/* * USB Network driver infrastructure * Copyright (C) 2000-2005 by David Brownell * Copyright (C) 2003-2005 David Hollis * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * This is a generic "USB networking" framework that works with several * kinds of full and high speed networking devices: host-to-host cables, * smart usb peripherals, and actual Ethernet adapters. * * These devices usually differ in terms of control protocols (if they * even have one!) and sometimes they define new framing to wrap or batch * Ethernet packets. Otherwise, they talk to USB pretty much the same, * so interface (un)binding, endpoint I/O queues, fault handling, and other * issues can usefully be addressed by this framework. */ // #define DEBUG // error path messages, extra info // #define VERBOSE // more; success messages #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_VERSION "22-Aug-2005" /*-------------------------------------------------------------------------*/ /* * Nineteen USB 1.1 max size bulk transactions per frame (ms), max. * Several dozen bytes of IPv4 data can fit in two such transactions. * One maximum size Ethernet packet takes twenty four of them. * For high speed, each frame comfortably fits almost 36 max size * Ethernet packets (so queues should be bigger). * * REVISIT qlens should be members of 'struct usbnet'; the goal is to * let the USB host controller be busy for 5msec or more before an irq * is required, under load. Jumbograms change the equation. */ #define RX_MAX_QUEUE_MEMORY (60 * 1518) #define RX_QLEN(dev) (((dev)->udev->speed == USB_SPEED_HIGH) ? \ (RX_MAX_QUEUE_MEMORY/(dev)->rx_urb_size) : 4) #define TX_QLEN(dev) (((dev)->udev->speed == USB_SPEED_HIGH) ? \ (RX_MAX_QUEUE_MEMORY/(dev)->hard_mtu) : 4) // reawaken network queue this soon after stopping; else watchdog barks #define TX_TIMEOUT_JIFFIES (5*HZ) // throttle rx/tx briefly after some faults, so khubd might disconnect() // us (it polls at HZ/4 usually) before we report too many false errors. #define THROTTLE_JIFFIES (HZ/8) // between wakeups #define UNLINK_TIMEOUT_MS 3 /*-------------------------------------------------------------------------*/ // randomly generated ethernet address static u8 node_id [ETH_ALEN]; static const char driver_name [] = "usbnet"; /* use ethtool to change the level for any given device */ static int msg_level = -1; module_param (msg_level, int, 0); MODULE_PARM_DESC (msg_level, "Override default message level"); /*-------------------------------------------------------------------------*/ /* handles CDC Ethernet and many other network "bulk data" interfaces */ int usbnet_get_endpoints(struct usbnet *dev, struct usb_interface *intf) { int tmp; struct usb_host_interface *alt = NULL; struct usb_host_endpoint *in = NULL, *out = NULL; struct usb_host_endpoint *status = NULL; for (tmp = 0; tmp < intf->num_altsetting; tmp++) { unsigned ep; in = out = status = NULL; alt = intf->altsetting + tmp; /* take the first altsetting with in-bulk + out-bulk; * remember any status endpoint, just in case; * ignore other endpoints and altsettings. */ for (ep = 0; ep < alt->desc.bNumEndpoints; ep++) { struct usb_host_endpoint *e; int intr = 0; e = alt->endpoint + ep; switch (e->desc.bmAttributes) { case USB_ENDPOINT_XFER_INT: if (!usb_endpoint_dir_in(&e->desc)) continue; intr = 1; /* FALLTHROUGH */ case USB_ENDPOINT_XFER_BULK: break; default: continue; } if (usb_endpoint_dir_in(&e->desc)) { if (!intr && !in) in = e; else if (intr && !status) status = e; } else { if (!out) out = e; } } if (in && out) break; } if (!alt || !in || !out) return -EINVAL; if (alt->desc.bAlternateSetting != 0 || !(dev->driver_info->flags & FLAG_NO_SETINT)) { tmp = usb_set_interface (dev->udev, alt->desc.bInterfaceNumber, alt->desc.bAlternateSetting); if (tmp < 0) return tmp; } dev->in = usb_rcvbulkpipe (dev->udev, in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); dev->out = usb_sndbulkpipe (dev->udev, out->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); dev->status = status; return 0; } EXPORT_SYMBOL_GPL(usbnet_get_endpoints); int usbnet_get_ethernet_addr(struct usbnet *dev, int iMACAddress) { int tmp, i; unsigned char buf [13]; tmp = usb_string(dev->udev, iMACAddress, buf, sizeof buf); if (tmp != 12) { dev_dbg(&dev->udev->dev, "bad MAC string %d fetch, %d\n", iMACAddress, tmp); if (tmp >= 0) tmp = -EINVAL; return tmp; } for (i = tmp = 0; i < 6; i++, tmp += 2) dev->net->dev_addr [i] = (hex_to_bin(buf[tmp]) << 4) + hex_to_bin(buf[tmp + 1]); return 0; } EXPORT_SYMBOL_GPL(usbnet_get_ethernet_addr); static void intr_complete (struct urb *urb) { struct usbnet *dev = urb->context; int status = urb->status; switch (status) { /* success */ case 0: dev->driver_info->status(dev, urb); break; /* software-driven interface shutdown */ case -ENOENT: /* urb killed */ case -ESHUTDOWN: /* hardware gone */ netif_dbg(dev, ifdown, dev->net, "intr shutdown, code %d\n", status); return; /* NOTE: not throttling like RX/TX, since this endpoint * already polls infrequently */ default: netdev_dbg(dev->net, "intr status %d\n", status); break; } status = usb_submit_urb (urb, GFP_ATOMIC); if (status != 0) netif_err(dev, timer, dev->net, "intr resubmit --> %d\n", status); } static int init_status (struct usbnet *dev, struct usb_interface *intf) { char *buf = NULL; unsigned pipe = 0; unsigned maxp; unsigned period; if (!dev->driver_info->status) return 0; pipe = usb_rcvintpipe (dev->udev, dev->status->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); maxp = usb_maxpacket (dev->udev, pipe, 0); /* avoid 1 msec chatter: min 8 msec poll rate */ period = max ((int) dev->status->desc.bInterval, (dev->udev->speed == USB_SPEED_HIGH) ? 