/* $Id: bitops.h,v 1.38 2001/11/19 18:36:34 davem Exp $ * bitops.h: Bit string operations on the V9. * * Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu) */ #ifndef _SPARC64_BITOPS_H #define _SPARC64_BITOPS_H #include extern long ___test_and_set_bit(unsigned long nr, volatile void *addr); extern long ___test_and_clear_bit(unsigned long nr, volatile void *addr); extern long ___test_and_change_bit(unsigned long nr, volatile void *addr); #define test_and_set_bit(nr,addr) ({___test_and_set_bit(nr,addr)!=0;}) #define test_and_clear_bit(nr,addr) ({___test_and_clear_bit(nr,addr)!=0;}) #define test_and_change_bit(nr,addr) ({___test_and_change_bit(nr,addr)!=0;}) #define set_bit(nr,addr) ((void)___test_and_set_bit(nr,addr)) #define clear_bit(nr,addr) ((void)___test_and_clear_bit(nr,addr)) #define change_bit(nr,addr) ((void)___test_and_change_bit(nr,addr)) /* "non-atomic" versions... */ #define __set_bit(X,Y) \ do { unsigned long __nr = (X); \ long *__m = ((long *) (Y)) + (__nr >> 6); \ *__m |= (1UL << (__nr & 63)); \ } while (0) #define __clear_bit(X,Y) \ do { unsigned long __nr = (X); \ long *__m = ((long *) (Y)) + (__nr >> 6); \ *__m &= ~(1UL << (__nr & 63)); \ } while (0) #define __change_bit(X,Y) \ do { unsigned long __nr = (X); \ long *__m = ((long *) (Y)) + (__nr >> 6); \ *__m ^= (1UL << (__nr & 63)); \ } while (0) #define __test_and_set_bit(X,Y) \ ({ unsigned long __nr = (X); \ long *__m = ((long *) (Y)) + (__nr >> 6); \ long __old = *__m; \ long __mask = (1UL << (__nr & 63)); \ *__m = (__old | __mask); \ ((__old & __mask) != 0); \ }) #define __test_and_clear_bit(X,Y) \ ({ unsigned long __nr = (X); \ long *__m = ((long *) (Y)) + (__nr >> 6); \ long __old = *__m; \ long __mask = (1UL << (__nr & 63)); \ *__m = (__old & ~__mask); \ ((__old & __mask) != 0); \ }) #define __test_and_change_bit(X,Y) \ ({ unsigned long __nr = (X); \ long *__m = ((long *) (Y)) + (__nr >> 6); \ long __old = *__m; \ long __mask = (1UL << (__nr & 63)); \ *__m = (__old ^ __mask); \ ((__old & __mask) != 0); \ }) #define smp_mb__before_clear_bit() do { } while(0) #define smp_mb__after_clear_bit() do { } while(0) extern __inline__ int test_bit(int nr, __const__ void *addr) { return (1UL & (((__const__ long *) addr)[nr >> 6] >> (nr & 63))) != 0UL; } /* The easy/cheese version for now. */ extern __inline__ unsigned long ffz(unsigned long word) { unsigned long result; #ifdef ULTRA_HAS_POPULATION_COUNT /* Thanks for nothing Sun... */ __asm__ __volatile__( " brz,pn %0, 1f\n" " neg %0, %%g1\n" " xnor %0, %%g1, %%g2\n" " popc %%g2, %0\n" "1: " : "=&r" (result) : "0" (word) : "g1", "g2"); #else #if 1 /* def EASY_CHEESE_VERSION */ result = 0; while(word & 1) { result++; word >>= 1; } #else unsigned long tmp; result = 0; tmp = ~word & -~word; if (!(unsigned)tmp) { tmp >>= 32; result = 32; } if (!(unsigned short)tmp) { tmp >>= 16; result += 16; } if (!(unsigned char)tmp) { tmp >>= 8; result += 8; } if (tmp & 0xf0) result += 4; if (tmp & 0xcc) result += 2; if (tmp & 0xaa) result ++; #endif #endif return result; } #ifdef __KERNEL__ /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ #define ffs(x) generic_ffs(x) /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #ifdef ULTRA_HAS_POPULATION_COUNT extern __inline__ unsigned int hweight32(unsigned int w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff)); return res; } extern __inline__ unsigned int hweight16(unsigned int w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff)); return res; } extern __inline__ unsigned int hweight8(unsigned int w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff)); return res; } #else #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) #endif #endif /* __KERNEL__ */ /* find_next_zero_bit() finds the first zero bit in a bit string of length * 'size' bits, starting the search at bit 'offset'. This is largely based * on Linus's ALPHA routines, which are pretty portable BTW. */ extern __inline__ unsigned long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 6); unsigned long result = offset & ~63UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 63UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (64-offset); if (size < 64) goto found_first; if (~tmp) goto found_middle; size -= 64; result += 64; } while (size & ~63UL) { if (~(tmp = *(p++))) goto found_middle; result += 64; size -= 64; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; if (tmp == ~0UL) /* Are any bits zero? */ return result + size; /* Nope. */ found_middle: return result + ffz(tmp); } #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) extern long ___test_and_set_le_bit(int nr, volatile void *addr); extern long ___test_and_clear_le_bit(int nr, volatile void *addr); #define test_and_set_le_bit(nr,addr) ({___test_and_set_le_bit(nr,addr)!=0;}) #define test_and_clear_le_bit(nr,addr) ({___test_and_clear_le_bit(nr,addr)!=0;}) #define set_le_bit(nr,addr) ((void)___test_and_set_le_bit(nr,addr)) #define clear_le_bit(nr,addr) ((void)___test_and_clear_le_bit(nr,addr)) extern __inline__ int test_le_bit(int nr, __const__ void * addr) { int mask; __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); return ((mask & *ADDR) != 0); } #define find_first_zero_le_bit(addr, size) \ find_next_zero_le_bit((addr), (size), 0) extern __inline__ unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 6); unsigned long result = offset & ~63UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 63UL; if(offset) { tmp = __swab64p(p++); tmp |= (~0UL >> (64-offset)); if(size < 64) goto found_first; if(~tmp) goto found_middle; size -= 64; result += 64; } while(size & ~63) { if(~(tmp = __swab64p(p++))) goto found_middle; result += 64; size -= 64; } if(!size) return result; tmp = __swab64p(p); found_first: tmp |= (~0UL << size); if (tmp == ~0UL) /* Are any bits zero? */ return result + size; /* Nope. */ found_middle: return result + ffz(tmp); } #ifdef __KERNEL__ #define ext2_set_bit test_and_set_le_bit #define ext2_clear_bit test_and_clear_le_bit #define ext2_test_bit test_le_bit #define ext2_find_first_zero_bit find_first_zero_le_bit #define ext2_find_next_zero_bit find_next_zero_le_bit /* Bitmap functions for the minix filesystem. */ #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_set_bit(nr,addr) set_bit(nr,addr) #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* defined(_SPARC64_BITOPS_H) */