/****************************************************************************** * * Copyright(c) 2009-2012 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ #include "wifi.h" #include "core.h" #include "pci.h" #include "base.h" #include "ps.h" #include "efuse.h" #include #include static const u16 pcibridge_vendors[PCI_BRIDGE_VENDOR_MAX] = { PCI_VENDOR_ID_INTEL, PCI_VENDOR_ID_ATI, PCI_VENDOR_ID_AMD, PCI_VENDOR_ID_SI }; static const u8 ac_to_hwq[] = { VO_QUEUE, VI_QUEUE, BE_QUEUE, BK_QUEUE }; static u8 _rtl_mac_to_hwqueue(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); __le16 fc = rtl_get_fc(skb); u8 queue_index = skb_get_queue_mapping(skb); if (unlikely(ieee80211_is_beacon(fc))) return BEACON_QUEUE; if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) return MGNT_QUEUE; if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) if (ieee80211_is_nullfunc(fc)) return HIGH_QUEUE; return ac_to_hwq[queue_index]; } /* Update PCI dependent default settings*/ static void _rtl_pci_update_default_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor; u8 init_aspm; ppsc->reg_rfps_level = 0; ppsc->support_aspm = false; /*Update PCI ASPM setting */ ppsc->const_amdpci_aspm = rtlpci->const_amdpci_aspm; switch (rtlpci->const_pci_aspm) { case 0: /*No ASPM */ break; case 1: /*ASPM dynamically enabled/disable. */ ppsc->reg_rfps_level |= RT_RF_LPS_LEVEL_ASPM; break; case 2: /*ASPM with Clock Req dynamically enabled/disable. */ ppsc->reg_rfps_level |= (RT_RF_LPS_LEVEL_ASPM | RT_RF_OFF_LEVL_CLK_REQ); break; case 3: /* * Always enable ASPM and Clock Req * from initialization to halt. * */ ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM); ppsc->reg_rfps_level |= (RT_RF_PS_LEVEL_ALWAYS_ASPM | RT_RF_OFF_LEVL_CLK_REQ); break; case 4: /* * Always enable ASPM without Clock Req * from initialization to halt. * */ ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM | RT_RF_OFF_LEVL_CLK_REQ); ppsc->reg_rfps_level |= RT_RF_PS_LEVEL_ALWAYS_ASPM; break; } ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC; /*Update Radio OFF setting */ switch (rtlpci->const_hwsw_rfoff_d3) { case 1: if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM) ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM; break; case 2: if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM) ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM; ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC; break; case 3: ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_PCI_D3; break; } /*Set HW definition to determine if it supports ASPM. */ switch (rtlpci->const_support_pciaspm) { case 0:{ /*Not support ASPM. */ bool support_aspm = false; ppsc->support_aspm = support_aspm; break; } case 1:{ /*Support ASPM. */ bool support_aspm = true; bool support_backdoor = true; ppsc->support_aspm = support_aspm; /*if (priv->oem_id == RT_CID_TOSHIBA && !priv->ndis_adapter.amd_l1_patch) support_backdoor = false; */ ppsc->support_backdoor = support_backdoor; break; } case 2: /*ASPM value set by chipset. */ if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL) { bool support_aspm = true; ppsc->support_aspm = support_aspm; } break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } /* toshiba aspm issue, toshiba will set aspm selfly * so we should not set aspm in driver */ pci_read_config_byte(rtlpci->pdev, 0x80, &init_aspm); if (rtlpriv->rtlhal.hw_type == HARDWARE_TYPE_RTL8192SE && init_aspm == 0x43) ppsc->support_aspm = false; } static bool _rtl_pci_platform_switch_device_pci_aspm( struct ieee80211_hw *hw, u8 value) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) value |= 0x40; pci_write_config_byte(rtlpci->pdev, 0x80, value); return false; } /*When we set 0x01 to enable clk request. Set 0x0 to disable clk req.*/ static void _rtl_pci_switch_clk_req(struct ieee80211_hw *hw, u8 value) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); pci_write_config_byte(rtlpci->pdev, 0x81, value); if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) udelay(100); } /*Disable RTL8192SE ASPM & Disable Pci Bridge ASPM*/ static void rtl_pci_disable_aspm(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor; u8 num4bytes = pcipriv->ndis_adapter.num4bytes; /*Retrieve original configuration settings. */ u8 linkctrl_reg = pcipriv->ndis_adapter.linkctrl_reg; u16 pcibridge_linkctrlreg = pcipriv->ndis_adapter. pcibridge_linkctrlreg; u16 aspmlevel = 0; u8 tmp_u1b = 0; if (!ppsc->support_aspm) return; if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) { RT_TRACE(rtlpriv, COMP_POWER, DBG_TRACE, "PCI(Bridge) UNKNOWN\n"); return; } if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) { RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ); _rtl_pci_switch_clk_req(hw, 0x0); } /*for promising device will in L0 state after an I/O. */ pci_read_config_byte(rtlpci->pdev, 0x80, &tmp_u1b); /*Set corresponding value. */ aspmlevel |= BIT(0) | BIT(1); linkctrl_reg &= ~aspmlevel; pcibridge_linkctrlreg &= ~(BIT(0) | BIT(1)); _rtl_pci_platform_switch_device_pci_aspm(hw, linkctrl_reg); udelay(50); /*4 Disable Pci Bridge ASPM */ pci_write_config_byte(rtlpci->pdev, (num4bytes << 2), pcibridge_linkctrlreg); udelay(50); } /* *Enable RTL8192SE ASPM & Enable Pci Bridge ASPM for *power saving We should follow the sequence to enable *RTL8192SE first then enable Pci Bridge ASPM *or the system will show bluescreen. */ static void rtl_pci_enable_aspm(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor; u8 num4bytes = pcipriv->ndis_adapter.num4bytes; u16 aspmlevel; u8 u_pcibridge_aspmsetting; u8 u_device_aspmsetting; if (!ppsc->support_aspm) return; if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) { RT_TRACE(rtlpriv, COMP_POWER, DBG_TRACE, "PCI(Bridge) UNKNOWN\n"); return; } /*4 Enable Pci Bridge ASPM */ u_pcibridge_aspmsetting = pcipriv->ndis_adapter.pcibridge_linkctrlreg | rtlpci->const_hostpci_aspm_setting; if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL) u_pcibridge_aspmsetting &= ~BIT(0); pci_write_config_byte(rtlpci->pdev, (num4bytes << 2), u_pcibridge_aspmsetting); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PlatformEnableASPM(): Write reg[%x] = %x\n", (pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10), u_pcibridge_aspmsetting); udelay(50); /*Get ASPM level (with/without Clock Req) */ aspmlevel = rtlpci->const_devicepci_aspm_setting; u_device_aspmsetting = pcipriv->ndis_adapter.linkctrl_reg; /*_rtl_pci_platform_switch_device_pci_aspm(dev,*/ /*(priv->ndis_adapter.linkctrl_reg | ASPMLevel)); */ u_device_aspmsetting |= aspmlevel; _rtl_pci_platform_switch_device_pci_aspm(hw, u_device_aspmsetting); if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) { _rtl_pci_switch_clk_req(hw, (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) ? 