7 : 3); buf = kmalloc (maxp, GFP_KERNEL); if (buf) { dev->interrupt = usb_alloc_urb (0, GFP_KERNEL); if (!dev->interrupt) { kfree (buf); return -ENOMEM; } else { usb_fill_int_urb(dev->interrupt, dev->udev, pipe, buf, maxp, intr_complete, dev, period); dev->interrupt->transfer_flags |= URB_FREE_BUFFER; dev_dbg(&intf->dev, "status ep%din, %d bytes period %d\n", usb_pipeendpoint(pipe), maxp, period); } } return 0; } /* Submit the interrupt URB if not previously submitted, increasing refcount */ int usbnet_status_start(struct usbnet *dev, gfp_t mem_flags) { int ret = 0; WARN_ON_ONCE(dev->interrupt == NULL); if (dev->interrupt) { mutex_lock(&dev->interrupt_mutex); if (++dev->interrupt_count == 1) ret = usb_submit_urb(dev->interrupt, mem_flags); dev_dbg(&dev->udev->dev, "incremented interrupt URB count to %d\n", dev->interrupt_count); mutex_unlock(&dev->interrupt_mutex); } return ret; } EXPORT_SYMBOL_GPL(usbnet_status_start); /* For resume; submit interrupt URB if previously submitted */ static int __usbnet_status_start_force(struct usbnet *dev, gfp_t mem_flags) { int ret = 0; mutex_lock(&dev->interrupt_mutex); if (dev->interrupt_count) { ret = usb_submit_urb(dev->interrupt, mem_flags); dev_dbg(&dev->udev->dev, "submitted interrupt URB for resume\n"); } mutex_unlock(&dev->interrupt_mutex); return ret; } /* Kill the interrupt URB if all submitters want it killed */ void usbnet_status_stop(struct usbnet *dev) { if (dev->interrupt) { mutex_lock(&dev->interrupt_mutex); WARN_ON(dev->interrupt_count == 0); if (dev->interrupt_count && --dev->interrupt_count == 0) usb_kill_urb(dev->interrupt); dev_dbg(&dev->udev->dev, "decremented interrupt URB count to %d\n", dev->interrupt_count); mutex_unlock(&dev->interrupt_mutex); } } EXPORT_SYMBOL_GPL(usbnet_status_stop); /* For suspend; always kill interrupt URB */ static void __usbnet_status_stop_force(struct usbnet *dev) { if (dev->interrupt) { mutex_lock(&dev->interrupt_mutex); usb_kill_urb(dev->interrupt); dev_dbg(&dev->udev->dev, "killed interrupt URB for suspend\n"); mutex_unlock(&dev->interrupt_mutex); } } /* Passes this packet up the stack, updating its accounting. * Some link protocols batch packets, so their rx_fixup paths * can return clones as well as just modify the original skb. */ void usbnet_skb_return (struct usbnet *dev, struct sk_buff *skb) { int status; if (test_bit(EVENT_RX_PAUSED, &dev->flags)) { skb_queue_tail(&dev->rxq_pause, skb); return; } skb->protocol = eth_type_trans (skb, dev->net); dev->net->stats.rx_packets++; dev->net->stats.rx_bytes += skb->len; netif_dbg(dev, rx_status, dev->net, "< rx, len %zu, type 0x%x\n", skb->len + sizeof (struct ethhdr), skb->protocol); memset (skb->cb, 0, sizeof (struct skb_data)); if (skb_defer_rx_timestamp(skb)) return; status = netif_rx (skb); if (status != NET_RX_SUCCESS) netif_dbg(dev, rx_err, dev->net, "netif_rx status %d\n", status); } EXPORT_SYMBOL_GPL(usbnet_skb_return); /*------------------------------------------------------------------------- * * Network Device Driver (peer link to "Host Device", from USB host) * *-------------------------------------------------------------------------*/ int usbnet_change_mtu (struct net_device *net, int new_mtu) { struct usbnet *dev = netdev_priv(net); int ll_mtu = new_mtu + net->hard_header_len; int old_hard_mtu = dev->hard_mtu; int old_rx_urb_size = dev->rx_urb_size; if (new_mtu <= 0) return -EINVAL; // no second zero-length packet read wanted after mtu-sized packets if ((ll_mtu % dev->maxpacket) == 0) return -EDOM; net->mtu = new_mtu; dev->hard_mtu = net->mtu + net->hard_header_len; if (dev->rx_urb_size == old_hard_mtu) { dev->rx_urb_size = dev->hard_mtu; if (dev->rx_urb_size > old_rx_urb_size) usbnet_unlink_rx_urbs(dev); } return 0; } EXPORT_SYMBOL_GPL(usbnet_change_mtu); /* The caller must hold list->lock */ static void __usbnet_queue_skb(struct sk_buff_head *list, struct sk_buff *newsk, enum skb_state state) { struct skb_data *entry = (struct skb_data *) newsk->cb; __skb_queue_tail(list, newsk); entry->state = state; } /*-------------------------------------------------------------------------*/ /* some LK 2.4 HCDs oopsed if we freed or resubmitted urbs from * completion callbacks. 2.5 should have fixed those bugs... */ static enum skb_state defer_bh(struct usbnet *dev, struct sk_buff *skb, struct sk_buff_head *list, enum skb_state state) { unsigned long flags; enum skb_state old_state; struct skb_data *entry = (struct skb_data *) skb->cb; spin_lock_irqsave(&list->lock, flags); old_state = entry->state; entry->state = state; __skb_unlink(skb, list); spin_unlock(&list->lock); spin_lock(&dev->done.lock); __skb_queue_tail(&dev->done, skb); if (dev->done.qlen == 1) tasklet_schedule(&dev->bh); spin_unlock_irqrestore(&dev->done.lock, flags); return old_state; } /* some work can't be done in tasklets, so we use keventd * * NOTE: annoying asymmetry: if it's active, schedule_work() fails, * but tasklet_schedule() doesn't. hope the failure is rare. */ void usbnet_defer_kevent (struct usbnet *dev, int work) { set_bit (work, &dev->flags); if (!schedule_work (&dev->kevent)) { if (net_ratelimit()) netdev_err(dev->net, "kevent %d may have been dropped\n", work); } else { netdev_dbg(dev->net, "kevent %d scheduled\n", work); } } EXPORT_SYMBOL_GPL(usbnet_defer_kevent); /*-------------------------------------------------------------------------*/ static void rx_complete (struct urb *urb); static int rx_submit (struct usbnet *dev, struct urb *urb, gfp_t flags) { struct sk_buff *skb; struct skb_data *entry; int retval = 0; unsigned long lockflags; size_t size = dev->rx_urb_size; /* prevent rx skb allocation when error ratio is high */ if (test_bit(EVENT_RX_KILL, &dev->flags)) { usb_free_urb(urb); return -ENOLINK; } skb = __netdev_alloc_skb_ip_align(dev->net, size, flags); if (!skb) { netif_dbg(dev, rx_err, dev->net, "no rx skb\n"); usbnet_defer_kevent (dev, EVENT_RX_MEMORY); usb_free_urb (urb); return -ENOMEM; } entry = (struct skb_data *) skb->cb; entry->urb = urb; entry->dev = dev; entry->length = 0; usb_fill_bulk_urb (urb, dev->udev, dev->in, skb->data, size, rx_complete, skb); spin_lock_irqsave (&dev->rxq.lock, lockflags); if (netif_running (dev->net) && netif_device_present (dev->net) && !test_bit (EVENT_RX_HALT, &dev->flags) && !test_bit (EVENT_DEV_ASLEEP, &dev->flags)) { switch (retval = usb_submit_urb (urb, GFP_ATOMIC)) { case -EPIPE: usbnet_defer_kevent (dev, EVENT_RX_HALT); break; case -ENOMEM: usbnet_defer_kevent (dev, EVENT_RX_MEMORY); break; case -ENODEV: netif_dbg(dev, ifdown, dev->net, "device gone\n"); netif_device_detach (dev->net); break; case -EHOSTUNREACH: retval = -ENOLINK; break; default: netif_dbg(dev, rx_err, dev->net, "rx submit, %d\n", retval); tasklet_schedule (&dev->bh); break; case 0: __usbnet_queue_skb(&dev->rxq, skb, rx_start); } } else { netif_dbg(dev, ifdown, dev->net, "rx: stopped\n"); retval = -ENOLINK; } spin_unlock_irqrestore (&dev->rxq.lock, lockflags); if (retval) { dev_kfree_skb_any (skb); usb_free_urb (urb); } return retval; } /*-------------------------------------------------------------------------*/ static inline void rx_process (struct usbnet *dev, struct sk_buff *skb) { if (dev->driver_info->rx_fixup && !dev->driver_info->rx_fixup (dev, skb)) { /* With RX_ASSEMBLE, rx_fixup() must update counters */ if (!