/* * A driver for the Griffin Technology, Inc. "PowerMate" USB controller dial. * * v1.1, (c)2002 William R Sowerbutts * * This device is a anodised aluminium knob which connects over USB. It can measure * clockwise and anticlockwise rotation. The dial also acts as a pushbutton with * a spring for automatic release. The base contains a pair of LEDs which illuminate * the translucent base. It rotates without limit and reports its relative rotation * back to the host when polled by the USB controller. * * Testing with the knob I have has shown that it measures approximately 94 "clicks" * for one full rotation. Testing with my High Speed Rotation Actuator (ok, it was * a variable speed cordless electric drill) has shown that the device can measure * speeds of up to 7 clicks either clockwise or anticlockwise between pollings from * the host. If it counts more than 7 clicks before it is polled, it will wrap back * to zero and start counting again. This was at quite high speed, however, almost * certainly faster than the human hand could turn it. Griffin say that it loses a * pulse or two on a direction change; the granularity is so fine that I never * noticed this in practice. * * The device's microcontroller can be programmed to set the LED to either a constant * intensity, or to a rhythmic pulsing. Several patterns and speeds are available. * * Griffin were very happy to provide documentation and free hardware for development. * * Some userspace tools are available on the web: http://sowerbutts.com/powermate/ * */ #include #include #include #include #include #include #define POWERMATE_VENDOR 0x077d /* Griffin Technology, Inc. */ #define POWERMATE_PRODUCT_NEW 0x0410 /* Griffin PowerMate */ #define POWERMATE_PRODUCT_OLD 0x04AA /* Griffin soundKnob */ #define CONTOUR_VENDOR 0x05f3 /* Contour Design, Inc. */ #define CONTOUR_JOG 0x0240 /* Jog and Shuttle */ /* these are the command codes we send to the device */ #define SET_STATIC_BRIGHTNESS 0x01 #define SET_PULSE_ASLEEP 0x02 #define SET_PULSE_AWAKE 0x03 #define SET_PULSE_MODE 0x04 /* these refer to bits in the powermate_device's requires_update field. */ #define UPDATE_STATIC_BRIGHTNESS (1<<0) #define UPDATE_PULSE_ASLEEP (1<<1) #define UPDATE_PULSE_AWAKE (1<<2) #define UPDATE_PULSE_MODE (1<<3) /* at least two versions of the hardware exist, with differing payload sizes. the first three bytes always contain the "interesting" data in the relevant format. */ #define POWERMATE_PAYLOAD_SIZE_MAX 6 #define POWERMATE_PAYLOAD_SIZE_MIN 3 struct powermate_device { signed char *data; dma_addr_t data_dma; struct urb *irq, *config; struct usb_ctrlrequest *configcr; struct usb_device *udev; struct usb_interface *intf; struct input_dev *input; spinlock_t lock; int static_brightness; int pulse_speed; int pulse_table; int pulse_asleep; int pulse_awake; int requires_update; // physical settings which are out of sync char phys[64]; }; static char pm_name_powermate[] = "Griffin PowerMate"; static char pm_name_soundknob[] = "Griffin SoundKnob"; static void powermate_config_complete(struct urb *urb); /* Callback for data arriving from the PowerMate over the USB interrupt pipe */ static void powermate_irq(struct urb *urb) { struct powermate_device *pm = urb->context; struct device *dev = &pm->intf->dev; int retval; switch (urb->status) { case 0: /* success */ break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: /* this urb is terminated, clean up */ dev_dbg(dev, "%s - urb shutting down with status: %d\n", __func__, urb->status); return; default: dev_dbg(dev, "%s - nonzero urb status received: %d\n", __func__, urb->status); goto exit; } /* handle updates to device state */ input_report_key(pm->input, BTN_0, pm->data[0] & 0x01); input_report_rel(pm->input, REL_DIAL, pm->data[1]); input_sync(pm->input); exit: retval = usb_submit_urb (urb, GFP_ATOMIC); if (retval) dev_err(dev, "%s - usb_submit_urb failed with result: %d\n", __func__, retval); } /* Decide if we need to issue a control message and do so. Must be called with pm->lock taken */ static void powermate_sync_state(struct powermate_device *pm) { if (pm->requires_update == 0) return; /* no updates are required */ if (pm->config->status == -EINPROGRESS) return; /* an update is already in progress; it'll issue this update when it completes */ if (pm->requires_update & UPDATE_PULSE_ASLEEP){ pm->configcr->wValue = cpu_to_le16( SET_PULSE_ASLEEP ); pm->configcr->wIndex = cpu_to_le16( pm->pulse_asleep ? 1 : 0 ); pm->requires_update &= ~UPDATE_PULSE_ASLEEP; }else if (pm->requires_update & UPDATE_PULSE_AWAKE){ pm->configcr->wValue = cpu_to_le16( SET_PULSE_AWAKE ); pm->configcr->wIndex = cpu_to_le16( pm->pulse_awake ? 1 : 0 ); pm->requires_update &= ~UPDATE_PULSE_AWAKE; }else if (pm->requires_update & UPDATE_PULSE_MODE){ int op, arg; /* the powermate takes an operation and an argument for its pulse algorithm. the operation can be: 0: divide the speed 1: pulse at normal speed 2: multiply the speed the argument only has an effect for operations 0 and 2, and ranges between 1 (least effect) to 255 (maximum effect). thus, several states are equivalent and are coalesced into one state. we map this onto a range from 0 to 510, with: 0 -- 254 -- use divide (0 = slowest) 255 -- use normal speed 256 -- 510 -- use multiple (510 = fastest). Only values of 'arg' quite close to 255 are particularly useful/spectacular. */ if (pm->pulse_speed < 255) { op = 0; // divide arg = 255 - pm->pulse_speed; } else if (pm->pulse_speed > 255) { op = 2; // multiply arg = pm->pulse_speed - 255; } else { op = 1; // normal speed arg = 0; // can be any value } pm->configcr->wValue = cpu_to_le16( (pm->pulse_table << 8) | SET_PULSE_MODE ); pm->configcr->wIndex = cpu_to_le16( (arg << 8) | op ); pm->requires_update &= ~UPDATE_PULSE_MODE; } else if (pm->requires_update & UPDATE_STATIC_BRIGHTNESS) { pm->configcr->wValue = cpu_to_le16( SET_STATIC_BRIGHTNESS ); pm->configcr->wIndex = cpu_to_le16( pm->static_brightness ); pm->requires_update &= ~UPDATE_STATIC_BRIGHTNESS; } else { printk(KERN_ERR "powermate: unknown update required"); pm->requires_update = 0; /* fudge the bug */ return; } /* printk("powermate: %04x %04x\n", pm->configcr->wValue, pm->configcr->wIndex); */ pm->configcr->bRequestType = 0x41; /* vendor request */ pm->configcr->bRequest = 0x01; pm->configcr->wLength = 0; usb_fill_control_urb(pm->config, pm->udev, usb_sndctrlpipe(pm->udev, 0), (void *) pm->configcr, NULL, 0, powermate_config_complete, pm); if (usb_submit_urb(pm->config, GFP_ATOMIC)) printk(KERN_ERR "powermate: usb_submit_urb(config) failed"); } /* Called when our asynchronous control message completes. We may need to issue another immediately */ static void powermate_config_complete(struct urb *urb) { struct powermate_device *pm = urb->context; unsigned long flags; if (urb->status) printk(KERN_ERR "powermate: config urb returned %d\n", urb->status); spin_lock_irqsave(&pm->lock, flags); powermate_sync_state(pm); spin_unlock_irqrestore(&pm->lock, flags); } /* Set