/* * Copyright (C) 2006, 2007 Eugene Konev * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Eugene Konev "); MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:cpmac"); static int debug_level = 8; static int dumb_switch; /* Next 2 are only used in cpmac_probe, so it's pointless to change them */ module_param(debug_level, int, 0444); module_param(dumb_switch, int, 0444); MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable"); MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus"); #define CPMAC_VERSION "0.5.2" /* frame size + 802.1q tag + FCS size */ #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN) #define CPMAC_QUEUES 8 /* Ethernet registers */ #define CPMAC_TX_CONTROL 0x0004 #define CPMAC_TX_TEARDOWN 0x0008 #define CPMAC_RX_CONTROL 0x0014 #define CPMAC_RX_TEARDOWN 0x0018 #define CPMAC_MBP 0x0100 # define MBP_RXPASSCRC 0x40000000 # define MBP_RXQOS 0x20000000 # define MBP_RXNOCHAIN 0x10000000 # define MBP_RXCMF 0x01000000 # define MBP_RXSHORT 0x00800000 # define MBP_RXCEF 0x00400000 # define MBP_RXPROMISC 0x00200000 # define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16) # define MBP_RXBCAST 0x00002000 # define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8) # define MBP_RXMCAST 0x00000020 # define MBP_MCASTCHAN(channel) ((channel) & 0x7) #define CPMAC_UNICAST_ENABLE 0x0104 #define CPMAC_UNICAST_CLEAR 0x0108 #define CPMAC_MAX_LENGTH 0x010c #define CPMAC_BUFFER_OFFSET 0x0110 #define CPMAC_MAC_CONTROL 0x0160 # define MAC_TXPTYPE 0x00000200 # define MAC_TXPACE 0x00000040 # define MAC_MII 0x00000020 # define MAC_TXFLOW 0x00000010 # define MAC_RXFLOW 0x00000008 # define MAC_MTEST 0x00000004 # define MAC_LOOPBACK 0x00000002 # define MAC_FDX 0x00000001 #define CPMAC_MAC_STATUS 0x0164 # define MAC_STATUS_QOS 0x00000004 # define MAC_STATUS_RXFLOW 0x00000002 # define MAC_STATUS_TXFLOW 0x00000001 #define CPMAC_TX_INT_ENABLE 0x0178 #define CPMAC_TX_INT_CLEAR 0x017c #define CPMAC_MAC_INT_VECTOR 0x0180 # define MAC_INT_STATUS 0x00080000 # define MAC_INT_HOST 0x00040000 # define MAC_INT_RX 0x00020000 # define MAC_INT_TX 0x00010000 #define CPMAC_MAC_EOI_VECTOR 0x0184 #define CPMAC_RX_INT_ENABLE 0x0198 #define CPMAC_RX_INT_CLEAR 0x019c #define CPMAC_MAC_INT_ENABLE 0x01a8 #define CPMAC_MAC_INT_CLEAR 0x01ac #define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4) #define CPMAC_MAC_ADDR_MID 0x01d0 #define CPMAC_MAC_ADDR_HI 0x01d4 #define CPMAC_MAC_HASH_LO 0x01d8 #define CPMAC_MAC_HASH_HI 0x01dc #define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4) #define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4) #define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4) #define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4) #define CPMAC_REG_END 0x0680 /* * Rx/Tx statistics * TODO: use some of them to fill stats in cpmac_stats() */ #define CPMAC_STATS_RX_GOOD 0x0200 #define CPMAC_STATS_RX_BCAST 0x0204 #define CPMAC_STATS_RX_MCAST 0x0208 #define CPMAC_STATS_RX_PAUSE 0x020c #define CPMAC_STATS_RX_CRC 0x0210 #define CPMAC_STATS_RX_ALIGN 0x0214 #define CPMAC_STATS_RX_OVER 0x0218 #define CPMAC_STATS_RX_JABBER 0x021c #define CPMAC_STATS_RX_UNDER 0x0220 #define CPMAC_STATS_RX_FRAG 0x0224 #define CPMAC_STATS_RX_FILTER 0x0228 #define CPMAC_STATS_RX_QOSFILTER 0x022c #define CPMAC_STATS_RX_OCTETS 0x0230 #define CPMAC_STATS_TX_GOOD 0x0234 #define CPMAC_STATS_TX_BCAST 0x0238 #define CPMAC_STATS_TX_MCAST 0x023c #define CPMAC_STATS_TX_PAUSE 0x0240 #define CPMAC_STATS_TX_DEFER 0x0244 #define CPMAC_STATS_TX_COLLISION 0x0248 #define CPMAC_STATS_TX_SINGLECOLL 0x024c #define CPMAC_STATS_TX_MULTICOLL 0x0250 #define CPMAC_STATS_TX_EXCESSCOLL 0x0254 #define CPMAC_STATS_TX_LATECOLL 0x0258 #define CPMAC_STATS_TX_UNDERRUN 0x025c #define CPMAC_STATS_TX_CARRIERSENSE 0x0260 #define CPMAC_STATS_TX_OCTETS 0x0264 #define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg))) #define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \ (reg))) /* MDIO bus */ #define CPMAC_MDIO_VERSION 0x0000 #define CPMAC_MDIO_CONTROL 0x0004 # define MDIOC_IDLE 0x80000000 # define MDIOC_ENABLE 0x40000000 # define MDIOC_PREAMBLE 0x00100000 # define MDIOC_FAULT 0x00080000 # define MDIOC_FAULTDETECT 0x00040000 # define MDIOC_INTTEST 0x00020000 # define MDIOC_CLKDIV(div) ((div) & 0xff) #define CPMAC_MDIO_ALIVE 0x0008 #define CPMAC_MDIO_LINK 0x000c #define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8) # define MDIO_BUSY 0x80000000 # define MDIO_WRITE 0x40000000 # define MDIO_REG(reg) (((reg) & 0x1f) << 21) # define MDIO_PHY(phy) (((phy) & 0x1f) << 16) # define MDIO_DATA(data) ((data) & 0xffff) #define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8) # define PHYSEL_LINKSEL 0x00000040 # define PHYSEL_LINKINT 0x00000020 struct cpmac_desc { u32 hw_next; u32 hw_data; u16 buflen; u16 bufflags; u16 datalen; u16 dataflags; #define CPMAC_SOP 0x8000 #define CPMAC_EOP 0x4000 #define CPMAC_OWN 0x2000 #define CPMAC_EOQ 0x1000 struct sk_buff *skb; struct cpmac_desc *next; struct cpmac_desc *prev; dma_addr_t mapping; dma_addr_t data_mapping; }; struct cpmac_priv { spinlock_t lock; spinlock_t rx_lock; struct cpmac_desc *rx_head; int ring_size; struct cpmac_desc *desc_ring; dma_addr_t dma_ring; void __iomem *regs; struct mii_bus *mii_bus; struct phy_device *phy; char phy_name[MII_BUS_ID_SIZE + 3]; int oldlink, oldspeed, oldduplex; u32 msg_enable; struct net_device *dev; struct work_struct reset_work; struct platform_device *pdev; struct napi_struct napi; atomic_t reset_pending; }; static irqreturn_t cpmac_irq(int, void *); static void cpmac_hw_start(struct net_device *dev); static void cpmac_hw_stop(struct net_device *dev); static int cpmac_stop(struct net_device *dev); static int cpmac_open(struct net_device *dev); static void cpmac_dump_regs(struct net_device *dev) { int i; struct cpmac_priv *priv = netdev_priv(dev); for (i = 0; i < CPMAC_REG_END; i += 4) { if (i % 16 == 0) { if (i) pr_cont("\n"); printk(KERN_DEBUG "%s: reg[%p]:", dev->name, priv->regs + i); } printk(" %08x", cpmac_read(priv->regs, i)); } printk("\n"); } static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc) { int i; printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc); for (i = 0; i < sizeof(*desc) / 4; i++) printk(" %08x", ((u32 *)desc)[i]); printk("\n"); } static void cpmac_dump_all_desc(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_desc *dump = priv->rx_head; do { cpmac_dump_desc(dev, dump); dump = dump->next; } while (dump != priv->rx_head); } static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb) { int i; printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len); for (i = 0; i < skb->len; i++) { if (i % 16 == 0) { if (i) pr_cont("\n"); printk(KERN_DEBUG "%s: data[%p]:", dev->name, skb->data + i); } printk(" %02x", ((u8 *)skb->data)[i]); } printk("\n"); } static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg) { u32 val; while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY) cpu_relax(); cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) | MDIO_PHY(phy_id)); while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY) cpu_relax(); return MDIO_DATA(val); } static int cpmac_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val) { while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY) cpu_relax(); cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE | MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val)); return 0; } static int cpmac_mdio_reset(struct mii_bus *bus) { struct clk *cpmac_clk; cpmac_clk = clk_get(&bus->dev, "cpmac"); if (IS_ERR(cpmac_clk)) { printk(KERN_ERR "unable to get cpmac clock\n"); return -1; } ar7_device_reset(AR7_RESET_BIT_MDIO); cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE | MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1)); return 0; } static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, }; static