(dev->driver_info->flags & FLAG_RX_ASSEMBLE)) dev->net->stats.rx_errors++; goto done; } // else network stack removes extra byte if we forced a short packet /* all data was already cloned from skb inside the driver */ if (dev->driver_info->flags & FLAG_MULTI_PACKET) goto done; if (skb->len < ETH_HLEN) { dev->net->stats.rx_errors++; dev->net->stats.rx_length_errors++; netif_dbg(dev, rx_err, dev->net, "rx length %d\n", skb->len); } else { usbnet_skb_return(dev, skb); return; } done: skb_queue_tail(&dev->done, skb); } /*-------------------------------------------------------------------------*/ static void rx_complete (struct urb *urb) { struct sk_buff *skb = (struct sk_buff *) urb->context; struct skb_data *entry = (struct skb_data *) skb->cb; struct usbnet *dev = entry->dev; int urb_status = urb->status; enum skb_state state; skb_put (skb, urb->actual_length); state = rx_done; entry->urb = NULL; switch (urb_status) { /* success */ case 0: break; /* stalls need manual reset. this is rare ... except that * when going through USB 2.0 TTs, unplug appears this way. * we avoid the highspeed version of the ETIMEDOUT/EILSEQ * storm, recovering as needed. */ case -EPIPE: dev->net->stats.rx_errors++; usbnet_defer_kevent (dev, EVENT_RX_HALT); // FALLTHROUGH /* software-driven interface shutdown */ case -ECONNRESET: /* async unlink */ case -ESHUTDOWN: /* hardware gone */ netif_dbg(dev, ifdown, dev->net, "rx shutdown, code %d\n", urb_status); goto block; /* we get controller i/o faults during khubd disconnect() delays. * throttle down resubmits, to avoid log floods; just temporarily, * so we still recover when the fault isn't a khubd delay. */ case -EPROTO: case -ETIME: case -EILSEQ: dev->net->stats.rx_errors++; if (!timer_pending (&dev->delay)) { mod_timer (&dev->delay, jiffies + THROTTLE_JIFFIES); netif_dbg(dev, link, dev->net, "rx throttle %d\n", urb_status); } block: state = rx_cleanup; entry->urb = urb; urb = NULL; break; /* data overrun ... flush fifo? */ case -EOVERFLOW: dev->net->stats.rx_over_errors++; // FALLTHROUGH default: state = rx_cleanup; dev->net->stats.rx_errors++; netif_dbg(dev, rx_err, dev->net, "rx status %d\n", urb_status); break; } /* stop rx if packet error rate is high */ if (++dev->pkt_cnt > 30) { dev->pkt_cnt = 0; dev->pkt_err = 0; } else { if (state == rx_cleanup) dev->pkt_err++; if (dev->pkt_err > 20) set_bit(EVENT_RX_KILL, &dev->flags); } state = defer_bh(dev, skb, &dev->rxq, state); if (urb) { if (netif_running (dev->net) && !test_bit (EVENT_RX_HALT, &dev->flags) && state != unlink_start) { rx_submit (dev, urb, GFP_ATOMIC); usb_mark_last_busy(dev->udev); return; } usb_free_urb (urb); } netif_dbg(dev, rx_err, dev->net, "no read resubmitted\n"); } /*-------------------------------------------------------------------------*/ void usbnet_pause_rx(struct usbnet *dev) { set_bit(EVENT_RX_PAUSED, &dev->flags); netif_dbg(dev, rx_status, dev->net, "paused rx queue enabled\n"); } EXPORT_SYMBOL_GPL(usbnet_pause_rx); void usbnet_resume_rx(struct usbnet *dev) { struct sk_buff *skb; int num = 0; clear_bit(EVENT_RX_PAUSED, &dev->flags); while ((skb = skb_dequeue(&dev->rxq_pause)) != NULL) { usbnet_skb_return(dev, skb); num++; } tasklet_schedule(&dev->bh); netif_dbg(dev, rx_status, dev->net, "paused rx queue disabled, %d skbs requeued\n", num); } EXPORT_SYMBOL_GPL(usbnet_resume_rx); void usbnet_purge_paused_rxq(struct usbnet *dev) { skb_queue_purge(&dev->rxq_pause); } EXPORT_SYMBOL_GPL(usbnet_purge_paused_rxq); /*-------------------------------------------------------------------------*/ // unlink pending rx/tx; completion handlers do all other cleanup static int unlink_urbs (struct usbnet *dev, struct sk_buff_head *q) { unsigned long flags; struct sk_buff *skb; int count = 0; spin_lock_irqsave (&q->lock, flags); while (!skb_queue_empty(q)) { struct skb_data *entry; struct urb *urb; int retval; skb_queue_walk(q, skb) { entry = (struct skb_data *) skb->cb; if (entry->state != unlink_start) goto found; } break; found: entry->state = unlink_start; urb = entry->urb; /* * Get reference count of the URB to avoid it to be * freed during usb_unlink_urb, which may trigger * use-after-free problem inside usb_unlink_urb since * usb_unlink_urb is always racing with .complete * handler(include defer_bh). */ usb_get_urb(urb); spin_unlock_irqrestore(&q->lock, flags); // during some PM-driven resume scenarios, // these (async) unlinks complete immediately retval = usb_unlink_urb (urb); if (retval != -EINPROGRESS && retval != 0) netdev_dbg(dev->net, "unlink urb err, %d\n", retval); else count++; usb_put_urb(urb); spin_lock_irqsave(&q->lock, flags); } spin_unlock_irqrestore (&q->lock, flags); return count; } // Flush all pending rx urbs // minidrivers may need to do this when the MTU changes void usbnet_unlink_rx_urbs(struct usbnet *dev) { if (netif_running(dev->net)) { (void) unlink_urbs (dev, &dev->rxq); tasklet_schedule(&dev->bh); } } EXPORT_SYMBOL_GPL(usbnet_unlink_rx_urbs); /*-------------------------------------------------------------------------*/ // precondition: never called in_interrupt static void usbnet_terminate_urbs(struct usbnet *dev) { DECLARE_WAITQUEUE(wait, current); int temp; /* ensure there are no more active urbs */ add_wait_queue(&dev->wait, &wait); set_current_state(TASK_UNINTERRUPTIBLE); temp = unlink_urbs(dev, &dev->txq) + unlink_urbs(dev, &dev->rxq); /* maybe wait for