the LED up as described and begin the sync with the hardware if required */ static void powermate_pulse_led(struct powermate_device *pm, int static_brightness, int pulse_speed, int pulse_table, int pulse_asleep, int pulse_awake) { unsigned long flags; if (pulse_speed < 0) pulse_speed = 0; if (pulse_table < 0) pulse_table = 0; if (pulse_speed > 510) pulse_speed = 510; if (pulse_table > 2) pulse_table = 2; pulse_asleep = !!pulse_asleep; pulse_awake = !!pulse_awake; spin_lock_irqsave(&pm->lock, flags); /* mark state updates which are required */ if (static_brightness != pm->static_brightness) { pm->static_brightness = static_brightness; pm->requires_update |= UPDATE_STATIC_BRIGHTNESS; } if (pulse_asleep != pm->pulse_asleep) { pm->pulse_asleep = pulse_asleep; pm->requires_update |= (UPDATE_PULSE_ASLEEP | UPDATE_STATIC_BRIGHTNESS); } if (pulse_awake != pm->pulse_awake) { pm->pulse_awake = pulse_awake; pm->requires_update |= (UPDATE_PULSE_AWAKE | UPDATE_STATIC_BRIGHTNESS); } if (pulse_speed != pm->pulse_speed || pulse_table != pm->pulse_table) { pm->pulse_speed = pulse_speed; pm->pulse_table = pulse_table; pm->requires_update |= UPDATE_PULSE_MODE; } powermate_sync_state(pm); spin_unlock_irqrestore(&pm->lock, flags); } /* Callback from the Input layer when an event arrives from userspace to configure the LED */ static int powermate_input_event(struct input_dev *dev, unsigned int type, unsigned int code, int _value) { unsigned int command = (unsigned int)_value; struct powermate_device *pm = input_get_drvdata(dev); if (type == EV_MSC && code == MSC_PULSELED){ /* bits 0- 7: 8 bits: LED brightness bits 8-16: 9 bits: pulsing speed modifier (0 ... 510); 0-254 = slower, 255 = standard, 256-510 = faster. bits 17-18: 2 bits: pulse table (0, 1, 2 valid) bit 19: 1 bit : pulse whilst asleep? bit 20: 1 bit : pulse constantly? */ int static_brightness = command & 0xFF; // bits 0-7 int pulse_speed = (command >> 8) & 0x1FF; // bits 8-16 int pulse_table = (command >> 17) & 0x3; // bits 17-18 int pulse_asleep = (command >> 19) & 0x1; // bit 19 int pulse_awake = (command >> 20) & 0x1; // bit 20 powermate_pulse_led(pm, static_brightness, pulse_speed, pulse_table, pulse_asleep, pulse_awake); } return 0; } static int powermate_alloc_buffers(struct usb_device *udev, struct powermate_device *pm) { pm->data = usb_alloc_coherent(udev, POWERMATE_PAYLOAD_SIZE_MAX, GFP_ATOMIC, &pm->data_dma); if (!pm->data) return -1; pm->configcr = kmalloc(sizeof(*(pm->configcr)), GFP_KERNEL); if (!pm->configcr) return -ENOMEM; return 0; } static void powermate_free_buffers(struct usb_device *udev, struct powermate_device *pm) { usb_free_coherent(udev, POWERMATE_PAYLOAD_SIZE_MAX, pm->data, pm->data_dma); kfree(pm->configcr); } /* Called whenever a USB device matching one in our supported devices table is connected */ static int powermate_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev (intf); struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; struct powermate_device *pm; struct input_dev *input_dev; int pipe, maxp; int error = -ENOMEM; interface = intf->cur_altsetting; if (interface->desc.bNumEndpoints < 1) return -EINVAL; endpoint = &interface->endpoint[0].desc; if (!usb_endpoint_is_int_in(endpoint)) return -EIO; usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x0a, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, interface->desc.bInterfaceNumber, NULL, 0, USB_CTRL_SET_TIMEOUT); pm = kzalloc(sizeof(struct powermate_device), GFP_KERNEL); input_dev = input_allocate_device(); if (!pm || !input_dev) goto fail1; if (powermate_alloc_buffers(udev, pm)) goto fail2; pm->irq = usb_alloc_urb(0, GFP_KERNEL); if (!pm->irq) goto fail2; pm->config = usb_alloc_urb(0, GFP_KERNEL); if (!pm->config) goto fail3; pm->udev = udev; pm->intf = intf; pm->input = input_dev; usb_make_path(udev, pm->phys, sizeof(pm->phys)); strlcat(pm->phys, "/input0", sizeof(pm->phys)); spin_lock_init(&pm->lock); switch (le16_to_cpu(udev->descriptor.idProduct)) { case POWERMATE_PRODUCT_NEW: input_dev->name = pm_name_powermate; break; case POWERMATE_PRODUCT_OLD: input_dev->name = pm_name_soundknob; break; default: input_dev->name = pm_name_soundknob; printk(KERN_WARNING "powermate: unknown product id %04x\n", le16_to_cpu(udev->descriptor.idProduct)); } input_dev->phys = pm->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_set_drvdata(input_dev, pm); input_dev->event = powermate_input_event; input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL) | BIT_MASK(EV_MSC); input_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0); input_dev->relbit[BIT_WORD(REL_DIAL)] = BIT_MASK(REL_DIAL); input_dev->mscbit[BIT_WORD(MSC_PULSELED)] = BIT_MASK(MSC_PULSELED); /* get a handle to the interrupt data pipe */ pipe = usb_rcvintpipe(udev, endpoint->bEndpointAddress); maxp = usb_maxpacket(udev, pipe, usb_pipeout(pipe)); if (maxp < POWERMATE_PAYLOAD_SIZE_MIN || maxp > POWERMATE_PAYLOAD_SIZE_MAX) { printk(KERN_WARNING "powermate: Expected payload of %d--%d bytes, found %d bytes!\n", POWERMATE_PAYLOAD_SIZE_MIN, POWERMATE_PAYLOAD_SIZE_MAX, maxp); maxp = POWERMATE_PAYLOAD_SIZE_MAX; } usb_fill_int_urb(pm->irq, udev, pipe, pm->data, maxp, powermate_irq, pm, endpoint->bInterval); pm->irq->transfer_dma = pm->data_dma; pm->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* register our interrupt URB with the USB system */ if (usb_submit_urb(pm->irq, GFP_KERNEL)) { error = -EIO; goto fail4; } error = input_register_device(pm->input); if (error) goto fail5; /* force an update of everything */ pm->requires_update = UPDATE_PULSE_ASLEEP | UPDATE_PULSE_AWAKE | UPDATE_PULSE_MODE | UPDATE_STATIC_BRIGHTNESS; powermate_pulse_led(pm, 0x80, 255, 0, 1, 0); // set default pulse parameters usb_set_intfdata(intf, pm); return 0; fail5: usb_kill_urb(pm->irq); fail4: usb_free_urb(pm->config); fail3: usb_free_urb(pm->irq); fail2: powermate_free_buffers(udev, pm); fail1: input_free_device(input_dev); kfree(pm); return error; } /* Called when a USB device we've accepted ownership of is removed */ static void powermate_disconnect(struct usb_interface *intf) { struct powermate_device *pm = usb_get_intfdata (intf); usb_set_intfdata(intf, NULL); if (pm) { pm->requires_update = 0; usb_kill_urb(pm->irq); input_unregister_device(pm->input); usb_free_urb(pm->irq); usb_free_urb(pm->config); powermate_free_buffers(interface_to_usbdev(intf), pm); kfree(pm); } } static struct usb_device_id powermate_devices [] = { { USB_DEVICE(POWERMATE_VENDOR, POWERMATE_PRODUCT_NEW) }, { USB_DEVICE(POWERMATE_VENDOR, POWERMATE_PRODUCT_OLD) }, { USB_DEVICE(CONTOUR_VENDOR, CONTOUR_JOG) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, powermate_devices); static struct usb_driver powermate_driver = { .name = "powermate", .probe = powermate_probe, .disconnect = powermate_disconnect, .id_table = powermate_devices, }; module_usb_driver(powermate_driver); MODULE_AUTHOR( "William R Sowerbutts" ); MODULE_DESCRIPTION( "Griffin Technology, Inc PowerMate driver" ); MODULE_LICENSE("GPL");