struct mii_bus *cpmac_mii; static int cpmac_config(struct net_device *dev, struct ifmap *map) { if (dev->flags & IFF_UP) return -EBUSY; /* Don't allow changing the I/O address */ if (map->base_addr != dev->base_addr) return -EOPNOTSUPP; /* ignore other fields */ return 0; } static void cpmac_set_multicast_list(struct net_device *dev) { struct netdev_hw_addr *ha; u8 tmp; u32 mbp, bit, hash[2] = { 0, }; struct cpmac_priv *priv = netdev_priv(dev); mbp = cpmac_read(priv->regs, CPMAC_MBP); if (dev->flags & IFF_PROMISC) { cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) | MBP_RXPROMISC); } else { cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC); if (dev->flags & IFF_ALLMULTI) { /* enable all multicast mode */ cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff); cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff); } else { /* * cpmac uses some strange mac address hashing * (not crc32) */ netdev_for_each_mc_addr(ha, dev) { bit = 0; tmp = ha->addr[0]; bit ^= (tmp >> 2) ^ (tmp << 4); tmp = ha->addr[1]; bit ^= (tmp >> 4) ^ (tmp << 2); tmp = ha->addr[2]; bit ^= (tmp >> 6) ^ tmp; tmp = ha->addr[3]; bit ^= (tmp >> 2) ^ (tmp << 4); tmp = ha->addr[4]; bit ^= (tmp >> 4) ^ (tmp << 2); tmp = ha->addr[5]; bit ^= (tmp >> 6) ^ tmp; bit &= 0x3f; hash[bit / 32] |= 1 << (bit % 32); } cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]); cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]); } } } static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv, struct cpmac_desc *desc) { struct sk_buff *skb, *result = NULL; if (unlikely(netif_msg_hw(priv))) cpmac_dump_desc(priv->dev, desc); cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping); if (unlikely(!desc->datalen)) { if (netif_msg_rx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: rx: spurious interrupt\n", priv->dev->name); return NULL; } skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE); if (likely(skb)) { skb_put(desc->skb, desc->datalen); desc->skb->protocol = eth_type_trans(desc->skb, priv->dev); skb_checksum_none_assert(desc->skb); priv->dev->stats.rx_packets++; priv->dev->stats.rx_bytes += desc->datalen; result = desc->skb; dma_unmap_single(&priv->dev->dev, desc->data_mapping, CPMAC_SKB_SIZE, DMA_FROM_DEVICE); desc->skb = skb; desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data, CPMAC_SKB_SIZE, DMA_FROM_DEVICE); desc->hw_data = (u32)desc->data_mapping; if (unlikely(netif_msg_pktdata(priv))) { printk(KERN_DEBUG "%s: received packet:\n", priv->dev->name); cpmac_dump_skb(priv->dev, result); } } else { if (netif_msg_rx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: low on skbs, dropping packet\n", priv->dev->name); priv->dev->stats.rx_dropped++; } desc->buflen = CPMAC_SKB_SIZE; desc->dataflags = CPMAC_OWN; return result; } static int cpmac_poll(struct napi_struct *napi, int budget) { struct sk_buff *skb; struct cpmac_desc *desc, *restart; struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi); int received = 0, processed = 0; spin_lock(&priv->rx_lock); if (unlikely(!priv->rx_head)) { if (netif_msg_rx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: rx: polling, but no queue\n", priv->dev->name); spin_unlock(&priv->rx_lock); napi_complete(napi); return 0; } desc = priv->rx_head; restart = NULL; while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) { processed++; if ((desc->dataflags & CPMAC_EOQ) != 0) { /* The last update to eoq->hw_next didn't happen * soon enough, and the receiver stopped here. *Remember this descriptor so we can restart * the receiver after freeing some space. */ if (unlikely(restart)) { if (netif_msg_rx_err(priv)) printk(KERN_ERR "%s: poll found a" " duplicate EOQ: %p and %p\n", priv->dev->name, restart, desc); goto fatal_error; } restart = desc->next; } skb = cpmac_rx_one(priv, desc); if (likely(skb)) { netif_receive_skb(skb); received++; } desc = desc->next; } if (desc != priv->rx_head) { /* We freed some