/* * HD audio interface patch for Creative CA0132 chip * * Copyright (c) 2011, Creative Technology Ltd. * * Based on patch_ca0110.c * Copyright (c) 2008 Takashi Iwai * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include "hda_codec.h" #include "hda_local.h" #include "hda_auto_parser.h" #include "hda_jack.h" #include "ca0132_regs.h" /* Enable this to see controls for tuning purpose. */ /*#define ENABLE_TUNING_CONTROLS*/ #define FLOAT_ZERO 0x00000000 #define FLOAT_ONE 0x3f800000 #define FLOAT_TWO 0x40000000 #define FLOAT_MINUS_5 0xc0a00000 #define UNSOL_TAG_HP 0x10 #define UNSOL_TAG_AMIC1 0x12 #define UNSOL_TAG_DSP 0x16 #define DSP_DMA_WRITE_BUFLEN_INIT (1UL<<18) #define DSP_DMA_WRITE_BUFLEN_OVLY (1UL<<15) #define DMA_TRANSFER_FRAME_SIZE_NWORDS 8 #define DMA_TRANSFER_MAX_FRAME_SIZE_NWORDS 32 #define DMA_OVERLAY_FRAME_SIZE_NWORDS 2 #define MASTERCONTROL 0x80 #define MASTERCONTROL_ALLOC_DMA_CHAN 10 #define MASTERCONTROL_QUERY_SPEAKER_EQ_ADDRESS 60 #define WIDGET_CHIP_CTRL 0x15 #define WIDGET_DSP_CTRL 0x16 #define MEM_CONNID_MICIN1 3 #define MEM_CONNID_MICIN2 5 #define MEM_CONNID_MICOUT1 12 #define MEM_CONNID_MICOUT2 14 #define MEM_CONNID_WUH 10 #define MEM_CONNID_DSP 16 #define MEM_CONNID_DMIC 100 #define SCP_SET 0 #define SCP_GET 1 #define EFX_FILE "ctefx.bin" #ifdef CONFIG_SND_HDA_CODEC_CA0132_DSP MODULE_FIRMWARE(EFX_FILE); #endif static char *dirstr[2] = { "Playback", "Capture" }; enum { SPEAKER_OUT, HEADPHONE_OUT }; enum { DIGITAL_MIC, LINE_MIC_IN }; enum { #define VNODE_START_NID 0x80 VNID_SPK = VNODE_START_NID, /* Speaker vnid */ VNID_MIC, VNID_HP_SEL, VNID_AMIC1_SEL, VNID_HP_ASEL, VNID_AMIC1_ASEL, VNODE_END_NID, #define VNODES_COUNT (VNODE_END_NID - VNODE_START_NID) #define EFFECT_START_NID 0x90 #define OUT_EFFECT_START_NID EFFECT_START_NID SURROUND = OUT_EFFECT_START_NID, CRYSTALIZER, DIALOG_PLUS, SMART_VOLUME, X_BASS, EQUALIZER, OUT_EFFECT_END_NID, #define OUT_EFFECTS_COUNT (OUT_EFFECT_END_NID - OUT_EFFECT_START_NID) #define IN_EFFECT_START_NID OUT_EFFECT_END_NID ECHO_CANCELLATION = IN_EFFECT_START_NID, VOICE_FOCUS, MIC_SVM, NOISE_REDUCTION, IN_EFFECT_END_NID, #define IN_EFFECTS_COUNT (IN_EFFECT_END_NID - IN_EFFECT_START_NID) VOICEFX = IN_EFFECT_END_NID, PLAY_ENHANCEMENT, CRYSTAL_VOICE, EFFECT_END_NID #define EFFECTS_COUNT (EFFECT_END_NID - EFFECT_START_NID) }; /* Effects values size*/ #define EFFECT_VALS_MAX_COUNT 12 /* Latency introduced by