deletions to finish. */ while (!skb_queue_empty(&dev->rxq) && !skb_queue_empty(&dev->txq) && !skb_queue_empty(&dev->done)) { schedule_timeout(msecs_to_jiffies(UNLINK_TIMEOUT_MS)); set_current_state(TASK_UNINTERRUPTIBLE); netif_dbg(dev, ifdown, dev->net, "waited for %d urb completions\n", temp); } set_current_state(TASK_RUNNING); remove_wait_queue(&dev->wait, &wait); } int usbnet_stop (struct net_device *net) { struct usbnet *dev = netdev_priv(net); struct driver_info *info = dev->driver_info; int retval, pm, mpn; clear_bit(EVENT_DEV_OPEN, &dev->flags); netif_stop_queue (net); netif_info(dev, ifdown, dev->net, "stop stats: rx/tx %lu/%lu, errs %lu/%lu\n", net->stats.rx_packets, net->stats.tx_packets, net->stats.rx_errors, net->stats.tx_errors); /* to not race resume */ pm = usb_autopm_get_interface(dev->intf); /* allow minidriver to stop correctly (wireless devices to turn off * radio etc) */ if (info->stop) { retval = info->stop(dev); if (retval < 0) netif_info(dev, ifdown, dev->net, "stop fail (%d) usbnet usb-%s-%s, %s\n", retval, dev->udev->bus->bus_name, dev->udev->devpath, info->description); } if (!(info->flags & FLAG_AVOID_UNLINK_URBS)) usbnet_terminate_urbs(dev); usbnet_status_stop(dev); usbnet_purge_paused_rxq(dev); mpn = !test_and_clear_bit(EVENT_NO_RUNTIME_PM, &dev->flags); /* deferred work (task, timer, softirq) must also stop. * can't flush_scheduled_work() until we drop rtnl (later), * else workers could deadlock; so make workers a NOP. */ dev->flags = 0; del_timer_sync (&dev->delay); tasklet_kill (&dev->bh); if (!pm) usb_autopm_put_interface(dev->intf); if (info->manage_power && mpn) info->manage_power(dev, 0); else usb_autopm_put_interface(dev->intf); return 0; } EXPORT_SYMBOL_GPL(usbnet_stop); /*-------------------------------------------------------------------------*/ // posts reads, and enables write queuing // precondition: never called in_interrupt int usbnet_open (struct net_device *net) { struct usbnet *dev = netdev_priv(net); int retval; struct driver_info *info = dev->driver_info; if ((retval = usb_autopm_get_interface(dev->intf)) < 0) { netif_info(dev, ifup, dev->net, "resumption fail (%d) usbnet usb-%s-%s, %s\n", retval, dev->udev->bus->bus_name, dev->udev->devpath, info->description); goto done_nopm; } // put into "known safe" state if (info->reset && (retval = info->reset (dev)) < 0) { netif_info(dev, ifup, dev->net, "open reset fail (%d) usbnet usb-%s-%s, %s\n", retval, dev->udev->bus->bus_name, dev->udev->devpath, info->description); goto done; } // insist peer be connected if (info->check_connect && (retval = info->check_connect (dev)) < 0) { netif_dbg(dev, ifup, dev->net, "can't open; %d\n", retval); goto done; } /* start any status interrupt transfer */ if (dev->interrupt) { retval = usbnet_status_start(dev, GFP_KERNEL); if (retval < 0) { netif_err(dev, ifup, dev->net, "intr submit %d\n", retval); goto done; } } set_bit(EVENT_DEV_OPEN, &dev->flags); netif_start_queue (net); netif_info(dev, ifup, dev->net, "open: enable queueing (rx %d, tx %d) mtu %d %s framing\n", (int)RX_QLEN(dev), (int)TX_QLEN(dev), dev->net->mtu, (dev->driver_info->flags & FLAG_FRAMING_NC) ? "NetChip" : (dev->driver_info->flags & FLAG_FRAMING_GL) ? "GeneSys" : (dev->driver_info->flags & FLAG_FRAMING_Z) ? "Zaurus" : (dev->driver_info->flags & FLAG_FRAMING_RN) ? "RNDIS" : (dev->driver_info->flags & FLAG_FRAMING_AX) ? "ASIX" : "simple"); /* reset rx error state */ dev->pkt_cnt = 0; dev->pkt_err = 0; clear_bit(EVENT_RX_KILL, &dev->flags); // delay posting reads until we're fully open tasklet_schedule (&dev->bh); if (info->manage_power) { retval = info->manage_power(dev, 1); if (retval < 0) { retval = 0; set_bit(EVENT_NO_RUNTIME_PM, &dev->flags); } else { usb_autopm_put_interface(dev->intf); } } return retval; done: usb_autopm_put_interface(dev->intf); done_nopm: return retval; } EXPORT_SYMBOL_GPL(usbnet_open); /*-------------------------------------------------------------------------*/ /* ethtool methods; minidrivers may need to add some more, but * they'll probably want to use this base set. */ int usbnet_get_settings (struct net_device *net, struct ethtool_cmd *cmd) { struct usbnet *dev = netdev_priv(net); if (!dev->mii.mdio_read) return -EOPNOTSUPP; return mii_ethtool_gset(&dev->mii, cmd); } EXPORT_SYMBOL_GPL(usbnet_get_settings); int usbnet_set_settings (struct net_device *net, struct ethtool_cmd *cmd) { struct usbnet *dev = netdev_priv(net); int retval; if (!dev->mii.mdio_write) return -EOPNOTSUPP; retval = mii_ethtool_sset(&dev->mii, cmd); /* link speed/duplex might have changed */ if (dev->driver_info->link_reset) dev->driver_info->link_reset(dev); return retval; } EXPORT_SYMBOL_GPL(usbnet_set_settings); u32 usbnet_get_link (struct net_device *net) { struct usbnet *dev = netdev_priv(net); /* If a check_connect is defined, return its result */ if (dev->driver_info->check_connect) return dev->driver_info->check_connect (dev) == 0; /* if the device has mii operations, use those */ if (dev->mii.mdio_read) return mii_link_ok(&dev->mii); /* Otherwise, dtrt for drivers calling netif_carrier_{on,off} */ return ethtool_op_get_link(net); } EXPORT_SYMBOL_GPL(usbnet_get_link); int usbnet_nway_reset(struct net_device *net) { struct usbnet *dev = netdev_priv(net); if (!dev->mii.mdio_write) return -EOPNOTSUPP; return mii_nway_restart(&dev->mii); } EXPORT_SYMBOL_GPL(usbnet_nway_reset); void usbnet_get_drvinfo (struct net_device *net, struct ethtool_drvinfo *info) { struct usbnet *dev = netdev_priv(net); strlcpy (info->driver, dev->driver_name, sizeof info->driver); strlcpy (info->version, DRIVER_VERSION, sizeof info->version); strlcpy (info->fw_version, dev->driver_info->description, sizeof info->fw_version); usb_make_path (dev->udev, info->bus_info, sizeof info->bus_info); } EXPORT_SYMBOL_GPL(usbnet_get_drvinfo); u32 usbnet_get_msglevel (struct net_device *net) { struct usbnet *dev = netdev_priv(net); return dev->msg_enable; } EXPORT_SYMBOL_GPL(usbnet_get_msglevel); void usbnet_set_msglevel (struct net_device *net, u32 level) { struct usbnet *dev = netdev_priv(net); dev->msg_enable = level; } EXPORT_SYMBOL_GPL(usbnet_set_msglevel); /* drivers