buffers, but not the whole ring, * add what we did free to the rx list */ desc->prev->hw_next = (u32)0; priv->rx_head->prev->hw_next = priv->rx_head->mapping; } /* Optimization: If we did not actually process an EOQ (perhaps because * of quota limits), check to see if the tail of the queue has EOQ set. * We should immediately restart in that case so that the receiver can * restart and run in parallel with more packet processing. * This lets us handle slightly larger bursts before running * out of ring space (assuming dev->weight < ring_size) */ if (!restart && (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ)) == CPMAC_EOQ && (priv->rx_head->dataflags & CPMAC_OWN) != 0) { /* reset EOQ so the poll loop (above) doesn't try to * restart this when it eventually gets to this descriptor. */ priv->rx_head->prev->dataflags &= ~CPMAC_EOQ; restart = priv->rx_head; } if (restart) { priv->dev->stats.rx_errors++; priv->dev->stats.rx_fifo_errors++; if (netif_msg_rx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: rx dma ring overrun\n", priv->dev->name); if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) { if (netif_msg_drv(priv)) printk(KERN_ERR "%s: cpmac_poll is trying to " "restart rx from a descriptor that's " "not free: %p\n", priv->dev->name, restart); goto fatal_error; } cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping); } priv->rx_head = desc; spin_unlock(&priv->rx_lock); if (unlikely(netif_msg_rx_status(priv))) printk(KERN_DEBUG "%s: poll processed %d packets\n", priv->dev->name, received); if (processed == 0) { /* we ran out of packets to read, * revert to interrupt-driven mode */ napi_complete(napi); cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1); return 0; } return 1; fatal_error: /* Something went horribly wrong. * Reset hardware to try to recover rather than wedging. */ if (netif_msg_drv(priv)) { printk(KERN_ERR "%s: cpmac_poll is confused. " "Resetting hardware\n", priv->dev->name); cpmac_dump_all_desc(priv->dev); printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n", priv->dev->name, cpmac_read(priv->regs, CPMAC_RX_PTR(0)), cpmac_read(priv->regs, CPMAC_RX_ACK(0))); } spin_unlock(&priv->rx_lock); napi_complete(napi); netif_tx_stop_all_queues(priv->dev); napi_disable(&priv->napi); atomic_inc(&priv->reset_pending); cpmac_hw_stop(priv->dev); if (!schedule_work(&priv->reset_work)) atomic_dec(&priv->reset_pending); return 0; } static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev) { int queue; unsigned int len; struct cpmac_desc *desc; struct cpmac_priv *priv = netdev_priv(dev); if (unlikely(atomic_read(&priv->reset_pending))) return NETDEV_TX_BUSY; if (unlikely(skb_padto(skb, ETH_ZLEN))) return NETDEV_TX_OK; len = max_t(unsigned int, skb->len, ETH_ZLEN); queue = skb_get_queue_mapping(skb); netif_stop_subqueue(dev, queue); desc = &priv->desc_ring[queue]; if (unlikely(desc->dataflags & CPMAC_OWN)) { if (netif_msg_tx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: tx dma ring full\n", dev->name); return NETDEV_TX_BUSY; } spin_lock(&priv->lock); spin_unlock(&priv->lock); desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN; desc->skb = skb; desc->data_mapping = dma_map_single(&dev->dev, skb->data, len, DMA_TO_DEVICE); desc->hw_data = (u32)desc->data_mapping; desc->datalen = len; desc->buflen = len; if (unlikely(netif_msg_tx_queued(priv))) printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb, skb->len); if (unlikely(netif_msg_hw(priv))) cpmac_dump_desc(dev, desc); if (unlikely(netif_msg_pktdata(priv))) cpmac_dump_skb(dev, skb); cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping); return NETDEV_TX_OK; } static void cpmac_end_xmit(struct net_device *dev, int queue) { struct cpmac_desc *desc; struct cpmac_priv *priv = netdev_priv(dev); desc = &priv->desc_ring[queue]; cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping); if (likely(desc->skb)) { spin_lock(&priv->lock); dev->stats.tx_packets++; dev->stats.tx_bytes += desc->skb->len; spin_unlock(&priv->lock); dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len, DMA_TO_DEVICE); if (unlikely(netif_msg_tx_done(priv))) printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name, desc->skb, desc->skb->len); dev_kfree_skb_irq(desc->skb); desc->skb = NULL; if (__netif_subqueue_stopped(dev, queue)) netif_wake_subqueue(dev, queue); } else { if (netif_msg_tx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: end_xmit: spurious interrupt\n", dev->name); if (__netif_subqueue_stopped(dev, queue)) netif_wake_subqueue(dev, queue); } } static void cpmac_hw_stop(struct net_device *dev) { int i; struct cpmac_priv *priv = netdev_priv(dev); struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data; ar7_device_reset(pdata->reset_bit); cpmac_write(priv->regs, CPMAC_RX_CONTROL, cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1); cpmac_write(priv->regs, CPMAC_TX_CONTROL, cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1); for (i = 0; i < 8; i++) { cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0); } cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_MAC_CONTROL, cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII); } static void cpmac_hw_start(struct net_device *dev) { int i; struct cpmac_priv *priv = netdev_priv(dev); struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data; ar7_device_reset(pdata->reset_bit); for (i = 0; i < 8; i++) { cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0); } cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping); cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST | MBP_RXMCAST); cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0); for (i = 0; i < 8; i++) cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]); cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]); cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] | (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24)); cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE); cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1); cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1); cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff); cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3); cpmac_write(priv->regs, CPMAC_RX_CONTROL, cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1); cpmac_write(priv->regs, CPMAC_TX_CONTROL, cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1); cpmac_write(priv->regs, CPMAC_MAC_CONTROL, cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII | MAC_FDX); } static void cpmac_clear_rx(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_desc *desc; int i; if (unlikely(!priv->rx_head)) return; desc = priv->rx_head; for (i = 0; i < priv->ring_size; i++) { if ((desc->dataflags & CPMAC_OWN) == 0) { if (netif_msg_rx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: packet dropped\n", dev->name); if (unlikely(netif_msg_hw(priv))) cpmac_dump_desc(dev, desc); desc->dataflags = CPMAC_OWN; dev->stats.rx_dropped++; } desc->hw_next = desc->next->mapping; desc = desc->next; } priv->rx_head->prev->hw_next = 0; } static void cpmac_clear_tx(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); int i; if (unlikely(!priv->desc_ring)) return; for (i = 0; i < CPMAC_QUEUES; i++) { priv->desc_ring[i].dataflags = 0; if (priv->desc_ring[i].skb) { dev_kfree_skb_any(priv->desc_ring[i].skb); priv->desc_ring[i].skb = NULL; } } } static void cpmac_hw_error(struct work_struct *work) { struct cpmac_priv *priv = container_of(work, struct cpmac_priv, reset_work); spin_lock(&priv->rx_lock); cpmac_clear_rx(priv->dev); spin_unlock(&priv->rx_lock); cpmac_clear_tx(priv->dev); cpmac_hw_start(priv->dev); barrier(); atomic_dec(&priv->reset_pending); netif_tx_wake_all_queues(priv->dev); cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3); } static void cpmac_check_status(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS); int