1 : 0); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ); } udelay(100); } static bool rtl_pci_get_amd_l1_patch(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); bool status = false; u8 offset_e0; unsigned offset_e4; pci_write_config_byte(rtlpci->pdev, 0xe0, 0xa0); pci_read_config_byte(rtlpci->pdev, 0xe0, &offset_e0); if (offset_e0 == 0xA0) { pci_read_config_dword(rtlpci->pdev, 0xe4, &offset_e4); if (offset_e4 & BIT(23)) status = true; } return status; } static bool rtl_pci_check_buddy_priv(struct ieee80211_hw *hw, struct rtl_priv **buddy_priv) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); bool find_buddy_priv = false; struct rtl_priv *tpriv = NULL; struct rtl_pci_priv *tpcipriv = NULL; if (!list_empty(&rtlpriv->glb_var->glb_priv_list)) { list_for_each_entry(tpriv, &rtlpriv->glb_var->glb_priv_list, list) { if (tpriv) { tpcipriv = (struct rtl_pci_priv *)tpriv->priv; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "pcipriv->ndis_adapter.funcnumber %x\n", pcipriv->ndis_adapter.funcnumber); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "tpcipriv->ndis_adapter.funcnumber %x\n", tpcipriv->ndis_adapter.funcnumber); if ((pcipriv->ndis_adapter.busnumber == tpcipriv->ndis_adapter.busnumber) && (pcipriv->ndis_adapter.devnumber == tpcipriv->ndis_adapter.devnumber) && (pcipriv->ndis_adapter.funcnumber != tpcipriv->ndis_adapter.funcnumber)) { find_buddy_priv = true; break; } } } } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "find_buddy_priv %d\n", find_buddy_priv); if (find_buddy_priv) *buddy_priv = tpriv; return find_buddy_priv; } static void rtl_pci_get_linkcontrol_field(struct ieee80211_hw *hw) { struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_pci *rtlpci = rtl_pcidev(pcipriv); u8 capabilityoffset = pcipriv->ndis_adapter.pcibridge_pciehdr_offset; u8 linkctrl_reg; u8 num4bbytes; num4bbytes = (capabilityoffset + 0x10) / 4; /*Read Link Control Register */ pci_read_config_byte(rtlpci->pdev, (num4bbytes << 2), &linkctrl_reg); pcipriv->ndis_adapter.pcibridge_linkctrlreg = linkctrl_reg; } static void rtl_pci_parse_configuration(struct pci_dev *pdev, struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); u8 tmp; u16 linkctrl_reg; /*Link Control Register */ pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &linkctrl_reg); pcipriv->ndis_adapter.linkctrl_reg = (u8)linkctrl_reg; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Link Control Register =%x\n", pcipriv->ndis_adapter.linkctrl_reg); pci_read_config_byte(pdev, 0x98, &tmp); tmp |= BIT(4); pci_write_config_byte(pdev, 0x98, tmp); tmp = 0x17; pci_write_config_byte(pdev, 0x70f, tmp); } static void rtl_pci_init_aspm(struct ieee80211_hw *hw) { struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); _rtl_pci_update_default_setting(hw); if (ppsc->reg_rfps_level & RT_RF_PS_LEVEL_ALWAYS_ASPM) { /*Always enable ASPM & Clock Req. */ rtl_pci_enable_aspm(hw); RT_SET_PS_LEVEL(ppsc, RT_RF_PS_LEVEL_ALWAYS_ASPM); } } static void _rtl_pci_io_handler_init(struct device *dev, struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->io.dev = dev; rtlpriv->io.write8_async = pci_write8_async; rtlpriv->io.write16_async = pci_write16_async; rtlpriv->io.write32_async = pci_write32_async; rtlpriv->io.read8_sync = pci_read8_sync; rtlpriv->io.read16_sync = pci_read16_sync; rtlpriv->io.read32_sync = pci_read32_sync; } static bool _rtl_update_earlymode_info(struct ieee80211_hw *hw, struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc, u8 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct sk_buff *next_skb; u8 additionlen = FCS_LEN; /* here open is 4, wep/tkip is 8, aes is 12*/ if (info->control.hw_key) additionlen += info->control.hw_key->icv_len; /* The most skb num is 6 */ tcb_desc->empkt_num = 0; spin_lock_bh(&rtlpriv->locks.waitq_lock); skb_queue_walk(&rtlpriv->mac80211.skb_waitq[tid], next_skb) { struct ieee80211_tx_info *next_info; next_info = IEEE80211_SKB_CB(next_skb); if (next_info->flags & IEEE80211_TX_CTL_AMPDU) { tcb_desc->empkt_len[tcb_desc->empkt_num] = next_skb->len + additionlen; tcb_desc->empkt_num++; } else { break; } if (skb_queue_is_last(&rtlpriv->mac80211.skb_waitq[tid], next_skb)) break; if (tcb_desc->empkt_num >= rtlhal->max_earlymode_num) break; } spin_unlock_bh(&rtlpriv->locks.waitq_lock); return true; } /* just for early mode now */ static void _rtl_pci_tx_chk_waitq(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct sk_buff *skb = NULL; struct ieee80211_tx_info *info = NULL; struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); int tid; if (!rtlpriv->rtlhal.earlymode_enable) return; if (rtlpriv->dm.supp_phymode_switch && (rtlpriv->easy_concurrent_ctl.switch_in_process || (rtlpriv->buddy_priv && rtlpriv->buddy_priv->easy_concurrent_ctl.switch_in_process))) return; /* we juse use em for BE/BK/VI/VO */ for (tid = 7; tid >= 0; tid--) { u8 hw_queue = ac_to_hwq[rtl_tid_to_ac(tid)]; struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[hw_queue]; while (!mac->act_scanning && rtlpriv->psc.rfpwr_state == ERFON) { struct rtl_tcb_desc tcb_desc; memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc)); spin_lock_bh(&rtlpriv->locks.waitq_lock); if (!skb_queue_empty(&mac->skb_waitq[tid]) && (ring->entries - skb_queue_len(&ring->queue) > rtlhal->max_earlymode_num)) { skb = skb_dequeue(&mac->skb_waitq[tid]); } else { spin_unlock_bh(&rtlpriv->locks.waitq_lock); break; } spin_unlock_bh(&rtlpriv->locks.waitq_lock); /* Some macaddr can't do early mode. like * multicast/broadcast/no_qos data */ info = IEEE80211_SKB_CB(skb); if (info->flags & IEEE80211_TX_CTL_AMPDU) _rtl_update_earlymode_info(hw, skb, &tcb_desc, tid); rtlpriv->intf_ops->adapter_tx(hw, NULL, skb, &tcb_desc); } } } static void _rtl_pci_tx_isr(struct