may override default ethtool_ops in their bind() routine */ static const struct ethtool_ops usbnet_ethtool_ops = { .get_settings = usbnet_get_settings, .set_settings = usbnet_set_settings, .get_link = usbnet_get_link, .nway_reset = usbnet_nway_reset, .get_drvinfo = usbnet_get_drvinfo, .get_msglevel = usbnet_get_msglevel, .set_msglevel = usbnet_set_msglevel, .get_ts_info = ethtool_op_get_ts_info, }; /*-------------------------------------------------------------------------*/ static void __handle_link_change(struct usbnet *dev) { if (!test_bit(EVENT_DEV_OPEN, &dev->flags)) return; if (!netif_carrier_ok(dev->net)) { /* kill URBs for reading packets to save bus bandwidth */ unlink_urbs(dev, &dev->rxq); /* * tx_timeout will unlink URBs for sending packets and * tx queue is stopped by netcore after link becomes off */ } else { /* submitting URBs for reading packets */ tasklet_schedule(&dev->bh); } clear_bit(EVENT_LINK_CHANGE, &dev->flags); } /* work that cannot be done in interrupt context uses keventd. * * NOTE: with 2.5 we could do more of this using completion callbacks, * especially now that control transfers can be queued. */ static void kevent (struct work_struct *work) { struct usbnet *dev = container_of(work, struct usbnet, kevent); int status; /* usb_clear_halt() needs a thread context */ if (test_bit (EVENT_TX_HALT, &dev->flags)) { unlink_urbs (dev, &dev->txq); status = usb_autopm_get_interface(dev->intf); if (status < 0) goto fail_pipe; status = usb_clear_halt (dev->udev, dev->out); usb_autopm_put_interface(dev->intf); if (status < 0 && status != -EPIPE && status != -ESHUTDOWN) { if (netif_msg_tx_err (dev)) fail_pipe: netdev_err(dev->net, "can't clear tx halt, status %d\n", status); } else { clear_bit (EVENT_TX_HALT, &dev->flags); if (status != -ESHUTDOWN) netif_wake_queue (dev->net); } } if (test_bit (EVENT_RX_HALT, &dev->flags)) { unlink_urbs (dev, &dev->rxq); status = usb_autopm_get_interface(dev->intf); if (status < 0) goto fail_halt; status = usb_clear_halt (dev->udev, dev->in); usb_autopm_put_interface(dev->intf); if (status < 0 && status != -EPIPE && status != -ESHUTDOWN) { if (netif_msg_rx_err (dev)) fail_halt: netdev_err(dev->net, "can't clear rx halt, status %d\n", status); } else { clear_bit (EVENT_RX_HALT, &dev->flags); tasklet_schedule (&dev->bh); } } /* tasklet could resubmit itself forever if memory is tight */ if (test_bit (EVENT_RX_MEMORY, &dev->flags)) { struct urb *urb = NULL; int resched = 1; if (netif_running (dev->net)) urb = usb_alloc_urb (0, GFP_KERNEL); else clear_bit (EVENT_RX_MEMORY, &dev->flags); if (urb != NULL) { clear_bit (EVENT_RX_MEMORY, &dev->flags); status = usb_autopm_get_interface(dev->intf); if (status < 0) { usb_free_urb(urb); goto fail_lowmem; } if (rx_submit (dev, urb, GFP_KERNEL) == -ENOLINK) resched = 0; usb_autopm_put_interface(dev->intf); fail_lowmem: if (resched) tasklet_schedule (&dev->bh); } } if (test_bit (EVENT_LINK_RESET, &dev->flags)) { struct driver_info *info = dev->driver_info; int retval = 0; clear_bit (EVENT_LINK_RESET, &dev->flags); status = usb_autopm_get_interface(dev->intf); if (status < 0) goto skip_reset; if(info->link_reset && (retval = info->link_reset(dev)) < 0) { usb_autopm_put_interface(dev->intf); skip_reset: netdev_info(dev->net, "link reset failed (%d) usbnet usb-%s-%s, %s\n", retval, dev->udev->bus->bus_name, dev->udev->devpath, info->description); } else { usb_autopm_put_interface(dev->intf); } /* handle link change from link resetting */ __handle_link_change(dev); } if (test_bit (EVENT_LINK_CHANGE, &dev->flags)) __handle_link_change(dev); if (dev->flags) netdev_dbg(dev->net, "kevent done, flags = 0x%lx\n", dev->flags); } /*-------------------------------------------------------------------------*/ static void tx_complete (struct urb *urb) { struct sk_buff *skb = (struct sk_buff *) urb->context; struct skb_data *entry = (struct skb_data *) skb->cb; struct usbnet *dev = entry->dev; if (urb->status == 0) { if (!(dev->driver_info->flags & FLAG_MULTI_PACKET)) dev->net->stats.tx_packets++; dev->net->stats.tx_bytes += entry->length; } else { dev->net->stats.tx_errors++; switch (urb->status) { case -EPIPE: usbnet_defer_kevent (dev, EVENT_TX_HALT); break; /* software-driven interface shutdown */ case -ECONNRESET: // async unlink case -ESHUTDOWN: // hardware gone break; // like rx, tx gets controller i/o faults during khubd delays // and so it uses the same throttling mechanism. case -EPROTO: case -ETIME: case -EILSEQ: usb_mark_last_busy(dev->udev); if (!timer_pending (&dev->delay)) { mod_timer (&dev->delay, jiffies + THROTTLE_JIFFIES); netif_dbg(dev, link, dev->net, "tx throttle %d\n", urb->status); } netif_stop_queue (dev->net); break; default: netif_dbg(dev, tx_err, dev->net, "tx err %d\n", entry->urb->status); break; } } usb_autopm_put_interface_async(dev->intf); (void) defer_bh(dev, skb, &dev->txq, tx_done); } /*-------------------------------------------------------------------------*/ void usbnet_tx_timeout (struct net_device *net) { struct usbnet *dev = netdev_priv(net); unlink_urbs (dev, &dev->txq); tasklet_schedule (&dev->bh); // FIXME: device recovery -- reset? } EXPORT_SYMBOL_GPL(usbnet_tx_timeout); /*-------------------------------------------------------------------------*/ netdev_tx_t usbnet_start_xmit (struct sk_buff *skb, struct net_device *net) { struct usbnet *dev = netdev_priv(net); int length; struct urb *urb = NULL; struct skb_data *entry; struct driver_info *info = dev->driver_info; unsigned long flags; int retval; if (skb) skb_tx_timestamp(skb); // some devices want funky USB-level framing, for // win32 driver (usually) and/or hardware quirks if (info->tx_fixup) { skb = info->tx_fixup (dev, skb, GFP_ATOMIC); if (!skb) { /* packet collected; minidriver waiting for more */ if (info->flags & FLAG_MULTI_PACKET) goto not_drop; netif_dbg(dev, tx_err, dev->net, "can't tx_fixup skb\n"); goto drop; } } length = skb->len; if (!