DSP blocks in milliseconds. */ #define DSP_CAPTURE_INIT_LATENCY 0 #define DSP_CRYSTAL_VOICE_LATENCY 124 #define DSP_PLAYBACK_INIT_LATENCY 13 #define DSP_PLAY_ENHANCEMENT_LATENCY 30 #define DSP_SPEAKER_OUT_LATENCY 7 struct ct_effect { char name[44]; hda_nid_t nid; int mid; /*effect module ID*/ int reqs[EFFECT_VALS_MAX_COUNT]; /*effect module request*/ int direct; /* 0:output; 1:input*/ int params; /* number of default non-on/off params */ /*effect default values, 1st is on/off. */ unsigned int def_vals[EFFECT_VALS_MAX_COUNT]; }; #define EFX_DIR_OUT 0 #define EFX_DIR_IN 1 static struct ct_effect ca0132_effects[EFFECTS_COUNT] = { { .name = "Surround", .nid = SURROUND, .mid = 0x96, .reqs = {0, 1}, .direct = EFX_DIR_OUT, .params = 1, .def_vals = {0x3F800000, 0x3F2B851F} }, { .name = "Crystalizer", .nid = CRYSTALIZER, .mid = 0x96, .reqs = {7, 8}, .direct = EFX_DIR_OUT, .params = 1, .def_vals = {0x3F800000, 0x3F266666} }, { .name = "Dialog Plus", .nid = DIALOG_PLUS, .mid = 0x96, .reqs = {2, 3}, .direct = EFX_DIR_OUT, .params = 1, .def_vals = {0x00000000, 0x3F000000} }, { .name = "Smart Volume", .nid = SMART_VOLUME, .mid = 0x96, .reqs = {4, 5, 6}, .direct = EFX_DIR_OUT, .params = 2, .def_vals = {0x3F800000, 0x3F3D70A4, 0x00000000} }, { .name = "X-Bass", .nid = X_BASS, .mid = 0x96, .reqs = {24, 23, 25}, .direct = EFX_DIR_OUT, .params = 2, .def_vals = {0x3F800000, 0x42A00000, 0x3F000000} }, { .name = "Equalizer", .nid = EQUALIZER, .mid = 0x96, .reqs = {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, .direct = EFX_DIR_OUT, .params = 11, .def_vals = {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000} }, { .name = "Echo Cancellation", .nid = ECHO_CANCELLATION, .mid = 0x95, .reqs = {0, 1, 2, 3}, .direct = EFX_DIR_IN, .params = 3, .def_vals = {0x00000000, 0x3F3A9692, 0x00000000, 0x00000000} }, { .name = "Voice Focus", .nid = VOICE_FOCUS, .mid = 0x95, .reqs = {6, 7, 8, 9}, .direct = EFX_DIR_IN, .params = 3, .def_vals = {0x3F800000, 0x3D7DF3B6, 0x41F00000, 0x41F00000} }, { .name = "Mic SVM", .nid = MIC_SVM, .mid = 0x95, .reqs = {44, 45}, .direct = EFX_DIR_IN, .params = 1, .def_vals = {0x00000000, 0x3F3D70A4} }, { .name = "Noise Reduction", .nid = NOISE_REDUCTION, .mid = 0x95, .reqs = {4, 5}, .direct = EFX_DIR_IN, .params = 1, .def_vals = {0x3F800000, 0x3F000000} }, { .name = "VoiceFX", .nid = VOICEFX, .mid = 0x95, .reqs = {10, 11, 12, 13, 14, 15, 16, 17, 