/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2010 Adaptec, Inc. * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Module Name: * src.c * * Abstract: Hardware Device Interface for PMC SRC based controllers * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "aacraid.h" static irqreturn_t aac_src_intr_message(int irq, void *dev_id) { struct aac_dev *dev = dev_id; unsigned long bellbits, bellbits_shifted; int our_interrupt = 0; int isFastResponse; u32 index, handle; bellbits = src_readl(dev, MUnit.ODR_R); if (bellbits & PmDoorBellResponseSent) { bellbits = PmDoorBellResponseSent; /* handle async. status */ src_writel(dev, MUnit.ODR_C, bellbits); src_readl(dev, MUnit.ODR_C); our_interrupt = 1; index = dev->host_rrq_idx; for (;;) { isFastResponse = 0; /* remove toggle bit (31) */ handle = le32_to_cpu(dev->host_rrq[index]) & 0x7fffffff; /* check fast response bit (30) */ if (handle & 0x40000000) isFastResponse = 1; handle &= 0x0000ffff; if (handle == 0) break; aac_intr_normal(dev, handle-1, 0, isFastResponse, NULL); dev->host_rrq[index++] = 0; if (index == dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) index = 0; dev->host_rrq_idx = index; } } else { bellbits_shifted = (bellbits >> SRC_ODR_SHIFT); if (bellbits_shifted & DoorBellAifPending) { src_writel(dev, MUnit.ODR_C, bellbits); src_readl(dev, MUnit.ODR_C); our_interrupt = 1; /* handle AIF */ aac_intr_normal(dev, 0, 2, 0, NULL); } else if (bellbits_shifted & OUTBOUNDDOORBELL_0) { unsigned long sflags; struct list_head *entry; int send_it = 0; extern int aac_sync_mode; src_writel(dev, MUnit.ODR_C, bellbits); src_readl(dev, MUnit.ODR_C); if (!aac_sync_mode) { src_writel(dev, MUnit.ODR_C, bellbits); src_readl(dev, MUnit.ODR_C); our_interrupt = 1; } if (dev->sync_fib) { our_interrupt = 1; if (dev->sync_fib->callback) dev->sync_fib->callback(dev->sync_fib->callback_data, dev->sync_fib); spin_lock_irqsave(&dev->sync_fib->event_lock, sflags); if (dev->sync_fib->flags & FIB_CONTEXT_FLAG_WAIT) { dev->management_fib_count--; up(&dev->sync_fib->event_wait); } spin_unlock_irqrestore(&dev->sync_fib->event_lock, sflags); spin_lock_irqsave(&dev->sync_lock, sflags); if (!list_empty(&dev->sync_fib_list)) { entry = dev->sync_fib_list.next; dev->sync_fib = list_entry(entry, struct fib, fiblink); list_del(entry); send_it = 1; } else { dev->sync_fib = NULL; } spin_unlock_irqrestore(&dev->sync_lock, sflags); if (send_it) { aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, (u32)dev->sync_fib->hw_fib_pa, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); } } } } if (our_interrupt) { return IRQ_HANDLED; } return IRQ_NONE; } /** * aac_src_disable_interrupt - Disable interrupts * @dev: Adapter */ static void aac_src_disable_interrupt(struct aac_dev *dev) { src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff); } /** * aac_src_enable_interrupt_message - Enable interrupts * @dev: Adapter */ static void aac_src_enable_interrupt_message(struct aac_dev *dev) { src_writel(dev, MUnit.OIMR, dev->OIMR = 0xfffffff8); } /** * src_sync_cmd - send a command and wait * @dev: Adapter * @command: Command to execute * @p1: first parameter * @ret: adapter status * * This routine will send a synchronous command to the adapter and wait * for its completion. */ static int src_sync_cmd(struct aac_dev *dev, u32 command, u32 p1, u32 p2, u32 p3, u32 p4, u32 p5, u32 p6, u32 *status, u32 * r1, u32 * r2, u32 * r3, u32 * r4) { unsigned long start; int ok; /* * Write the command into Mailbox 0 */ writel(command, &dev->IndexRegs->Mailbox[0]); /* * Write the parameters into Mailboxes 1 - 6 */ writel(p1, &dev->IndexRegs->Mailbox[1]); writel(p2, &dev->IndexRegs->Mailbox[2]); writel(p3, &dev->IndexRegs->Mailbox[3]); writel(p4, &dev->IndexRegs->Mailbox[4]); /* * Clear the synch command doorbell to start on a clean slate. */ src_writel(dev, MUnit.ODR_C, OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); /* * Disable doorbell interrupts */ src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff); /* * Force the completion of the mask register write before issuing * the interrupt. */ src_readl(dev, MUnit.OIMR); /* * Signal that there is a new synch command */ src_writel(dev, MUnit.IDR, INBOUNDDOORBELL_0 << SRC_IDR_SHIFT); if (!dev->sync_mode || command != SEND_SYNCHRONOUS_FIB) { ok = 0; start = jiffies; /* * Wait up to 5 minutes */ while (time_before(jiffies, start+300*HZ)) { udelay(5); /* Delay 5 microseconds to let Mon960 get info. */ /* * Mon960 will set doorbell0 bit when it has completed the command. */ if ((src_readl(dev, MUnit.ODR_R) >> SRC_ODR_SHIFT) & OUTBOUNDDOORBELL_0) { /* * Clear the doorbell. */ src_writel(dev, MUnit.ODR_C, OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); ok = 1; break; } /* * Yield the processor in case we are slow */ msleep(1); } if (unlikely(ok != 1)) { /* * Restore interrupt mask even though we timed out */ aac_adapter_enable_int(dev); return -ETIMEDOUT; } /* * Pull the synch status from Mailbox 0. */ if (status) *status = readl(&dev->IndexRegs->Mailbox[0]); if (r1) *r1 = readl(&dev->IndexRegs->Mailbox[1]); if (r2) *r2 = readl(&dev->IndexRegs->Mailbox[2]); if (r3) *r3 = readl(&dev->IndexRegs->Mailbox[3]); if (r4) *r4 = readl(&dev->IndexRegs->Mailbox[4]); /* * Clear the synch command doorbell. */ src_writel(dev, MUnit.ODR_C, OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); } /* * Restore interrupt mask */ aac_adapter_enable_int(dev); return 0; } /** * aac_src_interrupt_adapter - interrupt adapter * @dev: Adapter * * Send an interrupt to the i960 and breakpoint it. */ static void aac_src_interrupt_adapter(struct aac_dev *dev) { src_sync_cmd(dev, BREAKPOINT_REQUEST, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); } /** * aac_src_notify_adapter - send an event to the adapter * @dev: Adapter * @event: Event to send * * Notify the i960 that something it probably cares about has * happened. */ static void aac_src_notify_adapter(struct aac_dev *dev, u32 event) { switch (event) { case AdapNormCmdQue: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_1 << SRC_ODR_SHIFT); break; case HostNormRespNotFull: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_4 << SRC_ODR_SHIFT); break; case AdapNormRespQue: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_2 << SRC_ODR_SHIFT); break; case HostNormCmdNotFull: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_3 << SRC_ODR_SHIFT); break; case FastIo: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_6 << SRC_ODR_SHIFT); break; case AdapPrintfDone: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_5 << SRC_ODR_SHIFT); break; default: BUG(); break; } } /** * aac_src_start_adapter - activate adapter * @dev: Adapter * * Start up processing on an i960 based AAC adapter */ static void aac_src_start_adapter(struct aac_dev *dev) { struct aac_init *init; /* reset host_rrq_idx first */ dev->host_rrq_idx = 0; init = dev->init; init->HostElapsedSeconds = cpu_to_le32(get_seconds()); /* We can only use a 32 bit address here */ src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS, (u32)(ulong)dev->init_pa, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); } /** * aac_src_check_health * @dev: device to check if healthy * * Will attempt to determine if the specified adapter is alive and * capable of handling requests, returning 0 if alive. */ static int aac_src_check_health(struct aac_dev *dev) { u32 status = src_readl(dev, MUnit.OMR); /* * Check to see if the board panic'd. */ if (unlikely(status & KERNEL_PANIC)) goto err_blink; /* * Check to see if the board failed any self tests. */ if (unlikely(status & SELF_TEST_FAILED)) goto err_out; /* * Check to see if the board failed any self tests. */ if (unlikely(status & MONITOR_PANIC)) goto err_out; /* * Wait for the adapter to be up and running. */ if (unlikely(!