(urb = usb_alloc_urb (0, GFP_ATOMIC))) { netif_dbg(dev, tx_err, dev->net, "no urb\n"); goto drop; } entry = (struct skb_data *) skb->cb; entry->urb = urb; entry->dev = dev; entry->length = length; usb_fill_bulk_urb (urb, dev->udev, dev->out, skb->data, skb->len, tx_complete, skb); /* don't assume the hardware handles USB_ZERO_PACKET * NOTE: strictly conforming cdc-ether devices should expect * the ZLP here, but ignore the one-byte packet. * NOTE2: CDC NCM specification is different from CDC ECM when * handling ZLP/short packets, so cdc_ncm driver will make short * packet itself if needed. */ if (length % dev->maxpacket == 0) { if (!(info->flags & FLAG_SEND_ZLP)) { if (!(info->flags & FLAG_MULTI_PACKET)) { urb->transfer_buffer_length++; if (skb_tailroom(skb)) { skb->data[skb->len] = 0; __skb_put(skb, 1); } } } else urb->transfer_flags |= URB_ZERO_PACKET; } spin_lock_irqsave(&dev->txq.lock, flags); retval = usb_autopm_get_interface_async(dev->intf); if (retval < 0) { spin_unlock_irqrestore(&dev->txq.lock, flags); goto drop; } #ifdef CONFIG_PM /* if this triggers the device is still a sleep */ if (test_bit(EVENT_DEV_ASLEEP, &dev->flags)) { /* transmission will be done in resume */ usb_anchor_urb(urb, &dev->deferred); /* no use to process more packets */ netif_stop_queue(net); usb_put_urb(urb); spin_unlock_irqrestore(&dev->txq.lock, flags); netdev_dbg(dev->net, "Delaying transmission for resumption\n"); goto deferred; } #endif switch ((retval = usb_submit_urb (urb, GFP_ATOMIC))) { case -EPIPE: netif_stop_queue (net); usbnet_defer_kevent (dev, EVENT_TX_HALT); usb_autopm_put_interface_async(dev->intf); break; default: usb_autopm_put_interface_async(dev->intf); netif_dbg(dev, tx_err, dev->net, "tx: submit urb err %d\n", retval); break; case 0: net->trans_start = jiffies; __usbnet_queue_skb(&dev->txq, skb, tx_start); if (dev->txq.qlen >= TX_QLEN (dev)) netif_stop_queue (net); } spin_unlock_irqrestore (&dev->txq.lock, flags); if (retval) { netif_dbg(dev, tx_err, dev->net, "drop, code %d\n", retval); drop: dev->net->stats.tx_dropped++; not_drop: if (skb) dev_kfree_skb_any (skb); usb_free_urb (urb); } else netif_dbg(dev, tx_queued, dev->net, "> tx, len %d, type 0x%x\n", length, skb->protocol); #ifdef CONFIG_PM deferred: #endif return NETDEV_TX_OK; } EXPORT_SYMBOL_GPL(usbnet_start_xmit); static int rx_alloc_submit(struct usbnet *dev, gfp_t flags) { struct urb *urb; int i; int ret = 0; /* don't refill the queue all at once */ for (i = 0; i < 10 && dev->rxq.qlen < RX_QLEN(dev); i++) { urb = usb_alloc_urb(0, flags); if (urb != NULL) { ret = rx_submit(dev, urb, flags); if (ret) goto err; } else { ret = -ENOMEM; goto err; } } err: return ret; } /*-------------------------------------------------------------------------*/ // tasklet (work deferred from completions, in_irq) or timer static void usbnet_bh (unsigned long param) { struct usbnet *dev = (struct usbnet *) param; struct sk_buff *skb; struct skb_data *entry; while ((skb = skb_dequeue (&dev->done))) { entry = (struct skb_data *) skb->cb; switch (entry->state) { case rx_done: entry->state = rx_cleanup; rx_process (dev, skb); continue; case tx_done: case rx_cleanup: usb_free_urb (entry->urb); dev_kfree_skb (skb); continue; default: netdev_dbg(dev->net, "bogus skb state %d\n", entry->state); } } /* restart RX again after disabling due to high error rate */ clear_bit(EVENT_RX_KILL, &dev->flags); /* waiting for all pending urbs to complete? * only then can we forgo submitting anew */ if (waitqueue_active(&dev->wait)) { if (dev->txq.qlen + dev->rxq.qlen + dev->done.qlen == 0) wake_up_all(&dev->wait); // or are we maybe short a few urbs? } else if (netif_running (dev->net) && netif_device_present (dev->net) && netif_carrier_ok(dev->net) && !timer_pending (&dev->delay) && !test_bit (EVENT_RX_HALT, &dev->flags)) { int temp = dev->rxq.qlen; if (temp < RX_QLEN(dev)) { if (rx_alloc_submit(dev, GFP_ATOMIC) == -ENOLINK) return; if (temp != dev->rxq.qlen) netif_dbg(dev, link, dev->net, "rxqlen %d --> %d\n", temp, dev->rxq.qlen); if (dev->rxq.qlen < RX_QLEN(dev)) tasklet_schedule (&dev->bh); } if (dev->txq.qlen < TX_QLEN (dev)) netif_wake_queue (dev->net); } } /*------------------------------------------------------------------------- * * USB Device Driver support * *-------------------------------------------------------------------------*/ // precondition: never called in_interrupt void usbnet_disconnect (struct usb_interface *intf) { struct usbnet *dev; struct usb_device *xdev; struct net_device *net; dev = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); if (!dev) return; xdev = interface_to_usbdev (intf); netif_info(dev, probe, dev->net, "unregister '%s' usb-%s-%s, %s\n", intf->dev.driver->name, xdev->bus->bus_name, xdev->devpath, dev->driver_info->description); net = dev->net; unregister_netdev (net); cancel_work_sync(&dev->kevent); usb_scuttle_anchored_urbs(&dev->deferred); if (dev->driver_info->unbind) dev->driver_info->unbind (dev, intf); usb_kill_urb(dev->interrupt); usb_free_urb(dev->interrupt); free_netdev(net); } EXPORT_SYMBOL_GPL(usbnet_disconnect); static const struct net_device_ops usbnet_netdev_ops = { .ndo_open = usbnet_open, .ndo_stop = usbnet_stop, .ndo_start_xmit = usbnet_start_xmit, .ndo_tx_timeout = usbnet_tx_timeout, .ndo_change_mtu = usbnet_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; /*-------------------------------------------------------------------------*/ // precondition: never called in_interrupt static struct device_type wlan_type = { .name = "wlan", }; static struct device_type wwan_type = { .name = "wwan", }; int usbnet_probe (struct usb_interface *udev, const struct usb_device_id *prod) { struct usbnet *dev; struct net_device *net; struct usb_host_interface *interface; struct driver_info *info; struct usb_device *xdev; int status; const char *name; struct usb_driver *driver = to_usb_driver(udev->dev.driver); /* usbnet already took usb runtime pm, so have to enable the feature * for usb interface, otherwise usb_autopm_get_interface may return * failure if RUNTIME_PM is enabled. */ if (!driver->supports_autosuspend) { driver->supports_autosuspend = 1; pm_runtime_enable(&udev->dev); } name = udev->dev.driver->name; info = (struct driver_info *) prod->driver_info; if (!info) { dev_dbg (&udev->dev, "blacklisted