rx_channel = (macstatus >> 8) & 7; int rx_code = (macstatus >> 12) & 15; int tx_channel = (macstatus >> 16) & 7; int tx_code = (macstatus >> 20) & 15; if (rx_code || tx_code) { if (netif_msg_drv(priv) && net_ratelimit()) { /* Can't find any documentation on what these *error codes actually are. So just log them and hope.. */ if (rx_code) printk(KERN_WARNING "%s: host error %d on rx " "channel %d (macstatus %08x), resetting\n", dev->name, rx_code, rx_channel, macstatus); if (tx_code) printk(KERN_WARNING "%s: host error %d on tx " "channel %d (macstatus %08x), resetting\n", dev->name, tx_code, tx_channel, macstatus); } netif_tx_stop_all_queues(dev); cpmac_hw_stop(dev); if (schedule_work(&priv->reset_work)) atomic_inc(&priv->reset_pending); if (unlikely(netif_msg_hw(priv))) cpmac_dump_regs(dev); } cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff); } static irqreturn_t cpmac_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct cpmac_priv *priv; int queue; u32 status; priv = netdev_priv(dev); status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR); if (unlikely(netif_msg_intr(priv))) printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name, status); if (status & MAC_INT_TX) cpmac_end_xmit(dev, (status & 7)); if (status & MAC_INT_RX) { queue = (status >> 8) & 7; if (napi_schedule_prep(&priv->napi)) { cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue); __napi_schedule(&priv->napi); } } cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0); if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS))) cpmac_check_status(dev); return IRQ_HANDLED; } static void cpmac_tx_timeout(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); spin_lock(&priv->lock); dev->stats.tx_errors++; spin_unlock(&priv->lock); if (netif_msg_tx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: transmit timeout\n", dev->name); atomic_inc(&priv->reset_pending); barrier(); cpmac_clear_tx(dev); barrier(); atomic_dec(&priv->reset_pending); netif_tx_wake_all_queues(priv->dev); } static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct cpmac_priv *priv = netdev_priv(dev); if (!(netif_running(dev))) return -EINVAL; if (!priv->phy) return -EINVAL; return phy_mii_ioctl(priv->phy, ifr, cmd); } static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct cpmac_priv *priv = netdev_priv(dev); if (priv->phy) return phy_ethtool_gset(priv->phy, cmd); return -EINVAL; } static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct cpmac_priv *priv = netdev_priv(dev); if (!capable(CAP_NET_ADMIN)) return -EPERM; if (priv->phy) return phy_ethtool_sset(priv->phy, cmd); return -EINVAL; } static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ring) { struct cpmac_priv *priv = netdev_priv(dev); ring->rx_max_pending = 1024; ring->rx_mini_max_pending = 1; ring->rx_jumbo_max_pending = 1; ring->tx_max_pending = 1; ring->rx_pending = priv->ring_size; ring->rx_mini_pending = 1; ring->rx_jumbo_pending = 1; ring->tx_pending = 1; } static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ring) { struct cpmac_priv *priv = netdev_priv(dev); if (netif_running(dev)) return -EBUSY; priv->ring_size = ring->rx_pending; return 0; } static void cpmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strlcpy(info->driver, "cpmac", sizeof(info->driver)); strlcpy(info->version, CPMAC_VERSION, sizeof(info->version)); snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac"); info->regdump_len = 0; } static const struct ethtool_ops cpmac_ethtool_ops = { .get_settings = cpmac_get_settings, .set_settings = cpmac_set_settings, .get_drvinfo = cpmac_get_drvinfo, .get_link = ethtool_op_get_link, .get_ringparam = cpmac_get_ringparam, .set_ringparam = cpmac_set_ringparam, }; static void cpmac_adjust_link(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); int new_state = 0; spin_lock(&priv->lock); if (priv->phy->link) { netif_tx_start_all_queues(dev); if (priv->phy->duplex != priv->oldduplex) { new_state = 1; priv->oldduplex = priv->phy->duplex; } if (priv->phy->speed != priv->oldspeed) { new_state = 1; priv->oldspeed = priv->phy->speed; } if (!priv->oldlink) { new_state = 1; priv->oldlink = 1; } } else if (priv->oldlink) { new_state = 1; priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; } if (new_state && netif_msg_link(priv) && net_ratelimit()) phy_print_status(priv->phy); spin_unlock(&priv->lock); } static int cpmac_open(struct net_device *dev) { int i, size, res; struct cpmac_priv *priv = netdev_priv(dev); struct resource *mem; struct cpmac_desc *desc; struct sk_buff *skb; mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs"); if (!request_mem_region(mem->start, resource_size(mem), dev->name)) { if (netif_msg_drv(priv)) printk(KERN_ERR "%s: failed to request registers\n", dev->name); res = -ENXIO; goto fail_reserve; } priv->regs = ioremap(mem->start, resource_size(mem)); if (!priv->regs) { if (netif_msg_drv(priv)) printk(KERN_ERR "%s: failed to remap registers\n", dev->name); res = -ENXIO; goto fail_remap; } size = priv->ring_size + CPMAC_QUEUES; priv->desc_ring = dma_alloc_coherent(&dev->dev, sizeof(struct cpmac_desc) * size, &priv->dma_ring, GFP_KERNEL); if (!priv->desc_ring) { res = -ENOMEM; goto fail_alloc; } for (i = 0; i < size; i++) priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i; priv->rx_head = &priv->desc_ring[CPMAC_QUEUES]; for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) { skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE); if (unlikely(!skb)) { res = -ENOMEM; goto fail_desc; } desc->skb = skb; desc->data_mapping = dma_map_single(&dev->dev, skb->data, CPMAC_SKB_SIZE, DMA_FROM_DEVICE); desc->hw_data = (u32)desc->data_mapping; desc->buflen = CPMAC_SKB_SIZE; desc->dataflags = CPMAC_OWN; desc->next = &priv->rx_head[(i + 1) % priv->ring_size]; desc->next->prev = desc; desc->hw_next = (u32)desc->next->mapping; } priv->rx_head->prev->hw_next = (u32)0; res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev); if (res) { if (netif_msg_drv(priv)) printk(KERN_ERR "%s: failed to obtain irq\n", dev->name); goto fail_irq; } atomic_set(&priv->reset_pending, 0); INIT_WORK(&priv->reset_work, cpmac_hw_error); cpmac_hw_start(dev); napi_enable(&priv->napi); priv->phy->state = PHY_CHANGELINK; phy_start(priv->phy); return 0; fail_irq: fail_desc: for (i = 0; i < priv->ring_size; i++) { if (priv->rx_head[i].skb) { dma_unmap_single(&dev->dev, priv->rx_head[i].data_mapping, CPMAC_SKB_SIZE, DMA_FROM_DEVICE); kfree_skb(priv->rx_head[i].skb); } } fail_alloc: kfree(priv->desc_ring); iounmap(priv->regs); fail_remap: release_mem_region(mem->start, resource_size(mem)); fail_reserve: return res; } static int cpmac_stop(struct net_device *dev) { int i; struct cpmac_priv *priv = netdev_priv(dev); struct resource *mem; netif_tx_stop_all_queues(dev); cancel_work_sync(&priv->reset_work); napi_disable(&priv->napi); phy_stop(priv->phy); cpmac_hw_stop(dev); for (i = 0; i < 8; i++) cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0); cpmac_write(priv->regs, CPMAC_MBP, 0); free_irq(dev->irq, dev); iounmap(priv->regs); mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs"); release_mem_region(mem->start, resource_size(mem)); priv->rx_head = &priv->desc_ring[CPMAC_QUEUES]; for (i = 0; i < priv->ring_size; i++) { if (priv->rx_head[i].skb) { dma_unmap_single(&dev->dev, priv->rx_head[i].data_mapping, CPMAC_SKB_SIZE, DMA_FROM_DEVICE); kfree_skb(priv->rx_head[i].skb); } } dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) * (CPMAC_QUEUES + priv->ring_size), priv->desc_ring, priv->dma_ring); return 0; } static const struct net_device_ops cpmac_netdev_ops = { .ndo_open = cpmac_open, .ndo_stop = cpmac_stop, .ndo_start_xmit = cpmac_start_xmit, .ndo_tx_timeout = cpmac_tx_timeout, .ndo_set_rx_mode = cpmac_set_multicast_list, .ndo_do_ioctl = cpmac_ioctl, .ndo_set_config = cpmac_config, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, }; static int external_switch; static int cpmac_probe(struct platform_device *pdev) { int rc, phy_id; char mdio_bus_id[MII_BUS_ID_SIZE]; struct resource *mem; struct cpmac_priv *priv; struct net_device *dev; struct plat_cpmac_data *pdata; pdata = pdev->dev.platform_data; if (external_switch || dumb_switch) { strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */ phy_id = pdev->id; } else { for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) { if (!