ieee80211_hw *hw, int prio) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio]; while (skb_queue_len(&ring->queue)) { struct rtl_tx_desc *entry = &ring->desc[ring->idx]; struct sk_buff *skb; struct ieee80211_tx_info *info; __le16 fc; u8 tid; u8 own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) entry, true, HW_DESC_OWN); /*beacon packet will only use the first *descriptor by defaut, and the own may not *be cleared by the hardware */ if (own) return; ring->idx = (ring->idx + 1) % ring->entries; skb = __skb_dequeue(&ring->queue); pci_unmap_single(rtlpci->pdev, rtlpriv->cfg->ops-> get_desc((u8 *) entry, true, HW_DESC_TXBUFF_ADDR), skb->len, PCI_DMA_TODEVICE); /* remove early mode header */ if (rtlpriv->rtlhal.earlymode_enable) skb_pull(skb, EM_HDR_LEN); RT_TRACE(rtlpriv, (COMP_INTR | COMP_SEND), DBG_TRACE, "new ring->idx:%d, free: skb_queue_len:%d, free: seq:%x\n", ring->idx, skb_queue_len(&ring->queue), *(u16 *) (skb->data + 22)); if (prio == TXCMD_QUEUE) { dev_kfree_skb(skb); goto tx_status_ok; } /* for sw LPS, just after NULL skb send out, we can * sure AP knows we are sleeping, we should not let * rf sleep */ fc = rtl_get_fc(skb); if (ieee80211_is_nullfunc(fc)) { if (ieee80211_has_pm(fc)) { rtlpriv->mac80211.offchan_delay = true; rtlpriv->psc.state_inap = true; } else { rtlpriv->psc.state_inap = false; } } if (ieee80211_is_action(fc)) { struct ieee80211_mgmt *action_frame = (struct ieee80211_mgmt *)skb->data; if (action_frame->u.action.u.ht_smps.action == WLAN_HT_ACTION_SMPS) { dev_kfree_skb(skb); goto tx_status_ok; } } /* update tid tx pkt num */ tid = rtl_get_tid(skb); if (tid <= 7) rtlpriv->link_info.tidtx_inperiod[tid]++; info = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(info); info->flags |= IEEE80211_TX_STAT_ACK; /*info->status.rates[0].count = 1; */ ieee80211_tx_status_irqsafe(hw, skb); if ((ring->entries - skb_queue_len(&ring->queue)) == 2) { RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, "more desc left, wake skb_queue@%d, ring->idx = %d, skb_queue_len = 0x%d\n", prio, ring->idx, skb_queue_len(&ring->queue)); ieee80211_wake_queue(hw, skb_get_queue_mapping (skb)); } tx_status_ok: skb = NULL; } if (((rtlpriv->link_info.num_rx_inperiod + rtlpriv->link_info.num_tx_inperiod) > 8) || (rtlpriv->link_info.num_rx_inperiod > 2)) { rtlpriv->enter_ps = false; schedule_work(&rtlpriv->works.lps_change_work); } } static void _rtl_receive_one(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_rx_status rx_status) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_hdr *hdr = rtl_get_hdr(skb); __le16 fc = rtl_get_fc(skb); bool unicast = false; struct sk_buff *uskb = NULL; u8 *pdata; memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); if (is_broadcast_ether_addr(hdr->addr1)) { ;/*TODO*/ } else if (is_multicast_ether_addr(hdr->addr1)) { ;/*TODO*/ } else { unicast = true; rtlpriv->stats.rxbytesunicast += skb->len; } rtl_is_special_data(hw, skb, false); if (ieee80211_is_data(fc)) { rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX); if (unicast) rtlpriv->link_info.num_rx_inperiod++; } /* static bcn for roaming */ rtl_beacon_statistic(hw, skb); rtl_p2p_info(hw, (void *)skb->data, skb->len); /* for sw lps */ rtl_swlps_beacon(hw, (void *)skb->data, skb->len); rtl_recognize_peer(hw, (void *)skb->data, skb->len); if ((rtlpriv->mac80211.opmode == NL80211_IFTYPE_AP) && (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G) && (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc))) return; if (unlikely(!rtl_action_proc(hw, skb, false))) return; uskb = dev_alloc_skb(skb->len + 128); if (!uskb) return; /* exit if allocation failed */ memcpy(IEEE80211_SKB_RXCB(uskb), &rx_status, sizeof(rx_status)); pdata = (u8 *)skb_put(uskb, skb->len); memcpy(pdata, skb->data, skb->len); ieee80211_rx_irqsafe(hw, uskb); } static void _rtl_pci_rx_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); int rx_queue_idx = RTL_PCI_RX_MPDU_QUEUE; struct ieee80211_rx_status rx_status = { 0 }; unsigned int count = rtlpci->rxringcount; u8 own; u8 tmp_one; u32 bufferaddress; struct rtl_stats stats = { .signal = 0, .noise = -98, .rate = 0, }; int index = rtlpci->rx_ring[rx_queue_idx].idx; if (rtlpci->driver_is_goingto_unload) return; /*RX NORMAL PKT */ while (count--) { /*rx descriptor */ struct rtl_rx_desc *pdesc = &rtlpci->rx_ring[rx_queue_idx].desc[ index]; /*rx pkt */ struct sk_buff *skb = rtlpci->rx_ring[rx_queue_idx].rx_buf[ index]; struct sk_buff *new_skb = NULL; own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) pdesc, false, HW_DESC_OWN); /*wait data to be filled by hardware */ if (own) break; rtlpriv->cfg->ops->query_rx_desc(hw, &stats, &rx_status, (u8 *) pdesc, skb); if (stats.crc || stats.hwerror) goto done; new_skb = dev_alloc_skb(rtlpci->rxbuffersize); if (unlikely(!new_skb)) { RT_TRACE(rtlpriv, (COMP_INTR | COMP_RECV), DBG_DMESG, "can't alloc skb for rx\n"); goto done; } kmemleak_not_leak(new_skb); pci_unmap_single(rtlpci->pdev, *((dma_addr_t *) skb->cb), rtlpci->rxbuffersize, PCI_DMA_FROMDEVICE); skb_put(skb, rtlpriv->cfg->ops->get_desc((u8 *) pdesc, false, HW_DESC_RXPKT_LEN)); skb_reserve(skb, stats.rx_drvinfo_size + stats.rx_bufshift); /* * NOTICE This can not be use for mac80211, * this is done in mac80211 code, * if you done here sec DHCP will fail * skb_trim(skb, skb->len - 4); */ _rtl_receive_one(hw, skb, rx_status); if (((rtlpriv->link_info.num_rx_inperiod + rtlpriv->link_info.num_tx_inperiod) > 8) || (rtlpriv->link_info.num_rx_inperiod > 2)) { rtlpriv->enter_ps = false; schedule_work(&rtlpriv->works.lps_change_work); } dev_kfree_skb_any(skb); skb = new_skb; rtlpci->rx_ring[rx_queue_idx].rx_buf[index] = skb; *((dma_addr_t *) skb->cb) = pci_map_single(rtlpci->pdev, skb_tail_pointer(skb), rtlpci->rxbuffersize, PCI_DMA_FROMDEVICE); done: bufferaddress = (*((dma_addr_t *)skb->cb)); if (pci_dma_mapping_error(rtlpci->pdev, bufferaddress)) return; tmp_one = 1; rtlpriv->cfg->ops->set_desc((u8 *) pdesc, false, HW_DESC_RXBUFF_ADDR, (u8 *)&bufferaddress); rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false, HW_DESC_RXPKT_LEN, (u8 *)&rtlpci->rxbuffersize); if (index == rtlpci->rxringcount - 1) rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false, HW_DESC_RXERO, &tmp_one); rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false, HW_DESC_RXOWN, &tmp_one); index = (index + 1) % rtlpci->rxringcount; } rtlpci->rx_ring[rx_queue_idx].idx = index; } static irqreturn_t _rtl_pci_interrupt(int irq, void *dev_id) { struct ieee80211_hw *hw = dev_id; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); unsigned long flags; u32 inta = 0; u32 intb = 0; irqreturn_t ret = IRQ_HANDLED; spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); /*read ISR: 4/8bytes */ rtlpriv->cfg->ops->interrupt_recognized(hw, &inta, &intb); /*Shared IRQ or HW disappared */ if (!inta || inta == 0xffff) { ret = IRQ_NONE; goto done; } /*<1> beacon related */ if (inta & rtlpriv->cfg->maps[RTL_IMR_TBDOK]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "beacon ok interrupt!