(status & KERNEL_UP_AND_RUNNING))) return -3; /* * Everything is OK */ return 0; err_out: return -1; err_blink: return (status > 16) & 0xFF; } /** * aac_src_deliver_message * @fib: fib to issue * * Will send a fib, returning 0 if successful. */ static int aac_src_deliver_message(struct fib *fib) { struct aac_dev *dev = fib->dev; struct aac_queue *q = &dev->queues->queue[AdapNormCmdQueue]; unsigned long qflags; u32 fibsize; dma_addr_t address; struct aac_fib_xporthdr *pFibX; u16 hdr_size = le16_to_cpu(fib->hw_fib_va->header.Size); spin_lock_irqsave(q->lock, qflags); q->numpending++; spin_unlock_irqrestore(q->lock, qflags); if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) { /* Calculate the amount to the fibsize bits */ fibsize = (hdr_size + 127) / 128 - 1; if (fibsize > (ALIGN32 - 1)) return -EMSGSIZE; /* New FIB header, 32-bit */ address = fib->hw_fib_pa; fib->hw_fib_va->header.StructType = FIB_MAGIC2; fib->hw_fib_va->header.SenderFibAddress = (u32)address; fib->hw_fib_va->header.u.TimeStamp = 0; BUG_ON(upper_32_bits(address) != 0L); address |= fibsize; } else { /* Calculate the amount to the fibsize bits */ fibsize = (sizeof(struct aac_fib_xporthdr) + hdr_size + 127) / 128 - 1; if (fibsize > (ALIGN32 - 1)) return -EMSGSIZE; /* Fill XPORT header */ pFibX = (void *)fib->hw_fib_va - sizeof(struct aac_fib_xporthdr); pFibX->Handle = cpu_to_le32(fib->hw_fib_va->header.Handle); pFibX->HostAddress = cpu_to_le64(fib->hw_fib_pa); pFibX->Size = cpu_to_le32(hdr_size); /* * The xport header has been 32-byte aligned for us so that fibsize * can be masked out of this address by hardware. -- BenC */ address = fib->hw_fib_pa - sizeof(struct aac_fib_xporthdr); if (address & (ALIGN32 - 1)) return -EINVAL; address |= fibsize; } src_writel(dev, MUnit.IQ_H, upper_32_bits(address) & 0xffffffff); src_writel(dev, MUnit.IQ_L, address & 0xffffffff); return 0; } /** * aac_src_ioremap * @size: mapping resize request * */ static int aac_src_ioremap(struct aac_dev *dev, u32 size) { if (!size) { iounmap(dev->regs.src.bar1); dev->regs.src.bar1 = NULL; iounmap(dev->regs.src.bar0); dev->base = dev->regs.src.bar0 = NULL; return 0; } dev->regs.src.bar1 = ioremap(pci_resource_start(dev->pdev, 2), AAC_MIN_SRC_BAR1_SIZE); dev->base = NULL; if (dev->regs.src.bar1 == NULL) return -1; dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size); if (dev->base == NULL) { iounmap(dev->regs.src.bar1); dev->regs.src.bar1 = NULL; return -1; } dev->IndexRegs = &((struct src_registers __iomem *) dev->base)->u.tupelo.IndexRegs; return 0; } /** * aac_srcv_ioremap * @size: mapping resize request * */ static int aac_srcv_ioremap(struct aac_dev *dev, u32 size) { if (!size) { iounmap(dev->regs.src.bar0); dev->base = dev->regs.src.bar0 = NULL; return 0; } dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size); if (dev->base == NULL) return -1; dev->IndexRegs = &((struct src_registers __iomem *) dev->base)->u.denali.IndexRegs; return 0; } static int aac_src_restart_adapter(struct aac_dev *dev, int bled) { u32 var, reset_mask; if (bled >= 0) { if (bled) printk(KERN_ERR "%s%d: adapter kernel panic'd %x.\n", dev->name, dev->id, bled); bled = aac_adapter_sync_cmd(dev, IOP_RESET_ALWAYS, 0, 0, 0, 0, 0, 0, &var, &reset_mask, NULL, NULL, NULL); if (bled || (var != 0x00000001)) return -EINVAL; if (dev->supplement_adapter_info.SupportedOptions2 & AAC_OPTION_DOORBELL_RESET) { src_writel(dev, MUnit.IDR, reset_mask); msleep(5000); /* Delay 5 seconds */ } } if (src_readl(dev, MUnit.OMR) & KERNEL_PANIC) return -ENODEV; if (startup_timeout < 300) startup_timeout = 300; return 0; } /** * aac_src_select_comm - Select communications method * @dev: Adapter * @comm: communications method */ int aac_src_select_comm(struct aac_dev *dev, int comm) { switch (comm) { case AAC_COMM_MESSAGE: dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message; dev->a_ops.adapter_intr = aac_src_intr_message; dev->a_ops.adapter_deliver = aac_src_deliver_message; break; default: return 1; } return 0; } /** * aac_src_init - initialize an Cardinal Frey Bar card * @dev: device to configure * */ int aac_src_init(struct aac_dev *dev) { unsigned long start; unsigned long status; int restart = 0; int instance = dev->id; const char *name = dev->name; dev->a_ops.adapter_ioremap = aac_src_ioremap; dev->a_ops.adapter_comm = aac_src_select_comm; dev->base_size = AAC_MIN_SRC_BAR0_SIZE; if (aac_adapter_ioremap(dev, dev->base_size)) { printk(KERN_WARNING "%s: unable to map adapter.\n", name); goto error_iounmap; } /* Failure to reset here is an option ... */ dev->a_ops.adapter_sync_cmd = src_sync_cmd; dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; if ((aac_reset_devices || reset_devices) && !aac_src_restart_adapter(dev, 0)) ++restart; /* * Check to see if the board panic'd while booting. */ status = src_readl(dev, MUnit.OMR); if (status & KERNEL_PANIC) { if (aac_src_restart_adapter(dev, aac_src_check_health(dev))) goto error_iounmap; ++restart; } /* * Check to see if the board failed any self tests. */ status = src_readl(dev, MUnit.OMR); if (status & SELF_TEST_FAILED) { printk(KERN_ERR "%s%d: adapter self-test failed.\n", dev->name, instance); goto error_iounmap; } /* * Check to see if the monitor panic'd while booting. */ if (status & MONITOR_PANIC) { printk(KERN_ERR "%s%d: adapter monitor panic.\n", dev->name, instance); goto error_iounmap; } start = jiffies; /* * Wait for the adapter to be up and running. Wait up to 3 minutes */ while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING)) { if ((restart && (status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) || time_after(jiffies, start+HZ*startup_timeout)) { printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n", dev->name, instance, status); goto error_iounmap; } if (!restart && ((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) || time_after(jiffies, start + HZ * ((startup_timeout > 60) ? (startup_timeout - 60) : (startup_timeout / 2))))) { if (likely(!aac_src_restart_adapter(dev, aac_src_check_health(dev)))) start = jiffies; ++restart; } msleep(1); } if (restart && aac_commit) aac_commit = 1; /* * Fill in the common function dispatch table. */ dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter; dev->a_ops.adapter_disable_int = aac_src_disable_interrupt; dev->a_ops.adapter_notify = aac_src_notify_adapter; dev->a_ops.adapter_sync_cmd = src_sync_cmd; dev->a_ops.adapter_check_health = aac_src_check_health; dev->a_ops.adapter_restart = aac_src_restart_adapter; /* * First clear out all interrupts. Then enable the one's that we * can handle. */ aac_adapter_comm(dev, AAC_COMM_MESSAGE); aac_adapter_disable_int(dev); src_writel(dev, MUnit.ODR_C, 0xffffffff); aac_adapter_enable_int(dev); if (aac_init_adapter(dev) == NULL) goto error_iounmap; if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE1) goto error_iounmap; dev->msi = aac_msi && !pci_enable_msi(dev->pdev); if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, IRQF_SHARED|IRQF_DISABLED, "aacraid", dev) < 0) { if (dev->msi) pci_disable_msi(dev->pdev); printk(KERN_ERR "%s%d: Interrupt unavailable.\n", name, instance); goto error_iounmap; } dev->dbg_base = pci_resource_start(dev->pdev, 2); dev->dbg_base_mapped = dev->regs.src.bar1; dev->dbg_size = AAC_MIN_SRC_BAR1_SIZE; aac_adapter_enable_int(dev); if (!dev->sync_mode) { /* * Tell the adapter that all is configured, and it can * start accepting requests */ aac_src_start_adapter(dev); } return 0; error_iounmap: return -1; } /** * aac_srcv_init - initialize an SRCv card * @dev: device to configure * */ int aac_srcv_init(struct aac_dev *dev) { unsigned long start; unsigned long status; int restart = 0; int instance = dev->id; const char *name = dev->name; dev->a_ops.adapter_ioremap = aac_srcv_ioremap; dev->a_ops.adapter_comm = aac_src_select_comm; dev->base_size = AAC_MIN_SRCV_BAR0_SIZE; if (aac_adapter_ioremap(dev, dev->base_size)) { printk(KERN_WARNING "%s: unable to map adapter.