not be found\n", &key); retval = -EEXIST; if (allocated_block_nr) reiserfs_free_block (&th, allocated_block_nr); pathrelse(&path) ; goto failure; } bh = get_last_bh (&path); ih = get_ih (&path); item = get_item (&path); pos_in_item = path.pos_in_item; } while (1); retval = 0; reiserfs_check_path(&path) ; failure: if (transaction_started) { reiserfs_update_sd(&th, inode) ; journal_end(&th, inode->i_sb, jbegin_count) ; } pop_journal_writer(windex) ; unlock_kernel() ; reiserfs_check_path(&path) ; return retval; } // // BAD: new directories have stat data of new type and all other items // of old type. Version stored in the inode says about body items, so // in update_stat_data we can not rely on inode, but have to check // item version directly // // called by read_inode static void init_inode (struct inode * inode, struct path * path) { struct buffer_head * bh; struct item_head * ih; __u32 rdev; //int version = ITEM_VERSION_1; bh = PATH_PLAST_BUFFER (path); ih = PATH_PITEM_HEAD (path); copy_key (INODE_PKEY (inode), &(ih->ih_key)); inode->i_blksize = PAGE_SIZE; INIT_LIST_HEAD(&inode->u.reiserfs_i.i_prealloc_list) ; if (stat_data_v1 (ih)) { struct stat_data_v1 * sd = (struct stat_data_v1 *)B_I_PITEM (bh, ih); unsigned long blocks; set_inode_item_key_version (inode, KEY_FORMAT_3_5); set_inode_sd_version (inode, STAT_DATA_V1); inode->i_mode = sd_v1_mode(sd); inode->i_nlink = sd_v1_nlink(sd); inode->i_uid = sd_v1_uid(sd); inode->i_gid = sd_v1_gid(sd); inode->i_size = sd_v1_size(sd); inode->i_atime = sd_v1_atime(sd); inode->i_mtime = sd_v1_mtime(sd); inode->i_ctime = sd_v1_ctime(sd); inode->i_blocks = sd_v1_blocks(sd); inode->i_generation = le32_to_cpu (INODE_PKEY (inode)->k_dir_id); blocks = (inode->i_size + 511) >> 9; blocks = _ROUND_UP (blocks, inode->i_blksize >> 9); if (inode->i_blocks > blocks) { // there was a bug in <=3.5.23 when i_blocks could take negative // values. Starting from 3.5.17 this value could even be stored in // stat data. For such files we set i_blocks based on file // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be // only updated if file's inode will ever change inode->i_blocks = blocks; } rdev = sd_v1_rdev(sd); inode->u.reiserfs_i.i_first_direct_byte = sd_v1_first_direct_byte(sd); } else { // new stat data found, but object may have old items // (directories and symlinks) struct stat_data * sd = (struct stat_data *)B_I_PITEM (bh, ih); /* both old and new directories have old keys */ //version = (S_ISDIR (sd->sd_mode) ? ITEM_VERSION_1 : ITEM_VERSION_2); inode->i_mode = sd_v2_mode(sd); inode->i_nlink = sd_v2_nlink(sd); inode->i_uid = sd_v2_uid(sd); inode->i_size = sd_v2_size(sd); inode->i_gid = sd_v2_gid(sd); inode->i_mtime = sd_v2_mtime(sd); inode->i_atime = sd_v2_atime(sd); inode->i_ctime = sd_v2_ctime(sd); inode->i_blocks = sd_v2_blocks(sd); rdev = sd_v2_rdev(sd); if( S_ISCHR( inode -> i_mode ) || S_ISBLK( inode -> i_mode ) ) inode->i_generation = le32_to_cpu (INODE_PKEY (inode)->k_dir_id); else inode->i_generation = sd_v2_generation(sd); if (S_ISDIR (inode->i_mode) || S_ISLNK (inode->i_mode)) set_inode_item_key_version (inode, KEY_FORMAT_3_5); else set_inode_item_key_version (inode, KEY_FORMAT_3_6); } /* nopack = 0, by default */ inode->u.reiserfs_i.i_flags &= ~i_nopack_mask; pathrelse (path); if (S_ISREG (inode->i_mode)) { inode->i_op = &reiserfs_file_inode_operations; inode->i_fop = &reiserfs_file_operations; inode->i_mapping->a_ops = &reiserfs_address_space_operations ; } else if (S_ISDIR (inode->i_mode)) { inode->i_op = &reiserfs_dir_inode_operations; inode->i_fop = &reiserfs_dir_operations; } else if (S_ISLNK (inode->i_mode)) { inode->i_op = &page_symlink_inode_operations; inode->i_mapping->a_ops = &reiserfs_address_space_operations; } else { inode->i_blocks = 0; init_special_inode(inode, inode->i_mode, rdev) ; } } // update new stat data with inode fields static void inode2sd (void * sd, struct inode * inode) { struct stat_data * sd_v2 = (struct stat_data *)sd; set_sd_v2_mode(sd_v2, inode->i_mode ); set_sd_v2_nlink(sd_v2, inode->i_nlink ); set_sd_v2_uid(sd_v2, inode->i_uid ); set_sd_v2_size(sd_v2, inode->i_size ); set_sd_v2_gid(sd_v2, inode->i_gid ); set_sd_v2_mtime(sd_v2, inode->i_mtime ); set_sd_v2_atime(sd_v2, inode->i_atime ); set_sd_v2_ctime(sd_v2, inode->i_ctime ); set_sd_v2_blocks(sd_v2, inode->i_blocks ); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { set_sd_v2_rdev(sd_v2, inode->i_rdev ); } else { set_sd_v2_generation(sd_v2, inode->i_generation); } } // used to copy inode's fields to old stat data static void inode2sd_v1 (void * sd, struct inode * inode) { struct stat_data_v1 * sd_v1 = (struct stat_data_v1 *)sd; set_sd_v1_mode(sd_v1, inode->i_mode ); set_sd_v1_uid(sd_v1, inode->i_uid ); set_sd_v1_gid(sd_v1, inode->i_gid ); set_sd_v1_nlink(sd_v1, inode->i_nlink ); set_sd_v1_size(sd_v1, inode->i_size ); set_sd_v1_atime(sd_v1, inode->i_atime ); set_sd_v1_ctime(sd_v1, inode->i_ctime ); set_sd_v1_mtime(sd_v1, inode->i_mtime ); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) set_sd_v1_rdev(sd_v1, inode->i_rdev ); else set_sd_v1_blocks(sd_v1, inode->i_blocks ); // Sigh. i_first_direct_byte is back set_sd_v1_first_direct_byte(sd_v1, inode->u.reiserfs_i.i_first_direct_byte); } /* NOTE, you must prepare the buffer head before sending it here, ** and then log it after the call */ static void update_stat_data (struct path * path, struct inode * inode) { struct buffer_head * bh; struct item_head * ih; bh = PATH_PLAST_BUFFER (path); ih = PATH_PITEM_HEAD (path); if (!is_statdata_le_ih (ih)) reiserfs_panic (inode->i_sb, "vs-13065: update_stat_data: key %k, found item %h", INODE_PKEY (inode), ih); if (stat_data_v1 (ih)) { // path points to old stat data inode2sd_v1 (B_I_PITEM (bh, ih), inode); } else { inode2sd (B_I_PITEM (bh, ih), inode); } return; } void reiserfs_update_sd (struct reiserfs_transaction_handle *th, struct inode * inode) { struct cpu_key key; INITIALIZE_PATH(path); struct buffer_head *bh ; int fs_gen ; struct item_head *ih, tmp_ih ; int retval; make_cpu_key (&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);//key type is unimportant for(;;) { int pos; /* look for the object's stat data */ retval = search_item (inode->i_sb, &key, &path); if (retval == IO_ERROR) { reiserfs_warning ("vs-13050: reiserfs_update_sd: " "i/o failure occurred trying to update %K stat data", &key); return; } if (retval == ITEM_NOT_FOUND) { pos = PATH_LAST_POSITION (&path); pathrelse(&path) ; if (inode->i_nlink == 0) { /*printk ("vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found\n");*/ return; } reiserfs_warning ("vs-13060: reiserfs_update_sd: " "stat data of object %k (nlink == %d) not found (pos %d)\n", INODE_PKEY (inode), inode->i_nlink, pos); reiserfs_check_path(&path) ; return; } /* sigh, prepare_for_journal might schedule. When it schedules the ** FS might change. We have to detect that, and loop back to the ** search if the stat data item has moved */ bh = get_last_bh(&path) ; ih = get_ih(&path) ; copy_item_head (&tmp_ih, ih); fs_gen = get_generation (inode->i_sb); reiserfs_prepare_for_journal(inode->i_sb, bh, 1) ; if (fs_changed (fs_gen, inode->i_sb) && item_moved(&tmp_ih, &path)) { reiserfs_restore_prepared_buffer(inode->i_sb, bh) ; continue ; /* Stat_data item has been moved after scheduling. */ } break; } update_stat_data (&path, inode); journal_mark_dirty(th, th->t_super, bh) ; pathrelse (&path); return; } void reiserfs_read_inode(struct inode *inode) { make_bad_inode(inode) ; } // // initially this function was derived from minix or ext2's analog and // evolved as the prototype did // /* looks for stat data in the tree, and fills up the fields of in-core inode stat data fields */ void reiserfs_read_inode2 (struct inode * inode, void *p) { INITIALIZE_PATH (path_to_sd); struct cpu_key key; struct reiserfs_iget4_args *args = (struct reiserfs_iget4_args *)p ; unsigned long dirino; int retval; if (!p) { make_bad_inode(inode) ; return; } dirino = args->objectid ; /* set version 1, version 2 could be used too, because stat data key is the same in both versions */ key.version = KEY_FORMAT_3_5; key.on_disk_key.k_dir_id = dirino; key.on_disk_key.k_objectid = inode->i_ino; key.on_disk_key.u.k_offset_v1.k_offset = SD_OFFSET; key.on_disk_key.u.k_offset_v1.k_uniqueness = SD_UNIQUENESS; /* look for the object's stat data */ retval = search_item (inode->i_sb, &key, &path_to_sd); if (retval == IO_ERROR) { reiserfs_warning ("vs-13070: reiserfs_read_inode2: " "i/o failure occurred trying to find stat data of %K\n", &key); make_bad_inode(inode) ; return; } if (retval != ITEM_FOUND) { /* a stale NFS handle can trigger this without it being an error */ pathrelse (&path_to_sd); make_bad_inode(inode) ; return; } init_inode (inode, &path_to_sd); /* It is possible that knfsd is trying to access inode of a file that is being removed from the disk by some other thread. As we update sd on unlink all that is required is to check for nlink here. This bug was first found by Sizif when debugging SquidNG/Butterfly, forgotten, and found again after Philippe Gramoulle reproduced it. More logical fix would require changes in fs/inode.c:iput() to remove inode from hash-table _after_ fs cleaned disk stuff up and in iget() to return NULL if I_FREEING inode is found in hash-table. */ /* Currently there is one place where it's ok to meet inode with nlink==0: processing of open-unlinked and half-truncated files during mount (fs/reiserfs/super.c:finish_unfinished()). */ if( ( inode -> i_nlink == 0 ) && ! inode -> i_sb -> u.reiserfs_sb.s_is_unlinked_ok ) { reiserfs_warning( "vs-13075: reiserfs_read_inode2: " "dead inode read from disk %K. " "This is likely to be race with knfsd. Ignore\n", &key ); make_bad_inode( inode ); } reiserfs_check_path(&path_to_sd) ; /* init inode should be relsing */ } struct inode * reiserfs_iget (struct super_block * s, const struct cpu_key * key) { struct inode * inode; struct reiserfs_iget4_args args ; args.objectid = key->on_disk_key.k_dir_id ; inode = iget4 (s, key->on_disk_key.k_objectid, 0, (void *)(&args)); if (!inode) return ERR_PTR(-ENOMEM) ; if (comp_short_keys (INODE_PKEY (inode), key) || is_bad_inode (inode)) { /* either due to i/o error or a stale NFS handle */ iput (inode); inode = 0; } return inode; } struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, __u32 *data, int len, int fhtype, int parent) { struct cpu_key key ; struct inode *inode = NULL ; struct list_head *lp; struct dentry *result; /* fhtype happens to reflect the number of u32s encoded. * due to a bug in earlier code, fhtype might indicate there * are more u32s then actually fitted. * so if fhtype seems to be more than len, reduce fhtype. * Valid types are: * 2 - objectid + dir_id - legacy support * 3 - objectid + dir_id + generation * 4 - objectid + dir_id + objectid and dirid of parent - legacy * 5 - objectid + dir_id + generation + objectid and dirid of parent * 6 - as above plus generation of directory * 6 does not fit in NFSv2 handles */ if (fhtype > len) { if (fhtype != 6 || len != 5) printk(KERN_WARNING "nfsd/reiserfs, fhtype=%d, len=%d - odd\n", fhtype, len); fhtype = 5; } if (fhtype < 2 || (parent && fhtype < 4)) goto out ; if (! parent) { /* this works for handles from old kernels because the default ** reiserfs generation number is the packing locality. */ key.on_disk_key.k_objectid = data[0] ; key.on_disk_key.k_dir_id = data[1] ; inode = reiserfs_iget(sb, &key) ; if (inode && !IS_ERR(inode) && (fhtype == 3 || fhtype >= 5) && data[2] != inode->i_generation) { iput(inode) ; inode = NULL ; } } else { key.on_disk_key.k_objectid = data[fhtype>=5?3:2] ; key.on_disk_key.k_dir_id = data[fhtype>=5?4:3] ; inode = reiserfs_iget(sb, &key) ; if (inode && !IS_ERR(inode) && fhtype == 6 && data[5] != inode->i_generation) { iput(inode) ; inode = NULL ; } } out: if (IS_ERR(inode)) return ERR_PTR(PTR_ERR(inode)); if (!inode) return ERR_PTR(-ESTALE) ; /* now to find a dentry. * If possible, get a well-connected one */ spin_lock(&dcache_lock); for (lp = inode->i_dentry.next; lp != &inode->i_dentry ; lp=lp->next) { result = list_entry(lp,struct dentry, d_alias); if (! (result->d_flags & DCACHE_NFSD_DISCONNECTED)) { dget_locked(result); result->d_vfs_flags |= DCACHE_REFERENCED; spin_unlock(&dcache_lock); iput(inode); return result; } } spin_unlock(&dcache_lock); result = d_alloc_root(inode); if (result == NULL) { iput(inode); return ERR_PTR(-ENOMEM); } result->d_flags |= DCACHE_NFSD_DISCONNECTED; return result; } int reiserfs_dentry_to_fh(struct dentry *dentry, __u32 *data, int *lenp, int need_parent) { struct inode *inode = dentry->d_inode ; int maxlen = *lenp; if (maxlen < 3) return 255 ; data[0] = inode->i_ino ; data[1] = le32_to_cpu(INODE_PKEY (inode)->k_dir_id) ; data[2] = inode->i_generation ; *lenp = 3 ; /* no room