\n"); } if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_TBDER])) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "beacon err interrupt!\n"); } if (inta & rtlpriv->cfg->maps[RTL_IMR_BDOK]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "beacon interrupt!\n"); } if (inta & rtlpriv->cfg->maps[RTL_IMR_BCNINT]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "prepare beacon for interrupt!\n"); tasklet_schedule(&rtlpriv->works.irq_prepare_bcn_tasklet); } /*<3> Tx related */ if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_TXFOVW])) RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "IMR_TXFOVW!\n"); if (inta & rtlpriv->cfg->maps[RTL_IMR_MGNTDOK]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "Manage ok interrupt!\n"); _rtl_pci_tx_isr(hw, MGNT_QUEUE); } if (inta & rtlpriv->cfg->maps[RTL_IMR_HIGHDOK]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "HIGH_QUEUE ok interrupt!\n"); _rtl_pci_tx_isr(hw, HIGH_QUEUE); } if (inta & rtlpriv->cfg->maps[RTL_IMR_BKDOK]) { rtlpriv->link_info.num_tx_inperiod++; RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "BK Tx OK interrupt!\n"); _rtl_pci_tx_isr(hw, BK_QUEUE); } if (inta & rtlpriv->cfg->maps[RTL_IMR_BEDOK]) { rtlpriv->link_info.num_tx_inperiod++; RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "BE TX OK interrupt!\n"); _rtl_pci_tx_isr(hw, BE_QUEUE); } if (inta & rtlpriv->cfg->maps[RTL_IMR_VIDOK]) { rtlpriv->link_info.num_tx_inperiod++; RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "VI TX OK interrupt!\n"); _rtl_pci_tx_isr(hw, VI_QUEUE); } if (inta & rtlpriv->cfg->maps[RTL_IMR_VODOK]) { rtlpriv->link_info.num_tx_inperiod++; RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "Vo TX OK interrupt!\n"); _rtl_pci_tx_isr(hw, VO_QUEUE); } if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) { if (inta & rtlpriv->cfg->maps[RTL_IMR_COMDOK]) { rtlpriv->link_info.num_tx_inperiod++; RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "CMD TX OK interrupt!\n"); _rtl_pci_tx_isr(hw, TXCMD_QUEUE); } } /*<2> Rx related */ if (inta & rtlpriv->cfg->maps[RTL_IMR_ROK]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "Rx ok interrupt!\n"); _rtl_pci_rx_interrupt(hw); } if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_RDU])) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "rx descriptor unavailable!\n"); _rtl_pci_rx_interrupt(hw); } if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_RXFOVW])) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "rx overflow !\n"); _rtl_pci_rx_interrupt(hw); } /*fw related*/ if (rtlhal->hw_type == HARDWARE_TYPE_RTL8723AE) { if (inta & rtlpriv->cfg->maps[RTL_IMR_C2HCMD]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, "firmware interrupt!\n"); queue_delayed_work(rtlpriv->works.rtl_wq, &rtlpriv->works.fwevt_wq, 0); } } if (rtlpriv->rtlhal.earlymode_enable) tasklet_schedule(&rtlpriv->works.irq_tasklet); done: spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); return ret; } static void _rtl_pci_irq_tasklet(struct ieee80211_hw *hw) { _rtl_pci_tx_chk_waitq(hw); } static void _rtl_pci_prepare_bcn_tasklet(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl8192_tx_ring *ring = NULL; struct ieee80211_hdr *hdr = NULL; struct ieee80211_tx_info *info = NULL; struct sk_buff *pskb = NULL; struct rtl_tx_desc *pdesc = NULL; struct rtl_tcb_desc tcb_desc; u8 temp_one = 1; memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc)); ring = &rtlpci->tx_ring[BEACON_QUEUE]; pskb = __skb_dequeue(&ring->queue); if (pskb) { struct rtl_tx_desc *entry = &ring->desc[ring->idx]; pci_unmap_single(rtlpci->pdev, rtlpriv->cfg->ops->get_desc( (u8 *) entry, true, HW_DESC_TXBUFF_ADDR), pskb->len, PCI_DMA_TODEVICE); kfree_skb(pskb); } /*NB: the beacon data buffer must be 32-bit aligned. */ pskb = ieee80211_beacon_get(hw, mac->vif); if (pskb == NULL) return; hdr = rtl_get_hdr(pskb); info = IEEE80211_SKB_CB(pskb); pdesc = &ring->desc[0]; rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *) pdesc, info, NULL, pskb, BEACON_QUEUE, &tcb_desc); __skb_queue_tail(&ring->queue, pskb); rtlpriv->cfg->ops->set_desc((u8 *) pdesc, true, HW_DESC_OWN, &temp_one); return; } static void _rtl_pci_init_trx_var(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 i; for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) rtlpci->txringcount[i] = RT_TXDESC_NUM; /* *we just alloc 2 desc for beacon queue, *because we just need first desc in hw beacon. */ rtlpci->txringcount[BEACON_QUEUE] = 2; /* *BE queue need more descriptor for performance *consideration or, No more tx desc will happen, *and may cause mac80211 mem leakage. */ rtlpci->txringcount[BE_QUEUE] = RT_TXDESC_NUM_BE_QUEUE; rtlpci->rxbuffersize = 9100; /*2048/1024; */ rtlpci->rxringcount = RTL_PCI_MAX_RX_COUNT; /*64; */ } static void _rtl_pci_init_struct(struct ieee80211_hw *hw, struct pci_dev *pdev) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); rtlpci->up_first_time = true; rtlpci->being_init_adapter = false; rtlhal->hw = hw; rtlpci->pdev = pdev; /*Tx/Rx related var */ _rtl_pci_init_trx_var(hw); /*IBSS*/ mac->beacon_interval = 100; /*AMPDU*/ mac->min_space_cfg = 0; mac->max_mss_density = 0; /*set sane AMPDU defaults */ mac->current_ampdu_density = 7; mac->current_ampdu_factor = 3; /*QOS*/ rtlpci->acm_method = eAcmWay2_SW; /*task */ tasklet_init(&rtlpriv->works.irq_tasklet, (void (*)(unsigned long))_rtl_pci_irq_tasklet, (unsigned long)hw); tasklet_init(&rtlpriv->works.irq_prepare_bcn_tasklet, (void (*)(unsigned long))_rtl_pci_prepare_bcn_tasklet, (unsigned long)hw); INIT_WORK(&rtlpriv->works.lps_change_work, rtl_lps_change_work_callback); } static int _rtl_pci_init_tx_ring(struct ieee80211_hw *hw, unsigned int prio, unsigned int entries) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tx_desc *ring; dma_addr_t dma; u32 nextdescaddress; int i; ring = pci_alloc_consistent(rtlpci->pdev, sizeof(*ring) * entries, &dma); if (!ring || (unsigned long)ring & 0xFF) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Cannot allocate TX ring (prio = %d)\n", prio); return -ENOMEM; } memset(ring, 0, sizeof(*ring) * entries); rtlpci->tx_ring[prio].desc = ring; rtlpci->tx_ring[prio].dma = dma; rtlpci->tx_ring[prio].idx = 0; rtlpci->tx_ring[prio].entries = entries; skb_queue_head_init(&rtlpci->tx_ring[prio].queue); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "queue:%d, ring_addr:%p\n", prio, ring); for (i = 0; i < entries; i++) { nextdescaddress = (u32) dma + ((i + 1) % entries) * sizeof(*ring); rtlpriv->cfg->ops->set_desc((u8 *)&(ring[i]), true, HW_DESC_TX_NEXTDESC_ADDR, (u8 *)&nextdescaddress); } return 0; } static int _rtl_pci_init_rx_ring(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_rx_desc *entry = NULL; int i, rx_queue_idx; u8 tmp_one = 1; /* *rx_queue_idx 0:RX_MPDU_QUEUE *rx_queue_idx 1:RX_CMD_QUEUE */ for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE; rx_queue_idx++) { rtlpci->rx_ring[rx_queue_idx].desc = pci_alloc_consistent(rtlpci->pdev, sizeof(*rtlpci->rx_ring[rx_queue_idx]. desc) * rtlpci->rxringcount, &rtlpci->rx_ring[rx_queue_idx].dma); if (!rtlpci->rx_ring[rx_queue_idx].desc || (unsigned long)rtlpci->rx_ring[rx_queue_idx].desc & 0xFF) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Cannot allocate RX ring\n"); return -ENOMEM; } memset(rtlpci->rx_ring[rx_queue_idx].desc, 0, sizeof(*rtlpci->rx_ring[rx_queue_idx].desc) * rtlpci->rxringcount); rtlpci->rx_ring[rx_queue_idx].idx = 0; /* If amsdu_8k is disabled, set buffersize to 4096. This * change will reduce memory fragmentation. */ if (rtlpci->rxbuffersize > 4096 && rtlpriv->rtlhal.disable_amsdu_8k) rtlpci->rxbuffersize = 4096; for (i = 0; i < rtlpci->rxringcount; i++) { struct sk_buff *skb = dev_alloc_skb(rtlpci->rxbuffersize); u32 bufferaddress; if (!skb) return 0; kmemleak_not_leak(skb); entry = &rtlpci->rx_ring[rx_queue_idx].desc[i]; /*skb->dev = dev; */ rtlpci->rx_ring[rx_queue_idx].rx_buf[i] = skb; /* *just set skb->cb to mapping addr *for pci_unmap_single use */ *((dma_addr_t *) skb->cb) = pci_map_single(rtlpci->pdev, skb_tail_pointer(skb), rtlpci->rxbuffersize, PCI_DMA_FROMDEVICE); bufferaddress = (*((dma_addr_t *)skb->cb)); if (pci_dma_mapping_error(rtlpci->pdev, bufferaddress)) { dev_kfree_skb_any(skb); return 1; } rtlpriv->cfg->ops->set_desc((u8 *)entry, false, HW_DESC_RXBUFF_ADDR, (u8 *)&bufferaddress); rtlpriv->cfg->ops->set_desc((u8 *)entry, false, HW_DESC_RXPKT_LEN, (u8 *)&rtlpci-> rxbuffersize); rtlpriv->cfg->ops->set_desc((u8 *) entry, false, HW_DESC_RXOWN, &tmp_one); } rtlpriv->cfg->ops->set_desc((u8 *) entry, false, HW_DESC_RXERO, &tmp_one); } return 0; } static void _rtl_pci_free_tx_ring(struct ieee80211_hw *hw, unsigned int prio) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio]; while (skb_queue_len(&ring->queue)) { struct rtl_tx_desc *entry = &ring->desc[ring->idx]; struct sk_buff *skb = __skb_dequeue(&ring->queue); pci_unmap_single(rtlpci->pdev, rtlpriv->cfg-> ops->get_desc((u8 *) entry, true, HW_DESC_TXBUFF_ADDR), skb->len, PCI_DMA_TODEVICE); kfree_skb(skb); ring->idx = (ring->idx + 1) % ring->entries; } if (ring->desc) { pci_free_consistent(rtlpci->pdev, sizeof(*ring->desc) * ring->entries, ring->desc, ring->dma); ring->desc = NULL; } } static void _rtl_pci_free_rx_ring(struct rtl_pci *rtlpci) { int i, rx_queue_idx; /*rx_queue_idx 0:RX_MPDU_QUEUE */ /*rx_queue_idx 1:RX_CMD_QUEUE */ for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE; rx_queue_idx++) { for (i = 0; i < rtlpci->rxringcount; i++) { struct sk_buff *skb = rtlpci->rx_ring[rx_queue_idx].rx_buf[i]; if (!skb) continue; pci_unmap_single(rtlpci->pdev, *((dma_addr_t *) skb->cb), rtlpci->rxbuffersize, PCI_DMA_FROMDEVICE); kfree_skb(skb); } if (rtlpci->rx_ring[rx_queue_idx].desc) { pci_free_consistent(rtlpci->pdev, sizeof(*rtlpci->rx_ring[rx_queue_idx]. desc) * rtlpci->rxringcount, rtlpci->rx_ring[rx_queue_idx].desc, rtlpci->rx_ring[rx_queue_idx].dma); rtlpci->rx_ring[rx_queue_idx].desc = NULL; } } } static int _rtl_pci_init_trx_ring(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); int ret; int i; ret = _rtl_pci_init_rx_ring(hw); if (ret) return ret; for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) { ret = _rtl_pci_init_tx_ring(hw, i, rtlpci->txringcount[i]); if (ret) goto err_free_rings; } return 0; err_free_rings: _rtl_pci_free_rx_ring(rtlpci); for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) if (rtlpci->tx_ring[i].desc) _rtl_pci_free_tx_ring(hw, i); return 1; } static int _rtl_pci_deinit_trx_ring(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u32 i; /*free rx rings */ _rtl_pci_free_rx_ring(rtlpci); /*free tx rings */ for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) _rtl_pci_free_tx_ring(hw, i); return 0; } int rtl_pci_reset_trx_ring(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); int i, rx_queue_idx; unsigned long flags; u8 tmp_one = 1; /*rx_queue_idx 0:RX_MPDU_QUEUE */ /*rx_queue_idx 1:RX_CMD_QUEUE */ for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE; rx_queue_idx++) { /* *force the rx_ring[RX_MPDU_QUEUE/ *RX_CMD_QUEUE].idx to the first one */ if (rtlpci->rx_ring[rx_queue_idx].desc) { struct rtl_rx_desc *entry = NULL; for (i = 0; i < rtlpci->rxringcount; i++) { entry = &rtlpci->rx_ring[rx_queue_idx].desc[i]; rtlpriv->cfg->ops->set_desc((u8 *) entry, false, HW_DESC_RXOWN, &tmp_one); } rtlpci->rx_ring[rx_queue_idx].idx = 0; } } /* *after reset, release previous pending packet, *and force the tx idx to the first one */ for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) { if (rtlpci->tx_ring[i].desc) { struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[i]; while (skb_queue_len(&ring->queue)) { struct rtl_tx_desc *entry; struct sk_buff *skb; spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); entry = &ring->desc[ring->idx]; skb = __skb_dequeue(&ring->queue); pci_unmap_single(rtlpci->pdev, rtlpriv->cfg->ops-> get_desc((u8 *) entry, true, HW_DESC_TXBUFF_ADDR), skb->len, PCI_DMA_TODEVICE); ring->idx = (ring->idx + 1) % ring->entries; spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); kfree_skb(skb); } ring->idx = 0; } } return 0; } static bool rtl_pci_tx_chk_waitq_insert(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_sta_info *sta_entry = NULL; u8 tid = rtl_get_tid(skb); __le16 fc = rtl_get_fc(skb); if (!sta) return false; sta_entry = (struct rtl_sta_info *)sta->drv_priv; if (!rtlpriv->rtlhal.earlymode_enable) return false; if (ieee80211_is_nullfunc(fc)) return false; if (ieee80211_is_qos_nullfunc(fc)) return false; if (ieee80211_is_pspoll(fc)) return false; if (sta_entry->tids[tid].agg.agg_state != RTL_AGG_OPERATIONAL) return false; if (_rtl_mac_to_hwqueue(hw, skb) > VO_QUEUE) return false; if (tid > 7) return false; /* maybe every tid should be checked */ if (!rtlpriv->link_info.higher_busytxtraffic[tid]) return false; spin_lock_bh(&rtlpriv->locks.waitq_lock); skb_queue_tail(&rtlpriv->mac80211.skb_waitq[tid], skb); spin_unlock_bh(&rtlpriv->locks.waitq_lock); return true; } static int rtl_pci_tx(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct sk_buff *skb, struct rtl_tcb_desc *ptcb_desc) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_sta_info *sta_entry = NULL; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rtl8192_tx_ring *ring; struct rtl_tx_desc *pdesc; u8 idx; u8 hw_queue = _rtl_mac_to_hwqueue(hw, skb); unsigned long flags; struct ieee80211_hdr *hdr = rtl_get_hdr(skb); __le16 fc = rtl_get_fc(skb); u8 *pda_addr = hdr->addr1; struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); /*ssn */ u8 tid = 0; u16 seq_number = 0; u8 own; u8 temp_one = 1; if (ieee80211_is_mgmt(fc)) rtl_tx_mgmt_proc(hw, skb); if (rtlpriv->psc.sw_ps_enabled) { if (ieee80211_is_data(fc) && !ieee80211_is_nullfunc(fc) && !ieee80211_has_pm(fc)) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); } rtl_action_proc(hw, skb, true); if (is_multicast_ether_addr(pda_addr)) rtlpriv->stats.txbytesmulticast += skb->len; else if (is_broadcast_ether_addr(pda_addr)) rtlpriv->stats.txbytesbroadcast += skb->len; else rtlpriv->stats.txbytesunicast += skb->len; spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); ring = &rtlpci->tx_ring[hw_queue]; if (hw_queue != BEACON_QUEUE) idx = (ring->idx + skb_queue_len(&ring->queue)) % ring->entries; else idx = 0; pdesc = &ring->desc[idx]; own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) pdesc, true, HW_DESC_OWN); if ((own == 1) && (hw_queue != BEACON_QUEUE)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "No more TX desc@%d, ring->idx = %d, idx = %d, skb_queue_len = 0x%d\n", hw_queue, ring->idx, idx, skb_queue_len(&ring->queue)); spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); return skb->len; } if (ieee80211_is_data_qos(fc)) { tid = rtl_get_tid(skb); if (sta) { sta_entry = (struct rtl_sta_info *)sta->drv_priv; seq_number = (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4; seq_number += 1; if (!ieee80211_has_morefrags(hdr->frame_control)) sta_entry->tids[tid].seq_number = seq_number; } } if (ieee80211_is_data(fc)) rtlpriv->cfg->ops->led_control(hw, LED_CTL_TX); rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *)pdesc, info, sta, skb, hw_queue, ptcb_desc); __skb_queue_tail(&ring->queue, skb); rtlpriv->cfg->ops->set_desc((u8 *)pdesc, true, HW_DESC_OWN, &temp_one); if ((ring->entries - skb_queue_len(&ring->queue)) < 2 && hw_queue != BEACON_QUEUE) { RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, "less desc left, stop skb_queue@%d, ring->idx = %d, idx = %d, skb_queue_len = 0x%d\n", hw_queue, ring->idx, idx, skb_queue_len(&ring->queue)); ieee80211_stop_queue(hw, skb_get_queue_mapping(skb)); } spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); rtlpriv->cfg->ops->tx_polling(hw, hw_queue); return 0; } static void rtl_pci_flush(struct ieee80211_hw *hw, bool drop) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 i = 0; int queue_id; struct rtl8192_tx_ring *ring; if (mac->skip_scan) return; for (queue_id = RTL_PCI_MAX_TX_QUEUE_COUNT - 1; queue_id >= 0;) { u32 queue_len; ring = &pcipriv->dev.tx_ring[queue_id]; queue_len = skb_queue_len(&ring->queue); if (queue_len == 0 || queue_id == BEACON_QUEUE || queue_id == TXCMD_QUEUE) { queue_id--; continue; } else { msleep(20); i++; } /* we just wait 1s for all queues */ if (rtlpriv->psc.rfpwr_state == ERFOFF || is_hal_stop(rtlhal) || i >= 200) return; } } static void rtl_pci_deinit(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); _rtl_pci_deinit_trx_ring(hw); synchronize_irq(rtlpci->pdev->irq); tasklet_kill(&rtlpriv->works.irq_tasklet); cancel_work_sync(&rtlpriv->works.lps_change_work); flush_workqueue(rtlpriv->works.rtl_wq); destroy_workqueue(rtlpriv->works.rtl_wq); } static int rtl_pci_init(struct ieee80211_hw *hw, struct pci_dev *pdev) { struct rtl_priv *rtlpriv = rtl_priv(hw); int err; _rtl_pci_init_struct(hw, pdev); err = _rtl_pci_init_trx_ring(hw); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "tx ring initialization failed\n"); return err; } return 0; } static int rtl_pci_start(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); int err; rtl_pci_reset_trx_ring(hw); rtlpci->driver_is_goingto_unload = false; err = rtlpriv->cfg->ops->hw_init(hw); if (err) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Failed to config hardware!