by %s\n", name); return -ENODEV; } xdev = interface_to_usbdev (udev); interface = udev->cur_altsetting; status = -ENOMEM; // set up our own records net = alloc_etherdev(sizeof(*dev)); if (!net) goto out; /* netdev_printk() needs this so do it as early as possible */ SET_NETDEV_DEV(net, &udev->dev); dev = netdev_priv(net); dev->udev = xdev; dev->intf = udev; dev->driver_info = info; dev->driver_name = name; dev->msg_enable = netif_msg_init (msg_level, NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK); init_waitqueue_head(&dev->wait); skb_queue_head_init (&dev->rxq); skb_queue_head_init (&dev->txq); skb_queue_head_init (&dev->done); skb_queue_head_init(&dev->rxq_pause); dev->bh.func = usbnet_bh; dev->bh.data = (unsigned long) dev; INIT_WORK (&dev->kevent, kevent); init_usb_anchor(&dev->deferred); dev->delay.function = usbnet_bh; dev->delay.data = (unsigned long) dev; init_timer (&dev->delay); mutex_init (&dev->phy_mutex); mutex_init(&dev->interrupt_mutex); dev->interrupt_count = 0; dev->net = net; strcpy (net->name, "usb%d"); memcpy (net->dev_addr, node_id, sizeof node_id); /* rx and tx sides can use different message sizes; * bind() should set rx_urb_size in that case. */ dev->hard_mtu = net->mtu + net->hard_header_len; #if 0 // dma_supported() is deeply broken on almost all architectures // possible with some EHCI controllers if (dma_supported (&udev->dev, DMA_BIT_MASK(64))) net->features |= NETIF_F_HIGHDMA; #endif net->netdev_ops = &usbnet_netdev_ops; net->watchdog_timeo = TX_TIMEOUT_JIFFIES; net->ethtool_ops = &usbnet_ethtool_ops; // allow device-specific bind/init procedures // NOTE net->name still not usable ... if (info->bind) { status = info->bind (dev, udev); if (status < 0) goto out1; // heuristic: "usb%d" for links we know are two-host, // else "eth%d" when there's reasonable doubt. userspace // can rename the link if it knows better. if ((dev->driver_info->flags & FLAG_ETHER) != 0 && ((dev->driver_info->flags & FLAG_POINTTOPOINT) == 0 || (net->dev_addr [0] & 0x02) == 0)) strcpy (net->name, "eth%d"); /* WLAN devices should always be named "wlan%d" */ if ((dev->driver_info->flags & FLAG_WLAN) != 0) strcpy(net->name, "wlan%d"); /* WWAN devices should always be named "wwan%d" */ if ((dev->driver_info->flags & FLAG_WWAN) != 0) strcpy(net->name, "wwan%d"); /* devices that cannot do ARP */ if ((dev->driver_info->flags & FLAG_NOARP) != 0) net->flags |= IFF_NOARP; /* maybe the remote can't receive an Ethernet MTU */ if (net->mtu > (dev->hard_mtu - net->hard_header_len)) net->mtu = dev->hard_mtu - net->hard_header_len; } else if (!info->in || !info->out) status = usbnet_get_endpoints (dev, udev); else { dev->in = usb_rcvbulkpipe (xdev, info->in); dev->out = usb_sndbulkpipe (xdev, info->out); if (!(info->flags & FLAG_NO_SETINT)) status = usb_set_interface (xdev, interface->desc.bInterfaceNumber, interface->desc.bAlternateSetting); else status = 0; } if (status >= 0 && dev->status) status = init_status (dev, udev); if (status < 0) goto out3; if (!dev->rx_urb_size) dev->rx_urb_size = dev->hard_mtu; dev->maxpacket = usb_maxpacket (dev->udev, dev->out, 1); if ((dev->driver_info->flags & FLAG_WLAN) != 0) SET_NETDEV_DEVTYPE(net, &wlan_type); if ((dev->driver_info->flags & FLAG_WWAN) != 0) SET_NETDEV_DEVTYPE(net, &wwan_type); status = register_netdev (net); if (status) goto out4; netif_info(dev, probe, dev->net, "register '%s' at usb-%s-%s, %s, %pM\n", udev->dev.driver->name, xdev->bus->bus_name, xdev->devpath, dev->driver_info->description, net->dev_addr); // ok, it's ready to go. usb_set_intfdata (udev, dev); netif_device_attach (net); if (dev->driver_info->flags & FLAG_LINK_INTR) usbnet_link_change(dev, 0, 0); return 0; out4: usb_free_urb(dev->interrupt); out3: if (info->unbind) info->unbind (dev, udev); out1: /* subdrivers must undo all they did in bind() if they * fail it, but we may fail later and a deferred kevent * may trigger an error resubmitting itself and, worse, * schedule a timer. So we kill it all just in case. */ cancel_work_sync(&dev->kevent); del_timer_sync(&dev->delay); free_netdev(net); out: return status; } EXPORT_SYMBOL_GPL(usbnet_probe); /*-------------------------------------------------------------------------*/ /* * suspend the whole driver as soon as the first interface is suspended * resume only when the last interface is resumed */ int usbnet_suspend (struct usb_interface *intf, pm_message_t message) { struct usbnet *dev = usb_get_intfdata(intf); if (!dev->suspend_count++) { spin_lock_irq(&dev->txq.lock); /* don't autosuspend while transmitting */ if (dev->txq.qlen && PMSG_IS_AUTO(message)) { dev->suspend_count--; spin_unlock_irq(&dev->txq.lock); return -EBUSY; } else { set_bit(EVENT_DEV_ASLEEP, &dev->flags); spin_unlock_irq(&dev->txq.lock); } /* * accelerate emptying of the rx and queues, to avoid * having everything error out. */ netif_device_detach (dev->net); usbnet_terminate_urbs(dev); __usbnet_status_stop_force(dev); /* * reattach so runtime management can use and * wake the device */ netif_device_attach (dev->net); } return 0; } EXPORT_SYMBOL_GPL(usbnet_suspend); int usbnet_resume (struct usb_interface *intf) { struct usbnet *dev = usb_get_intfdata(intf); struct sk_buff *skb; struct urb *res; int retval; if (!--dev->suspend_count) { /* resume interrupt URB if it was previously submitted */ __usbnet_status_start_force(dev, GFP_NOIO); spin_lock_irq(&dev->txq.lock); while ((res = usb_get_from_anchor(&dev->deferred))) { skb = (struct sk_buff *)res->context; retval = usb_submit_urb(res, GFP_ATOMIC); if (retval < 0) { dev_kfree_skb_any(skb); usb_free_urb(res); usb_autopm_put_interface_async(dev->intf); } else { dev->net->trans_start = jiffies; __skb_queue_tail(&dev->txq, skb); } } smp_mb(); clear_bit(EVENT_DEV_ASLEEP, &dev->flags); spin_unlock_irq(&dev->txq.lock); if (test_bit(EVENT_DEV_OPEN, &dev->flags)) { /* handle remote wakeup ASAP * we cannot race against stop */ if (netif_device_present(dev->net) && !timer_pending(&dev->delay) && !test_bit(EVENT_RX_HALT, &dev->flags)) rx_alloc_submit(dev, GFP_NOIO); if (!