for directory info? return what we've stored so far */ if (maxlen < 5 || ! need_parent) return 3 ; inode = dentry->d_parent->d_inode ; data[3] = inode->i_ino ; data[4] = le32_to_cpu(INODE_PKEY (inode)->k_dir_id) ; *lenp = 5 ; if (maxlen < 6) return 5 ; data[5] = inode->i_generation ; *lenp = 6 ; return 6 ; } // // initially this function was derived from minix or ext2's analog and // evolved as the prototype did // /* looks for stat data, then copies fields to it, marks the buffer containing stat data as dirty */ /* reiserfs inodes are never really dirty, since the dirty inode call ** always logs them. This call allows the VFS inode marking routines ** to properly mark inodes for datasync and such, but only actually ** does something when called for a synchronous update. */ void reiserfs_write_inode (struct inode * inode, int do_sync) { struct reiserfs_transaction_handle th ; int jbegin_count = 1 ; if (inode->i_sb->s_flags & MS_RDONLY) { reiserfs_warning("clm-6005: writing inode %lu on readonly FS\n", inode->i_ino) ; return ; } /* memory pressure can sometimes initiate write_inode calls with sync == 1, ** these cases are just when the system needs ram, not when the ** inode needs to reach disk for safety, and they can safely be ** ignored because the altered inode has already been logged. */ if (do_sync && !(current->flags & PF_MEMALLOC)) { lock_kernel() ; journal_begin(&th, inode->i_sb, jbegin_count) ; reiserfs_update_sd (&th, inode); journal_end_sync(&th, inode->i_sb, jbegin_count) ; unlock_kernel() ; } } /* FIXME: no need any more. right? */ int reiserfs_sync_inode (struct reiserfs_transaction_handle *th, struct inode * inode) { int err = 0; reiserfs_update_sd (th, inode); return err; } /* stat data of new object is inserted already, this inserts the item containing "." and ".." entries */ static int reiserfs_new_directory (struct reiserfs_transaction_handle *th, struct item_head * ih, struct path * path, const struct inode * dir) { struct super_block * sb = th->t_super; char empty_dir [EMPTY_DIR_SIZE]; char * body = empty_dir; struct cpu_key key; int retval; _make_cpu_key (&key, KEY_FORMAT_3_5, le32_to_cpu (ih->ih_key.k_dir_id), le32_to_cpu (ih->ih_key.k_objectid), DOT_OFFSET, TYPE_DIRENTRY, 3/*key length*/); /* compose item head for new item. Directories consist of items of old type (ITEM_VERSION_1). Do not set key (second arg is 0), it is done by reiserfs_new_inode */ if (old_format_only (sb)) { make_le_item_head (ih, 0, KEY_FORMAT_3_5, DOT_OFFSET, TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); make_empty_dir_item_v1 (body, ih->ih_key.k_dir_id, ih->ih_key.k_objectid, INODE_PKEY (dir)->k_dir_id, INODE_PKEY (dir)->k_objectid ); } else { make_le_item_head (ih, 0, KEY_FORMAT_3_5, DOT_OFFSET, TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); make_empty_dir_item (body, ih->ih_key.k_dir_id, ih->ih_key.k_objectid, INODE_PKEY (dir)->k_dir_id, INODE_PKEY (dir)->k_objectid ); } /* look for place in the tree for new item */ retval = search_item (sb, &key, path); if (retval == IO_ERROR) { reiserfs_warning ("vs-13080: reiserfs_new_directory: " "i/o failure occurred creating new directory\n"); return -EIO; } if (retval == ITEM_FOUND) { pathrelse (path); reiserfs_warning ("vs-13070: reiserfs_new_directory: " "object with this key exists (%k)", &(ih->ih_key)); return -EEXIST; } /* insert item, that is empty directory item */ return reiserfs_insert_item (th, path, &key, ih, body); } /* stat data of object has been inserted, this inserts the item containing the body of symlink */ static int reiserfs_new_symlink (struct reiserfs_transaction_handle *th, struct item_head * ih, struct path * path, const char * symname, int item_len) { struct super_block * sb = th->t_super; struct cpu_key key; int retval; _make_cpu_key (&key, KEY_FORMAT_3_5, le32_to_cpu (ih->ih_key.k_dir_id), le32_to_cpu (ih->ih_key.k_objectid), 1, TYPE_DIRECT, 3/*key length*/); make_le_item_head (ih, 0, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 0/*free_space*/); /* look for place in the tree for new item */ retval = search_item (sb, &key, path); if (retval == IO_ERROR) { reiserfs_warning ("vs-13080: reiserfs_new_symlinik: " "i/o failure occurred creating new symlink\n"); return -EIO; } if (retval == ITEM_FOUND) { pathrelse (path); reiserfs_warning ("vs-13080: reiserfs_new_symlink: " "object with this key exists (%k)", &(ih->ih_key)); return -EEXIST; } /* insert item, that is body of symlink */ return reiserfs_insert_item (th, path, &key, ih, symname); } /* inserts the stat data into the tree, and then calls reiserfs_new_directory (to insert ".", ".." item if new object is directory) or reiserfs_new_symlink (to insert symlink body if new object is symlink) or nothing (if new object is regular file) */ struct inode * reiserfs_new_inode (struct reiserfs_transaction_handle *th, const struct inode * dir, int mode, const char * symname, int i_size, /* 0 for regular, EMTRY_DIR_SIZE for dirs, strlen (symname) for symlinks)*/ struct dentry *dentry, struct inode *inode, int * err) { struct super_block * sb; INITIALIZE_PATH (path_to_key); struct cpu_key key; struct item_head ih; struct stat_data sd; int retval; if (!dir || !dir->i_nlink) { *err = -EPERM; iput(inode) ; return NULL; } sb = dir->i_sb; inode->i_flags = 0;//inode->i_sb->s_flags; /* item head of new item */ ih.ih_key.k_dir_id = INODE_PKEY (dir)->k_objectid; ih.ih_key.k_objectid = cpu_to_le32 (reiserfs_get_unused_objectid (th)); if (!ih.ih_key.k_objectid) { iput(inode) ; *err = -ENOMEM; return NULL; } if (old_format_only (sb)) /* not a perfect generation count, as object ids can be reused, but this ** is as good as reiserfs can do right now. ** note that the private part of inode isn't filled in yet, we have ** to use the directory. */ inode->i_generation = le32_to_cpu (INODE_PKEY (dir)->k_objectid); else #if defined( USE_INODE_GENERATION_COUNTER ) inode->i_generation = le32_to_cpu( sb -> u.reiserfs_sb.s_rs -> s_inode_generation ); #else inode->i_generation = ++event; #endif if (old_format_only (sb)) make_le_item_head (&ih, 0, KEY_FORMAT_3_5, SD_OFFSET, TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); else make_le_item_head (&ih, 0, KEY_FORMAT_3_6, SD_OFFSET, TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); /* key to search for correct place for new stat data */ _make_cpu_key (&key, KEY_FORMAT_3_6, le32_to_cpu (ih.ih_key.k_dir_id), le32_to_cpu (ih.ih_key.k_objectid), SD_OFFSET, TYPE_STAT_DATA, 3/*key length*/); /* find proper place for inserting of stat data */ retval = search_item (sb, &key, &path_to_key); if (retval == IO_ERROR) { iput (inode); *err = -EIO; return NULL; } if (retval == ITEM_FOUND) { pathrelse (&path_to_key); iput (inode); *err = -EEXIST; return NULL; } /* fill stat data */ inode->i_mode = mode; inode->i_nlink = (S_ISDIR (mode) ? 2 : 1); inode->i_uid = current->fsuid; if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) inode->i_mode |= S_ISGID; } else inode->i_gid = current->fsgid; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; inode->i_size = i_size; inode->i_blocks = (inode->i_size + 511) >> 9; inode->u.reiserfs_i.i_first_direct_byte = S_ISLNK(mode) ? 1 : U32_MAX/*NO_BYTES_IN_DIRECT_ITEM*/; INIT_LIST_HEAD(&inode->u.reiserfs_i.i_prealloc_list) ; if (old_format_only (sb)) { if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { pathrelse (&path_to_key); /* i_uid or i_gid is too big to be stored in stat data v3.5 */ iput (inode); *err = -EINVAL; return NULL; } inode2sd_v1 (&sd, inode); } else inode2sd (&sd, inode); // these do not go to on-disk stat data inode->i_ino = le32_to_cpu (ih.ih_key.k_objectid); inode->i_blksize = PAGE_SIZE; inode->i_dev = sb->s_dev; // store in in-core inode the key of stat data and version all // object items will have (directory items will have old offset // format, other new objects will consist of new items) memcpy (INODE_PKEY (inode), &(ih.ih_key), KEY_SIZE); if (old_format_only (sb) || S_ISDIR(mode) || S_ISLNK(mode)) set_inode_item_key_version (inode, KEY_FORMAT_3_5); else set_inode_item_key_version (inode, KEY_FORMAT_3_6); if (old_format_only (sb)) set_inode_sd_version (inode, STAT_DATA_V1); else set_inode_sd_version (inode, STAT_DATA_V2); /* insert the stat data into the tree */ retval = reiserfs_insert_item (th, &path_to_key, &key, &ih, (char *)(&sd)); if (retval) { iput (inode); *err = retval; reiserfs_check_path(&path_to_key) ; return NULL; } if (S_ISDIR(mode)) { /* insert item with "." and ".." */ retval = reiserfs_new_directory (th, &ih, &path_to_key, dir); } if (S_ISLNK(mode)) { /* insert body of symlink */ if (!old_format_only (sb)) i_size = ROUND_UP(i_size); retval = reiserfs_new_symlink (th, &ih, &path_to_key, symname, i_size); } if (retval) { inode->i_nlink = 0; iput (inode); *err = retval; reiserfs_check_path(&path_to_key) ; return NULL; } insert_inode_hash (inode); // we do not mark inode dirty: on disk content matches to the // in-core one reiserfs_check_path(&path_to_key) ; return inode; } /* ** finds the tail page in the page cache, ** reads the last block in. ** ** On success, page_result is set to a locked, pinned page, and bh_result ** is set to an up to date buffer for the last block in the file. returns 0. ** ** tail conversion is not done, so bh_result might not be valid for writing ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before ** trying to write the block. ** ** on failure, nonzero is returned, page_result and bh_result are untouched. */ static int grab_tail_page(struct inode *p_s_inode, struct page **page_result, struct buffer_head **bh_result) { /* we want the page with the last byte in the file, ** not the page that will hold the next byte for appending */ unsigned long index = (p_s_inode->i_size-1) >> PAGE_CACHE_SHIFT ; unsigned long pos = 0 ; unsigned long start = 0 ; unsigned long blocksize = p_s_inode->i_sb->s_blocksize ; unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1) ; struct buffer_head *bh ; struct buffer_head *head ; struct page * page ; int error ; /* we know that we are only called with inode->i_size > 0. ** we also know that a file tail can never be as big as a block ** If i_size % blocksize == 0, our file is currently block aligned ** and it won't need converting or zeroing after a truncate. */ if ((offset & (blocksize - 1)) == 0) { return -ENOENT ; } page = grab_cache_page(p_s_inode->i_mapping, index) ; error = -ENOMEM ; if (!page) { goto out ; } /* start within the page of the last block in the file */ start = (offset / blocksize) * blocksize ; error = block_prepare_write(page, start, offset, reiserfs_get_block_create_0) ; if (error) goto unlock ; kunmap(page) ; /* mapped by block_prepare_write */ head = page->buffers ; bh = head; do { if (pos >= start) { break ; } bh = bh->b_this_page ; pos += blocksize ; } while(bh != head) ; if (!buffer_uptodate(bh)) { /* note, this should never happen, prepare_write should ** be taking care of this for us. If the buffer isn't up to date, ** I've screwed up the code to find the buffer, or the code to ** call prepare_write */ reiserfs_warning("clm-6000: error reading block %lu on dev %s\n", bh->b_blocknr, kdevname(bh->b_dev)) ; error = -EIO ; goto unlock ; } *bh_result = bh ; *page_result = page ; out: return error ; unlock: UnlockPage(page) ; page_cache_release(page) ; return error ; } /* ** vfs version of truncate file. Must NOT be called with ** a transaction already started. ** ** some code taken from block_truncate_page */ void reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps) { struct reiserfs_transaction_handle th ; int windex ; /* we want the offset for the first byte after the end of the file */ unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1) ; unsigned blocksize = p_s_inode->i_sb->s_blocksize ; unsigned length ; struct page *page = NULL ; int error ; struct buffer_head *bh = NULL ; if (p_s_inode->i_size > 0) { if ((error = grab_tail_page(p_s_inode, &page, &bh))) { // -ENOENT means we truncated past the end of the file, // and get_block_create_0 could not find a block to read in, // which is ok. if (error != -ENOENT) reiserfs_warning("clm-6001: grab_tail_page failed %d\n", error); page = NULL ; bh = NULL ; } } /* so, if page != NULL, we have a buffer head for the offset at ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, ** then we have an unformatted node. Otherwise, we have a direct item, ** and no zeroing is required on disk. We zero after the truncate, ** because the truncate might pack the item anyway ** (it will unmap bh if it packs). */ /* it is enough to reserve space in transaction for 2 balancings: one for "save" link adding and another for the first cut_from_item. 1 is for update_sd */ journal_begin(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1 ) ; reiserfs_update_inode_transaction(p_s_inode) ; windex = push_journal_writer("reiserfs_vfs_truncate_file") ; if (update_timestamps) /* we are doing real truncate: if the system crashes before the last transaction of truncating gets committed - on reboot the file either appears truncated properly or not truncated at all */ add_save_link (&th, p_s_inode, 1); reiserfs_do_truncate (&th, p_s_inode, page, update_timestamps) ; pop_journal_writer(windex) ; journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1 ) ; if (update_timestamps) remove_save_link (p_s_inode, 1/* truncate */); if (page) { length = offset & (blocksize - 1) ; /* if we are not on a block boundary */ if (length) { length = blocksize - length ; memset((char *)kmap(page) + offset, 0, length) ; flush_dcache_page(page) ; kunmap(page) ; if (buffer_mapped(bh) && bh->b_blocknr != 0) { mark_buffer_dirty(bh) ; } } UnlockPage(page) ; page_cache_release(page) ; } return ; } static int map_block_for_writepage(struct inode *inode, struct buffer_head *bh_result, unsigned long block) { struct reiserfs_transaction_handle th ; int fs_gen ; struct item_head tmp_ih ; struct item_head *ih ; struct buffer_head *bh ; __u32 *item ; struct cpu_key key ; INITIALIZE_PATH(path) ; int pos_in_item ; int jbegin_count = JOURNAL_PER_BALANCE_CNT ; loff_t byte_offset = (block << inode->i_sb->s_blocksize_bits) + 1 ; int retval ; int use_get_block = 0 ; int bytes_copied = 0 ; int copy_size ; start_over: lock_kernel() ; journal_begin(&th, inode->i_sb, jbegin_count) ; reiserfs_update_inode_transaction(inode) ; make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3) ; research: retval = search_for_position_by_key(inode->i_sb, &key, &path) ; if (retval != POSITION_FOUND) { use_get_block = 1; goto out ; } bh = get_last_bh(&path) ; ih = get_ih(&path) ; item = get_item(&path) ; pos_in_item = path.pos_in_item ; /* we've found an unformatted node */ if (indirect_item_found(retval, ih)) { if (bytes_copied > 0) { reiserfs_warning("clm-6002: bytes_copied %d\n", bytes_copied) ; } if (!get_block_num(item, pos_in_item)) { /* crap, we are writing to a hole */ use_get_block = 1; goto out ; } set_block_dev_mapped(bh_result, get_block_num(item,pos_in_item),inode); mark_buffer_uptodate(bh_result, 1); } else if (is_direct_le_ih(ih)) { char *p ; p = page_address(bh_result->b_page) ; p += (byte_offset -1) & (PAGE_CACHE_SIZE - 1) ; copy_size = ih_item_len(ih) - pos_in_item; fs_gen = get_generation(inode->i_sb) ; copy_item_head(&tmp_ih, ih) ; reiserfs_prepare_for_journal(inode->i_sb, bh, 1) ; if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) { reiserfs_restore_prepared_buffer(inode->i_sb, bh) ; goto research; } memcpy( B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, copy_size) ; journal_mark_dirty(&th, inode->i_sb, bh) ; bytes_copied += copy_size ; set_block_dev_mapped(bh_result, 0, inode); mark_buffer_uptodate(bh_result, 1); /* are there still bytes left? */ if (bytes_copied < bh_result->b_size && (byte_offset + bytes_copied) < inode->i_size) { set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + copy_size) ; goto research ; } } else { reiserfs_warning("clm-6003: bad item inode %lu, device %s\n", inode->i_ino, kdevname(inode->i_sb->s_dev)) ; retval = -EIO ; goto out ; } retval = 0 ; out: pathrelse(&path) ; journal_end(&th, inode->i_sb, jbegin_count) ; unlock_kernel() ; /* this is where we fill in holes in the file. */ if (use_get_block) { kmap(bh_result->b_page) ; retval = reiserfs_get_block(inode, block, bh_result, GET_BLOCK_CREATE | GET_BLOCK_NO_ISEM) ; kunmap(bh_result->b_page) ; if (!retval) { if (!buffer_mapped(bh_result) || bh_result->b_blocknr == 0) { /* get_block failed to find a mapped unformatted node. */ use_get_block = 0 ; goto start_over ; } } } return retval ; } /* helper func to get a buffer head ready for writepage to send to ** ll_rw_block */ static inline void submit_bh_for_writepage(struct buffer_head **bhp, int nr) { struct buffer_head *bh ; int i; for(i = 0 ; i < nr ; i++) { bh = bhp[i] ; lock_buffer(bh) ; set_buffer_async_io(bh) ; /* submit_bh doesn't care if the buffer is dirty, but nobody ** later on in the call chain will be cleaning it. So, we ** clean the buffer here, it still gets written either way. */ clear_bit(BH_Dirty, &bh->b_state) ; set_bit(BH_Uptodate, &bh->b_state) ; submit_bh(WRITE, bh) ; } } static int reiserfs_write_full_page(struct page *page) { struct inode *inode = page->mapping->host ; unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT ; unsigned last_offset = PAGE_CACHE_SIZE; int error = 0; unsigned long block ; unsigned cur_offset = 0 ; struct buffer_head *head, *bh ; int partial = 0 ; struct buffer_head *arr[PAGE_CACHE_SIZE/512] ; int nr = 0 ; if (!page->buffers) { block_prepare_write(page, 0, 0, NULL) ; kunmap(page) ; } /* last page in the file, zero out any contents past the ** last byte in the file */ if (page->index >= end_index) { last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1) ; /* no file contents in this page */ if (page->index >= end_index + 1 || !last_offset) { error = -EIO ; goto fail ; } memset((char *)kmap(page)+last_offset, 0, PAGE_CACHE_SIZE-last_offset) ; flush_dcache_page(page) ; kunmap(page) ; } head = page->buffers ; bh = head ; block = page->index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits) ; do { /* if this offset in the page is outside the file */ if (cur_offset >= last_offset) { if (!buffer_uptodate(bh)) partial = 1 ; } else { /* fast path, buffer mapped to an unformatted node */ if (buffer_mapped(bh) && bh->b_blocknr != 0) { arr[nr++] = bh ; } else { /* buffer not mapped yet, or points to a direct item. ** search and dirty or log */ if ((error = map_block_for_writepage(inode, bh, block))) { goto fail ; } /* map_block_for_writepage either found an unformatted node ** and mapped it for us, or it found a direct item ** and logged the changes. */ if (buffer_mapped(bh) && bh->b_blocknr != 0) { arr[nr++] = bh ; } } } bh = bh->b_this_page ; cur_offset += bh->b_size ; block++ ; } while(bh != head) ; /* if this page only had a direct item, it is very possible for ** nr == 0 without there being any kind of error. */ if (nr) { submit_bh_for_writepage(arr, nr) ; } else { UnlockPage(page) ; } if (!partial) SetPageUptodate(page) ; return 0 ; fail: if (nr) { submit_bh_for_writepage(arr, nr) ; } else { UnlockPage(page) ; } ClearPageUptodate(page) ; return error ; } // // this is exactly what 2.3.99-pre9's ext2_readpage is // static int reiserfs_readpage (struct file *f, struct page * page) { return block_read_full_page (page, reiserfs_get_block); } // // modified from ext2_writepage is // static int reiserfs_writepage (struct page * page) { struct inode *inode = page->mapping->host ; reiserfs_wait_on_write_block(inode->i_sb) ; return reiserfs_write_full_page(page) ; } // // from ext2_prepare_write, but modified // int reiserfs_prepare_write(struct file *f, struct page *page, unsigned from, unsigned to) { struct inode *inode = page->mapping->host ; reiserfs_wait_on_write_block(inode->i_sb) ; fix_tail_page_for_writing(page) ; return block_prepare_write(page, from, to, reiserfs_get_block) ; } // // this is exactly what 2.3.99-pre9's ext2_bmap is // static int reiserfs_aop_bmap(struct address_space *as, long block) { return generic_block_bmap(as, block, reiserfs_bmap) ; } static int reiserfs_commit_write(struct file *f, struct page *page, unsigned from, unsigned to) { struct inode *inode = page->mapping->host ; loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; int ret ; reiserfs_wait_on_write_block(inode->i_sb) ; /* generic_commit_write does this for us, but does not update the ** transaction tracking stuff when the size changes. So, we have ** to do the i_size updates here. */ if (pos > inode->i_size) { struct reiserfs_transaction_handle th ; lock_kernel() ; journal_begin(&th, inode->i_sb, 1) ; reiserfs_update_inode_transaction(inode) ; inode->i_size = pos ; reiserfs_update_sd(&th, inode) ; journal_end(&th, inode->i_sb, 1) ; unlock_kernel() ; } ret = generic_commit_write(f, page, from, to) ; /* we test for O_SYNC here so we can commit the transaction ** for any packed tails the file might have had */ if (f->f_flags & O_SYNC) { lock_kernel() ; reiserfs_commit_for_inode(inode) ; unlock_kernel(); } return ret ; } struct address_space_operations reiserfs_address_space_operations = { writepage: reiserfs_writepage, readpage: reiserfs_readpage, sync_page: block_sync_page, prepare_write: reiserfs_prepare_write, commit_write: reiserfs_commit_write, bmap: reiserfs_aop_bmap } ;