\n"); return err; } rtlpriv->cfg->ops->enable_interrupt(hw); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "enable_interrupt OK\n"); rtl_init_rx_config(hw); /*should be after adapter start and interrupt enable. */ set_hal_start(rtlhal); RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); rtlpci->up_first_time = false; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n"); return 0; } static void rtl_pci_stop(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); unsigned long flags; u8 RFInProgressTimeOut = 0; /* *should be before disable interrupt&adapter *and will do it immediately. */ set_hal_stop(rtlhal); rtlpci->driver_is_goingto_unload = true; rtlpriv->cfg->ops->disable_interrupt(hw); cancel_work_sync(&rtlpriv->works.lps_change_work); spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); while (ppsc->rfchange_inprogress) { spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags); if (RFInProgressTimeOut > 100) { spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); break; } mdelay(1); RFInProgressTimeOut++; spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); } ppsc->rfchange_inprogress = true; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags); rtlpriv->cfg->ops->hw_disable(hw); /* some things are not needed if firmware not available */ if (!rtlpriv->max_fw_size) return; rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags); rtl_pci_enable_aspm(hw); } static bool _rtl_pci_find_adapter(struct pci_dev *pdev, struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct pci_dev *bridge_pdev = pdev->bus->self; u16 venderid; u16 deviceid; u8 revisionid; u16 irqline; u8 tmp; pcipriv->ndis_adapter.pcibridge_vendor = PCI_BRIDGE_VENDOR_UNKNOWN; venderid = pdev->vendor; deviceid = pdev->device; pci_read_config_byte(pdev, 0x8, &revisionid); pci_read_config_word(pdev, 0x3C, &irqline); /* PCI ID 0x10ec:0x8192 occurs for both RTL8192E, which uses * r8192e_pci, and RTL8192SE, which uses this driver. If the * revision ID is RTL_PCI_REVISION_ID_8192PCIE (0x01), then * the correct driver is r8192e_pci, thus this routine should * return false. */ if (deviceid == RTL_PCI_8192SE_DID && revisionid == RTL_PCI_REVISION_ID_8192PCIE) return false; if (deviceid == RTL_PCI_8192_DID || deviceid == RTL_PCI_0044_DID || deviceid == RTL_PCI_0047_DID || deviceid == RTL_PCI_8192SE_DID || deviceid == RTL_PCI_8174_DID || deviceid == RTL_PCI_8173_DID || deviceid == RTL_PCI_8172_DID || deviceid == RTL_PCI_8171_DID) { switch (revisionid) { case RTL_PCI_REVISION_ID_8192PCIE: RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "8192 PCI-E is found - vid/did=%x/%x\n", venderid, deviceid); rtlhal->hw_type = HARDWARE_TYPE_RTL8192E; return false; case RTL_PCI_REVISION_ID_8192SE: RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "8192SE is found - vid/did=%x/%x\n", venderid, deviceid); rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Err: Unknown device - vid/did=%x/%x\n", venderid, deviceid); rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE; break; } } else if (deviceid == RTL_PCI_8723AE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8723AE; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "8723AE PCI-E is found - " "vid/did=%x/%x\n", venderid, deviceid); } else if (deviceid == RTL_PCI_8192CET_DID || deviceid == RTL_PCI_8192CE_DID || deviceid == RTL_PCI_8191CE_DID || deviceid == RTL_PCI_8188CE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8192CE; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "8192C PCI-E is found - vid/did=%x/%x\n", venderid, deviceid); } else if (deviceid == RTL_PCI_8192DE_DID || deviceid == RTL_PCI_8192DE_DID2) { rtlhal->hw_type = HARDWARE_TYPE_RTL8192DE; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "8192D PCI-E is found - vid/did=%x/%x\n", venderid, deviceid); } else if (deviceid == RTL_PCI_8188EE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8188EE; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Find adapter, Hardware type is 8188EE\n"); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Err: Unknown device - vid/did=%x/%x\n", venderid, deviceid); rtlhal->hw_type = RTL_DEFAULT_HARDWARE_TYPE; } if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192DE) { if (revisionid == 0 || revisionid == 1) { if (revisionid == 0) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Find 92DE MAC0\n"); rtlhal->interfaceindex = 0; } else if (revisionid == 1) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Find 92DE MAC1\n"); rtlhal->interfaceindex = 1; } } else { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Unknown device - VendorID/DeviceID=%x/%x, Revision=%x\n", venderid, deviceid, revisionid); rtlhal->interfaceindex = 0; } } /*find bus info */ pcipriv->ndis_adapter.busnumber = pdev->bus->number; pcipriv->ndis_adapter.devnumber = PCI_SLOT(pdev->devfn); pcipriv->ndis_adapter.funcnumber = PCI_FUNC(pdev->devfn); /* some ARM have no bridge_pdev and will crash here * so we should check if bridge_pdev is NULL */ if (bridge_pdev) { /*find bridge info if available */ pcipriv->ndis_adapter.pcibridge_vendorid = bridge_pdev->vendor; for (tmp = 0; tmp < PCI_BRIDGE_VENDOR_MAX; tmp++) { if (bridge_pdev->vendor == pcibridge_vendors[tmp]) { pcipriv->ndis_adapter.pcibridge_vendor = tmp; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Pci Bridge Vendor is found index: %d\n", tmp); break; } } } if (pcipriv->ndis_adapter.pcibridge_vendor != PCI_BRIDGE_VENDOR_UNKNOWN) { pcipriv->ndis_adapter.pcibridge_busnum = bridge_pdev->bus->number; pcipriv->ndis_adapter.pcibridge_devnum = PCI_SLOT(bridge_pdev->devfn); pcipriv->ndis_adapter.pcibridge_funcnum = PCI_FUNC(bridge_pdev->devfn); pcipriv->ndis_adapter.pcibridge_pciehdr_offset = pci_pcie_cap(bridge_pdev); pcipriv->ndis_adapter.num4bytes = (pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10) / 4; rtl_pci_get_linkcontrol_field(hw); if (pcipriv->ndis_adapter.pcibridge_vendor == PCI_BRIDGE_VENDOR_AMD) { pcipriv->ndis_adapter.amd_l1_patch = rtl_pci_get_amd_l1_patch(hw); } } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "pcidev busnumber:devnumber:funcnumber:vendor:link_ctl %d:%d:%d:%x:%x\n", pcipriv->ndis_adapter.busnumber, pcipriv->ndis_adapter.devnumber, pcipriv->ndis_adapter.funcnumber, pdev->vendor, pcipriv->ndis_adapter.linkctrl_reg); RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "pci_bridge busnumber:devnumber:funcnumber:vendor:pcie_cap:link_ctl_reg:amd %d:%d:%d:%x:%x:%x:%x\n", pcipriv->ndis_adapter.pcibridge_busnum, pcipriv->ndis_adapter.pcibridge_devnum, pcipriv->ndis_adapter.pcibridge_funcnum, pcibridge_vendors[pcipriv->ndis_adapter.pcibridge_vendor], pcipriv->ndis_adapter.pcibridge_pciehdr_offset, pcipriv->ndis_adapter.pcibridge_linkctrlreg, pcipriv->ndis_adapter.amd_l1_patch); rtl_pci_parse_configuration(pdev, hw); list_add_tail(&rtlpriv->list, &rtlpriv->glb_var->glb_priv_list); return true; } int rtl_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct ieee80211_hw *hw = NULL; struct rtl_priv *rtlpriv = NULL; struct rtl_pci_priv *pcipriv = NULL; struct rtl_pci *rtlpci; unsigned long pmem_start, pmem_len, pmem_flags; int err; err = pci_enable_device(pdev); if (err) { RT_ASSERT(false, "%s : Cannot enable new PCI device\n", pci_name(pdev)); return err; } if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) { RT_ASSERT(false, "Unable to obtain 32bit DMA for consistent allocations\n"); err = -ENOMEM; goto fail1; } } pci_set_master(pdev); hw = ieee80211_alloc_hw(sizeof(struct rtl_pci_priv) + sizeof(struct rtl_priv), &rtl_ops); if (!hw) { RT_ASSERT(false, "%s : ieee80211 alloc failed\n", pci_name(pdev)); err = -ENOMEM; goto fail1; } SET_IEEE80211_DEV(hw, &pdev->dev); pci_set_drvdata(pdev, hw); rtlpriv = hw->priv; rtlpriv->hw = hw; pcipriv = (void *)rtlpriv->priv; pcipriv->dev.pdev = pdev; init_completion(&rtlpriv->firmware_loading_complete); /* init cfg & intf_ops */ rtlpriv->rtlhal.interface = INTF_PCI; rtlpriv->cfg = (struct rtl_hal_cfg *)(id->driver_data); rtlpriv->intf_ops = &rtl_pci_ops; rtlpriv->glb_var = &global_var; /* *init dbgp flags before all *other functions, because we will *use it in other funtions like *RT_TRACE/RT_PRINT/RTL_PRINT_DATA *you can not use these macro *before this */ rtl_dbgp_flag_init(hw); /* MEM map */ err = pci_request_regions(pdev, KBUILD_MODNAME); if (err) { RT_ASSERT(false, "Can't obtain PCI resources\n"); goto fail1; } pmem_start = pci_resource_start(pdev, rtlpriv->cfg->bar_id); pmem_len = pci_resource_len(pdev, rtlpriv->cfg->bar_id); pmem_flags = pci_resource_flags(pdev, rtlpriv->cfg->bar_id); /*shared mem start */ rtlpriv->io.pci_mem_start = (unsigned long)pci_iomap(pdev, rtlpriv->cfg->bar_id, pmem_len); if (rtlpriv->io.pci_mem_start == 0) { RT_ASSERT(false, "Can't map PCI mem\n"); err = -ENOMEM; goto fail2; } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "mem mapped space: start: 0x%08lx len:%08lx flags:%08lx, after map:0x%08lx\n", pmem_start, pmem_len, pmem_flags, rtlpriv->io.pci_mem_start); /* Disable Clk Request */ pci_write_config_byte(pdev, 0x81, 0); /* leave D3 mode */ pci_write_config_byte(pdev, 0x44, 0); pci_write_config_byte(pdev, 0x04, 0x06); pci_write_config_byte(pdev, 0x04, 0x07); /* find adapter */ if (!_rtl_pci_find_adapter(pdev, hw)) { err = -ENODEV; goto fail3; } /* Init IO handler */ _rtl_pci_io_handler_init(&pdev->dev, hw); /*like read eeprom and so on */ rtlpriv->cfg->ops->read_eeprom_info(hw); /*aspm */ rtl_pci_init_aspm(hw); /* Init mac80211 sw */ err = rtl_init_core(hw); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Can't allocate sw for mac80211\n"); goto fail3; } /* Init PCI sw */ err = rtl_pci_init(hw, pdev); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Failed to init PCI\n"); goto fail3; } if (rtlpriv->cfg->ops->init_sw_vars(hw)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Can't init_sw_vars\n"); err = -ENODEV; goto fail3; } rtlpriv->cfg->ops->init_sw_leds(hw); err = sysfs_create_group(&pdev->dev.kobj, &rtl_attribute_group); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "failed to create sysfs device attributes\n"); goto fail3; } rtlpci = rtl_pcidev(pcipriv); err = request_irq(rtlpci->pdev->irq, &_rtl_pci_interrupt, IRQF_SHARED, KBUILD_MODNAME, hw); if (err) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%s: failed to register IRQ handler\n", wiphy_name(hw->wiphy)); goto fail3; } rtlpci->irq_alloc = 1; return 0; fail3: rtl_deinit_core(hw); if (rtlpriv->io.pci_mem_start != 0) pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start); fail2: pci_release_regions(pdev); complete(&rtlpriv->firmware_loading_complete); fail1: if (hw) ieee80211_free_hw(hw); pci_set_drvdata(pdev, NULL); pci_disable_device(pdev); return err; } EXPORT_SYMBOL(rtl_pci_probe); void rtl_pci_disconnect(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(pcipriv); struct rtl_mac *rtlmac = rtl_mac(rtlpriv); /* just in case driver is removed before firmware callback */ wait_for_completion(&rtlpriv->firmware_loading_complete); clear_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status); sysfs_remove_group(&pdev->dev.kobj, &rtl_attribute_group); /*ieee80211_unregister_hw will call ops_stop */ if (rtlmac->mac80211_registered == 1) { ieee80211_unregister_hw(hw); rtlmac->mac80211_registered = 0; } else { rtl_deinit_deferred_work(hw); rtlpriv->intf_ops->adapter_stop(hw); } rtlpriv->cfg->ops->disable_interrupt(hw); /*deinit rfkill */ rtl_deinit_rfkill(hw); rtl_pci_deinit(hw); rtl_deinit_core(hw); rtlpriv->cfg->ops->deinit_sw_vars(hw); if (rtlpci->irq_alloc) { synchronize_irq(rtlpci->pdev->irq); free_irq(rtlpci->pdev->irq, hw); rtlpci->irq_alloc = 0; } list_del(&rtlpriv->list); if (rtlpriv->io.pci_mem_start != 0) { pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start); pci_release_regions(pdev); } pci_disable_device(pdev); rtl_pci_disable_aspm(hw); pci_set_drvdata(pdev, NULL); ieee80211_free_hw(hw); } EXPORT_SYMBOL(rtl_pci_disconnect); #ifdef CONFIG_PM_SLEEP /*************************************** kernel pci power state define: PCI_D0 ((pci_power_t __force) 0) PCI_D1 ((pci_power_t __force) 1) PCI_D2 ((pci_power_t __force) 2) PCI_D3hot ((pci_power_t __force) 3) PCI_D3cold ((pci_power_t __force) 4) PCI_UNKNOWN ((pci_power_t __force) 5) This function is called when system goes into suspend state mac80211 will call rtl_mac_stop() from the mac80211 suspend function first, So there is no need to call hw_disable here. ****************************************/ int rtl_pci_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->cfg->ops->hw_suspend(hw); rtl_deinit_rfkill(hw); return 0; } EXPORT_SYMBOL(rtl_pci_suspend); int rtl_pci_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->cfg->ops->hw_resume(hw); rtl_init_rfkill(hw); return 0; } EXPORT_SYMBOL(rtl_pci_resume); #endif /* CONFIG_PM_SLEEP */ struct rtl_intf_ops rtl_pci_ops = { .read_efuse_byte = read_efuse_byte, .adapter_start = rtl_pci_start, .adapter_stop = rtl_pci_stop, .check_buddy_priv = rtl_pci_check_buddy_priv, .adapter_tx = rtl_pci_tx, .flush = rtl_pci_flush, .reset_trx_ring = rtl_pci_reset_trx_ring, .waitq_insert = rtl_pci_tx_chk_waitq_insert, .disable_aspm = rtl_pci_disable_aspm, .enable_aspm = rtl_pci_enable_aspm, };