(pdata->phy_mask & (1 << phy_id))) continue; if (!cpmac_mii->phy_map[phy_id]) continue; strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE); break; } } if (phy_id == PHY_MAX_ADDR) { dev_err(&pdev->dev, "no PHY present, falling back " "to switch on MDIO bus 0\n"); strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */ phy_id = pdev->id; } dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES); if (!dev) return -ENOMEM; platform_set_drvdata(pdev, dev); priv = netdev_priv(dev); priv->pdev = pdev; mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs"); if (!mem) { rc = -ENODEV; goto fail; } dev->irq = platform_get_irq_byname(pdev, "irq"); dev->netdev_ops = &cpmac_netdev_ops; dev->ethtool_ops = &cpmac_ethtool_ops; netif_napi_add(dev, &priv->napi, cpmac_poll, 64); spin_lock_init(&priv->lock); spin_lock_init(&priv->rx_lock); priv->dev = dev; priv->ring_size = 64; priv->msg_enable = netif_msg_init(debug_level, 0xff); memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr)); snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id); priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link, PHY_INTERFACE_MODE_MII); if (IS_ERR(priv->phy)) { if (netif_msg_drv(priv)) printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); rc = PTR_ERR(priv->phy); goto fail; } rc = register_netdev(dev); if (rc) { printk(KERN_ERR "cpmac: error %i registering device %s\n", rc, dev->name); goto fail; } if (netif_msg_probe(priv)) { printk(KERN_INFO "cpmac: device %s (regs: %p, irq: %d, phy: %s, " "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq, priv->phy_name, dev->dev_addr); } return 0; fail: free_netdev(dev); return rc; } static int cpmac_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); unregister_netdev(dev); free_netdev(dev); return 0; } static struct platform_driver cpmac_driver = { .driver.name = "cpmac", .driver.owner = THIS_MODULE, .probe = cpmac_probe, .remove = cpmac_remove, }; int cpmac_init(void) { u32 mask; int i, res; cpmac_mii = mdiobus_alloc(); if (cpmac_mii == NULL) return -ENOMEM; cpmac_mii->name = "cpmac-mii"; cpmac_mii->read = cpmac_mdio_read; cpmac_mii->write = cpmac_mdio_write; cpmac_mii->reset = cpmac_mdio_reset; cpmac_mii->irq = mii_irqs; cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256); if (!cpmac_mii->priv) { printk(KERN_ERR "Can't ioremap mdio registers\n"); res = -ENXIO; goto fail_alloc; } /* FIXME: unhardcode gpio&reset bits */ ar7_gpio_disable(26); ar7_gpio_disable(27); ar7_device_reset(AR7_RESET_BIT_CPMAC_LO); ar7_device_reset(AR7_RESET_BIT_CPMAC_HI); ar7_device_reset(AR7_RESET_BIT_EPHY); cpmac_mii->reset(cpmac_mii); for (i = 0; i < 300; i++) { mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE); if (mask) break; else msleep(10); } mask &= 0x7fffffff; if (mask & (mask - 1)) { external_switch = 1; mask = 0; } cpmac_mii->phy_mask = ~(mask | 0x80000000); snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1"); res = mdiobus_register(cpmac_mii); if (res) goto fail_mii; res = platform_driver_register(&cpmac_driver); if (res) goto fail_cpmac; return 0; fail_cpmac: mdiobus_unregister(cpmac_mii); fail_mii: iounmap(cpmac_mii->priv); fail_alloc: mdiobus_free(cpmac_mii); return res; } void cpmac_exit(void) { platform_driver_unregister(&cpmac_driver); mdiobus_unregister(cpmac_mii); iounmap(cpmac_mii->priv); mdiobus_free(cpmac_mii); } module_init(cpmac_init); module_exit(cpmac_exit);