\n", name); goto error_iounmap; } /* Failure to reset here is an option ... */ dev->a_ops.adapter_sync_cmd = src_sync_cmd; dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; if ((aac_reset_devices || reset_devices) && !aac_src_restart_adapter(dev, 0)) ++restart; /* * Check to see if flash update is running. * Wait for the adapter to be up and running. Wait up to 5 minutes */ status = src_readl(dev, MUnit.OMR); if (status & FLASH_UPD_PENDING) { start = jiffies; do { status = src_readl(dev, MUnit.OMR); if (time_after(jiffies, start+HZ*FWUPD_TIMEOUT)) { printk(KERN_ERR "%s%d: adapter flash update failed.\n", dev->name, instance); goto error_iounmap; } } while (!(status & FLASH_UPD_SUCCESS) && !(status & FLASH_UPD_FAILED)); /* Delay 10 seconds. * Because right now FW is doing a soft reset, * do not read scratch pad register at this time */ ssleep(10); } /* * Check to see if the board panic'd while booting. */ status = src_readl(dev, MUnit.OMR); if (status & KERNEL_PANIC) { if (aac_src_restart_adapter(dev, aac_src_check_health(dev))) goto error_iounmap; ++restart; } /* * Check to see if the board failed any self tests. */ status = src_readl(dev, MUnit.OMR); if (status & SELF_TEST_FAILED) { printk(KERN_ERR "%s%d: adapter self-test failed.\n", dev->name, instance); goto error_iounmap; } /* * Check to see if the monitor panic'd while booting. */ if (status & MONITOR_PANIC) { printk(KERN_ERR "%s%d: adapter monitor panic.\n", dev->name, instance); goto error_iounmap; } start = jiffies; /* * Wait for the adapter to be up and running. Wait up to 3 minutes */ while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING) || status == 0xffffffff) { if ((restart && (status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) || time_after(jiffies, start+HZ*startup_timeout)) { printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n", dev->name, instance, status); goto error_iounmap; } if (!restart && ((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) || time_after(jiffies, start + HZ * ((startup_timeout > 60) ? (startup_timeout - 60) : (startup_timeout / 2))))) { if (likely(!aac_src_restart_adapter(dev, aac_src_check_health(dev)))) start = jiffies; ++restart; } msleep(1); } if (restart && aac_commit) aac_commit = 1; /* * Fill in the common function dispatch table. */ dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter; dev->a_ops.adapter_disable_int = aac_src_disable_interrupt; dev->a_ops.adapter_notify = aac_src_notify_adapter; dev->a_ops.adapter_sync_cmd = src_sync_cmd; dev->a_ops.adapter_check_health = aac_src_check_health; dev->a_ops.adapter_restart = aac_src_restart_adapter; /* * First clear out all interrupts. Then enable the one's that we * can handle. */ aac_adapter_comm(dev, AAC_COMM_MESSAGE); aac_adapter_disable_int(dev); src_writel(dev, MUnit.ODR_C, 0xffffffff); aac_adapter_enable_int(dev); if (aac_init_adapter(dev) == NULL) goto error_iounmap; if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE2) goto error_iounmap; dev->msi = aac_msi && !pci_enable_msi(dev->pdev); if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, IRQF_SHARED|IRQF_DISABLED, "aacraid", dev) < 0) { if (dev->msi) pci_disable_msi(dev->pdev); printk(KERN_ERR "%s%d: Interrupt unavailable.\n", name, instance); goto error_iounmap; } dev->dbg_base = dev->base_start; dev->dbg_base_mapped = dev->base; dev->dbg_size = dev->base_size; aac_adapter_enable_int(dev); if (!dev->sync_mode) { /* * Tell the adapter that all is configured, and it can * start accepting requests */ aac_src_start_adapter(dev); } return 0; error_iounmap: return -1; }