(dev->txq.qlen >= TX_QLEN(dev))) netif_tx_wake_all_queues(dev->net); tasklet_schedule (&dev->bh); } } if (test_and_clear_bit(EVENT_DEVICE_REPORT_IDLE, &dev->flags)) usb_autopm_get_interface_no_resume(intf); return 0; } EXPORT_SYMBOL_GPL(usbnet_resume); /* * Either a subdriver implements manage_power, then it is assumed to always * be ready to be suspended or it reports the readiness to be suspended * explicitly */ void usbnet_device_suggests_idle(struct usbnet *dev) { if (!test_and_set_bit(EVENT_DEVICE_REPORT_IDLE, &dev->flags)) { dev->intf->needs_remote_wakeup = 1; usb_autopm_put_interface_async(dev->intf); } } EXPORT_SYMBOL(usbnet_device_suggests_idle); /* * For devices that can do without special commands */ int usbnet_manage_power(struct usbnet *dev, int on) { dev->intf->needs_remote_wakeup = on; return 0; } EXPORT_SYMBOL(usbnet_manage_power); void usbnet_link_change(struct usbnet *dev, bool link, bool need_reset) { /* update link after link is reseted */ if (link && !need_reset) netif_carrier_on(dev->net); else netif_carrier_off(dev->net); if (need_reset && link) usbnet_defer_kevent(dev, EVENT_LINK_RESET); else usbnet_defer_kevent(dev, EVENT_LINK_CHANGE); } EXPORT_SYMBOL(usbnet_link_change); /*-------------------------------------------------------------------------*/ static int __usbnet_read_cmd(struct usbnet *dev, u8 cmd, u8 reqtype, u16 value, u16 index, void *data, u16 size) { void *buf = NULL; int err = -ENOMEM; netdev_dbg(dev->net, "usbnet_read_cmd cmd=0x%02x reqtype=%02x" " value=0x%04x index=0x%04x size=%d\n", cmd, reqtype, value, index, size); if (data) { buf = kmalloc(size, GFP_KERNEL); if (!buf) goto out; } err = usb_control_msg(dev->udev, usb_rcvctrlpipe(dev->udev, 0), cmd, reqtype, value, index, buf, size, USB_CTRL_GET_TIMEOUT); if (err > 0 && err <= size) memcpy(data, buf, err); kfree(buf); out: return err; } static int __usbnet_write_cmd(struct usbnet *dev, u8 cmd, u8 reqtype, u16 value, u16 index, const void *data, u16 size) { void *buf = NULL; int err = -ENOMEM; netdev_dbg(dev->net, "usbnet_write_cmd cmd=0x%02x reqtype=%02x" " value=0x%04x index=0x%04x size=%d\n", cmd, reqtype, value, index, size); if (data) { buf = kmemdup(data, size, GFP_KERNEL); if (!buf) goto out; } err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), cmd, reqtype, value, index, buf, size, USB_CTRL_SET_TIMEOUT); kfree(buf); out: return err; } /* * The function can't be called inside suspend/resume callback, * otherwise deadlock will be caused. */ int usbnet_read_cmd(struct usbnet *dev, u8 cmd, u8 reqtype, u16 value, u16 index, void *data, u16 size) { int ret; if (usb_autopm_get_interface(dev->intf) < 0) return -ENODEV; ret = __usbnet_read_cmd(dev, cmd, reqtype, value, index, data, size); usb_autopm_put_interface(dev->intf); return ret; } EXPORT_SYMBOL_GPL(usbnet_read_cmd); /* * The function can't be called inside suspend/resume callback, * otherwise deadlock will be caused. */ int usbnet_write_cmd(struct usbnet *dev, u8 cmd, u8 reqtype, u16 value, u16 index, const void *data, u16 size) { int ret; if (usb_autopm_get_interface(dev->intf) < 0) return -ENODEV; ret = __usbnet_write_cmd(dev, cmd, reqtype, value, index, data, size); usb_autopm_put_interface(dev->intf); return ret; } EXPORT_SYMBOL_GPL(usbnet_write_cmd); /* * The function can be called inside suspend/resume callback safely * and should only be called by suspend/resume callback generally. */ int usbnet_read_cmd_nopm(struct usbnet *dev, u8 cmd, u8 reqtype, u16 value, u16 index, void *data, u16 size) { return __usbnet_read_cmd(dev, cmd, reqtype, value, index, data, size); } EXPORT_SYMBOL_GPL(usbnet_read_cmd_nopm); /* * The function can be called inside suspend/resume callback safely * and should only be called by suspend/resume callback generally. */ int usbnet_write_cmd_nopm(struct usbnet *dev, u8 cmd, u8 reqtype, u16 value, u16 index, const void *data, u16 size) { return __usbnet_write_cmd(dev, cmd, reqtype, value, index, data, size); } EXPORT_SYMBOL_GPL(usbnet_write_cmd_nopm); static void usbnet_async_cmd_cb(struct urb *urb) { struct usb_ctrlrequest *req = (struct usb_ctrlrequest *)urb->context; int status = urb->status; if (status < 0) dev_dbg(&urb->dev->dev, "%s failed with %d", __func__, status); kfree(req); usb_free_urb(urb); } /* * The caller must make sure that device can't be put into suspend * state until the control URB completes. */ int usbnet_write_cmd_async(struct usbnet *dev, u8 cmd, u8 reqtype, u16 value, u16 index, const void *data, u16 size) { struct usb_ctrlrequest *req = NULL; struct urb *urb; int err = -ENOMEM; void *buf = NULL; netdev_dbg(dev->net, "usbnet_write_cmd cmd=0x%02x reqtype=%02x" " value=0x%04x index=0x%04x size=%d\n", cmd, reqtype, value, index, size); urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { netdev_err(dev->net, "Error allocating URB in" " %s!\n", __func__); goto fail; } if (data) { buf = kmemdup(data, size, GFP_ATOMIC); if (!buf) { netdev_err(dev->net, "Error allocating buffer" " in %s!\n", __func__); goto fail_free; } } req = kmalloc(sizeof(struct usb_ctrlrequest), GFP_ATOMIC); if (!req) goto fail_free_buf; req->bRequestType = reqtype; req->bRequest = cmd; req->wValue = cpu_to_le16(value); req->wIndex = cpu_to_le16(index); req->wLength = cpu_to_le16(size); usb_fill_control_urb(urb, dev->udev, usb_sndctrlpipe(dev->udev, 0), (void *)req, buf, size, usbnet_async_cmd_cb, req); urb->transfer_flags |= URB_FREE_BUFFER; err = usb_submit_urb(urb, GFP_ATOMIC); if (err < 0) { netdev_err(dev->net, "Error submitting the control" " message: status=%d\n", err); goto fail_free; } return 0; fail_free_buf: kfree(buf); fail_free: kfree(req); usb_free_urb(urb); fail: return err; } EXPORT_SYMBOL_GPL(usbnet_write_cmd_async); /*-------------------------------------------------------------------------*/ static int __init usbnet_init(void) { /* Compiler should optimize this out. */ BUILD_BUG_ON( FIELD_SIZEOF(struct sk_buff, cb) < sizeof(struct skb_data)); eth_random_addr(node_id); return 0; } module_init(usbnet_init); static void __exit usbnet_exit(void) { } module_exit(usbnet_exit); MODULE_AUTHOR("David Brownell"); MODULE_DESCRIPTION("USB network driver framework"); MODULE_LICENSE("GPL");