18}, .direct = EFX_DIR_IN, .params = 8, .def_vals = {0x00000000, 0x43C80000, 0x44AF0000, 0x44FA0000, 0x3F800000, 0x3F800000, 0x3F800000, 0x00000000, 0x00000000} } }; /* Tuning controls */ #ifdef ENABLE_TUNING_CONTROLS enum { #define TUNING_CTL_START_NID 0xC0 WEDGE_ANGLE = TUNING_CTL_START_NID, SVM_LEVEL, EQUALIZER_BAND_0, EQUALIZER_BAND_1, EQUALIZER_BAND_2, EQUALIZER_BAND_3, EQUALIZER_BAND_4, EQUALIZER_BAND_5, EQUALIZER_BAND_6, EQUALIZER_BAND_7, EQUALIZER_BAND_8, EQUALIZER_BAND_9, TUNING_CTL_END_NID #define TUNING_CTLS_COUNT (TUNING_CTL_END_NID - TUNING_CTL_START_NID) }; struct ct_tuning_ctl { char name[44]; hda_nid_t parent_nid; hda_nid_t nid; int mid; /*effect module ID*/ int req; /*effect module request*/ int direct; /* 0:output; 1:input*/ unsigned int def_val;/*effect default values*/ }; static struct ct_tuning_ctl ca0132_tuning_ctls[] = { { .name = "Wedge Angle", .parent_nid = VOICE_FOCUS, .nid = WEDGE_ANGLE, .mid = 0x95, .req = 8, .direct = EFX_DIR_IN, .def_val = 0x41F00000 }, { .name = "SVM Level", .parent_nid = MIC_SVM, .nid = SVM_LEVEL, .mid = 0x95, .req = 45, .direct = EFX_DIR_IN, .def_val = 0x3F3D70A4 }, { .name = "EQ Band0", .parent_nid = EQUALIZER, .nid = EQUALIZER_BAND_0, .mid = 0x96, .req = 11, .direct = EFX_DIR_OUT, .def_val = 0x00000000 }, { .name = "EQ Band1", .parent_nid = EQUALIZER, .nid = EQUALIZER_BAND_1, .mid = 0x96, .req = 12, .direct = EFX_DIR_OUT, .def_val = 0x00000000 }, { .name = "EQ Band2", .parent_nid = EQUALIZER, .nid = EQUALIZER_BAND_2, .mid = 0x96, .req = 13, .direct = EFX_DIR_OUT, .def_val = 0x00000000 }, { .name = "EQ Band3", .parent_nid = EQUALIZER, .nid = EQUALIZER_BAND_3, .mid = 0x96, .req = 14, .direct = EFX_DIR_OUT, .def_val = 0x00000000 }, { .name = "EQ Band4", .parent_nid = EQUALIZER, .nid = EQUALIZER_BAND_4, .mid = 0x96, .req = 15, .direct = EFX_DIR_OUT, .def_val = 0x00000000 }, { .name = "EQ Band5", .parent_nid = EQUALIZER, .nid = EQUALIZER_BAND_5, .mid = 0x96, .req = 16, .direct = EFX_DIR_OUT, .def_val = 0x00000000 }, { .name = "EQ Band6", .parent_nid = EQUALIZER, .nid = EQUALIZER_BAND_6, .mid = 0x96, .req = 17, .direct = EFX_DIR_OUT, .def_val = 0x00000000 }, { .name = "EQ Band7", .parent_nid = EQUALIZER, .nid = EQUALIZER_BAND_7, .mid = 0x96, .req = 18, .direct = EFX_DIR_OUT, .def_val = 0x00000000 }, { .name = "EQ Band8", .parent_nid = EQUALIZER, .nid = EQUALIZER_BAND_8, .mid = 0x96, .req = 19, .direct = EFX_DIR_OUT, .def_val = 0x00000000 }, { .name = "EQ Band9", .parent_nid = EQUALIZER, .nid = EQUALIZER_BAND_9, .mid = 0x96, .req = 20, .direct = EFX_DIR_OUT, .def_val = 0x00000000 } }; #endif /* Voice FX Presets */ #define VOICEFX_MAX_PARAM_COUNT 9 struct ct_voicefx { char *name; hda_nid_t nid; int mid; int reqs[VOICEFX_MAX_PARAM_COUNT]; /*effect module request*/ }; struct ct_voicefx_preset { char *name; /*preset name*/ unsigned int vals[VOICEFX_MAX_PARAM_COUNT]; }; static struct ct_voicefx ca0132_voicefx = { .name = "VoiceFX Capture Switch", .nid = VOICEFX, .mid = 0x95, .reqs = {10, 11, 12, 13, 14, 15, 16, 17, 18} }; static struct ct_voicefx_preset ca0132_voicefx_presets[] = { { .name = "Neutral", .vals = { 0x00000000, 0x43C80000, 0x44AF0000, 0x44FA0000, 0x3F800000, 0x3F800000, 0x3F800000, 0x00000000, 0x00000000 } }, { .name = "Female2Male", .vals = { 0x3F800000, 0x43C80000, 0x44AF0000, 0x44FA0000, 0x3F19999A, 0x3F866666, 0x3F800000, 0x00000000, 0x00000000 } }, { .name = "Male2Female", .vals = { 0x3F800000, 0x43C80000, 0x44AF0000, 0x450AC000, 0x4017AE14, 0x3F6B851F, 0x3F800000, 0x00000000, 0x00000000 } }, { .name = "ScrappyKid", .vals = { 0x3F800000, 0x43C80000, 0x44AF0000, 0x44FA0000, 0x40400000, 0x3F28F5C3, 0x3F800000, 0x00000000, 0x00000000 } }, { .name = "Elderly", .vals = { 0x3F800000, 0x44324000, 0x44BB8000, 0x44E10000, 0x3FB33333, 0x3FB9999A, 0x3F800000, 0x3E3A2E43, 0x00000000 } }, { .name = "Orc", .vals = { 0x3F800000, 0x43EA0000, 0x44A52000, 0x45098000, 0x3F266666, 0x3FC00000, 0x3F800000, 0x00000000, 0x00000000 } }, { .name = "Elf", .vals = { 0x3F800000, 0x43C70000, 0x44AE6000, 0x45193000, 0x3F8E147B, 0x3F75C28F, 0x3F800000, 0x00000000, 0x00000000 } }, { .name = "Dwarf", .vals = { 0x3F800000, 0x43930000, 0x44BEE000, 0x45007000, 0x3F451EB8, 0x3F7851EC, 0x3F800000, 0x00000000, 0x00000000 } }, { .name = "AlienBrute", .vals = { 0x3F800000, 0x43BFC5AC, 0x44B28FDF, 0x451F6000, 0x3F266666, 0x3FA7D945, 0x3F800000, 0x3CF5C28F, 0x00000000 } }, { .name = "Robot", .vals = { 0x3F800000, 0x43C80000, 0x44AF0000, 0x44FA0000, 0x3FB2718B, 0x3F800000, 0xBC07010E, 0x00000000, 0x00000000 } }, { .name = "Marine", .vals = { 0x3F800000, 0x43C20000, 0x44906000, 0x44E70000, 0x3F4CCCCD, 0x3F8A3D71, 0x3F0A3D71, 0x00000000, 0x00000000 } }, { .name = "Emo", .vals = { 0x3F800000, 0x43C80000, 0x44AF0000, 0x44FA0000, 0x3F800000, 0x3F800000, 0x3E4CCCCD, 0x00000000, 0x00000000 } }, { .name = "DeepVoice", .vals = { 0x3F800000, 0x43A9C5AC, 0x44AA4FDF, 0x44FFC000, 0x3EDBB56F, 0x3F99C4CA, 0x3F800000, 0x00000000, 0x00000000 } }, { .name = "Munchkin", .vals = { 0x3F800000, 0x43C80000, 0x44AF0000, 0x44FA0000, 0x3F800000, 0x3F1A043C, 0x3F800000, 0x00000000, 0x00000000 } } }; enum hda_cmd_vendor_io { /* for DspIO node */ VENDOR_DSPIO_SCP_WRITE_DATA_LOW = 0x000, VENDOR_DSPIO_SCP_WRITE_DATA_HIGH = 0x100, VENDOR_DSPIO_STATUS = 0xF01, VENDOR_DSPIO_SCP_POST_READ_DATA = 0x702, VENDOR_DSPIO_SCP_READ_DATA = 0xF02, VENDOR_DSPIO_DSP_INIT = 0x703, VENDOR_DSPIO_SCP_POST_COUNT_QUERY = 0x704, VENDOR_DSPIO_SCP_READ_COUNT = 0xF04, /* for ChipIO node */ VENDOR_CHIPIO_ADDRESS_LOW = 0x000, VENDOR_CHIPIO_ADDRESS_HIGH = 0x100, VENDOR_CHIPIO_STREAM_FORMAT = 0x200, VENDOR_CHIPIO_DATA_LOW = 0x300, VENDOR_CHIPIO_DATA_HIGH = 0x400, VENDOR_CHIPIO_GET_PARAMETER = 0xF00, VENDOR_CHIPIO_STATUS = 0xF01, VENDOR_CHIPIO_HIC_POST_READ = 0x702, VENDOR_CHIPIO_HIC_READ_DATA = 0xF03, VENDOR_CHIPIO_8051_DATA_WRITE = 0x707, VENDOR_CHIPIO_8051_DATA_READ = 0xF07, VENDOR_CHIPIO_CT_EXTENSIONS_ENABLE = 0x70A, VENDOR_CHIPIO_CT_EXTENSIONS_GET = 0xF0A, VENDOR_CHIPIO_PLL_PMU_WRITE = 0x70C, VENDOR_CHIPIO_PLL_PMU_READ = 0xF0C, VENDOR_CHIPIO_8051_ADDRESS_LOW = 0x70D, VENDOR_CHIPIO_8051_ADDRESS_HIGH = 0x70E, VENDOR_CHIPIO_FLAG_SET = 0x70F, VENDOR_CHIPIO_FLAGS_GET = 0xF0F, VENDOR_CHIPIO_PARAM_SET = 0x710, VENDOR_CHIPIO_PARAM_GET = 0xF10, VENDOR_CHIPIO_PORT_ALLOC_CONFIG_SET = 0x711, VENDOR_CHIPIO_PORT_ALLOC_SET = 0x712, VENDOR_CHIPIO_PORT_ALLOC_GET = 0xF12, VENDOR_CHIPIO_PORT_FREE_SET = 0x713, VENDOR_CHIPIO_PARAM_EX_ID_GET = 0xF17, VENDOR_CHIPIO_PARAM_EX_ID_SET = 0x717, VENDOR_CHIPIO_PARAM_EX_VALUE_GET = 0xF18, VENDOR_CHIPIO_PARAM_EX_VALUE_SET = 0x718, VENDOR_CHIPIO_DMIC_CTL_SET = 0x788, VENDOR_CHIPIO_DMIC_CTL_GET = 0xF88, VENDOR_CHIPIO_DMIC_PIN_SET = 0x789, VENDOR_CHIPIO_DMIC_PIN_GET = 0xF89, VENDOR_CHIPIO_DMIC_MCLK_SET = 0x78A, VENDOR_CHIPIO_DMIC_MCLK_GET = 0xF8A, VENDOR_CHIPIO_EAPD_SEL_SET = 0x78D }; /* * Control flag IDs */ enum control_flag_id { /* Connection manager stream setup is bypassed/enabled */ CONTROL_FLAG_C_MGR = 0, /* DSP DMA is bypassed/enabled */ CONTROL_FLAG_DMA = 1, /* 8051 'idle' mode is disabled/enabled */ CONTROL_FLAG_IDLE_ENABLE = 2, /* Tracker for the SPDIF-in path is bypassed/enabled */ CONTROL_FLAG_TRACKER = 3, /* DigitalOut to Spdif2Out connection is disabled/enabled */ CONTROL_FLAG_SPDIF2OUT = 4, /* Digital Microphone is disabled/enabled */ CONTROL_FLAG_DMIC = 5, /* ADC_B rate is 48 kHz/96 kHz */ CONTROL_FLAG_ADC_B_96KHZ = 6, /* ADC_C rate is 48 kHz/96 kHz */ CONTROL_FLAG_ADC_C_96KHZ = 7, /* DAC rate is 48 kHz/96 kHz (affects all DACs) */ CONTROL_FLAG_DAC_96KHZ = 8, /* DSP rate is 48 kHz/96 kHz */ CONTROL_FLAG_DSP_96KHZ = 9, /* SRC clock is 98 MHz/196 MHz (196 MHz forces rate to 96 KHz) */ CONTROL_FLAG_SRC_CLOCK_196MHZ = 10, /* SRC rate is 48 kHz/96 kHz (48 kHz disabled when clock is 196 MHz) */ CONTROL_FLAG_SRC_RATE_96KHZ = 11, /* Decode Loop (DSP->SRC->DSP) is disabled/enabled */ CONTROL_FLAG_DECODE_LOOP = 12, /* De-emphasis filter on DAC-1 disabled/enabled */ CONTROL_FLAG_DAC1_DEEMPHASIS = 13, /* De-emphasis filter on DAC-2 disabled/enabled */ CONTROL_FLAG_DAC2_DEEMPHASIS = 14, /* De-emphasis filter on DAC-3 disabled/enabled */ CONTROL_FLAG_DAC3_DEEMPHASIS = 15, /* High-pass filter on ADC_B disabled/enabled */ CONTROL_FLAG_ADC_B_HIGH_PASS = 16, /* High-pass filter on ADC_C disabled/enabled */ CONTROL_FLAG_ADC_C_HIGH_PASS = 17, /* Common mode on Port_A disabled/enabled */ CONTROL_FLAG_PORT_A_COMMON_MODE = 18, /* Common mode on Port_D disabled/enabled */ CONTROL_FLAG_PORT_D_COMMON_MODE = 19, /* Impedance for ramp generator on Port_A 16 Ohm/10K Ohm */ CONTROL_FLAG_PORT_A_10KOHM_LOAD = 20, /* Impedance for ramp generator on Port_D, 16 Ohm/10K Ohm */ CONTROL_FLAG_PORT_D_10KOHM_LOAD = 21, /* ASI rate is 48kHz/96kHz */ CONTROL_FLAG_ASI_96KHZ = 22, /* DAC power settings able to control attached ports no/yes */ CONTROL_FLAG_DACS_CONTROL_PORTS = 23, /* Clock Stop OK reporting is disabled/enabled */ CONTROL_FLAG_CONTROL_STOP_OK_ENABLE = 24, /* Number of control flags */ CONTROL_FLAGS_MAX = (CONTROL_FLAG_CONTROL_STOP_OK_ENABLE+1) }; /* * Control parameter IDs */ enum control_param_id { /* 0: None, 1: Mic1In*/ CONTROL_PARAM_VIP_SOURCE = 1, /* 0: force HDA, 1: allow DSP if HDA Spdif1Out stream is idle */ CONTROL_PARAM_SPDIF1_SOURCE = 2, /* Port A output stage gain setting to use when 16 Ohm output * impedance is selected*/ CONTROL_PARAM_PORTA_160OHM_GAIN = 8, /* Port D output stage gain setting to use when 16 Ohm output * impedance is selected*/ CONTROL_PARAM_PORTD_160OHM_GAIN = 10, /* Stream Control */ /* Select stream with the given ID */ CONTROL_PARAM_STREAM_ID = 24, /* Source connection point for the selected stream */ CONTROL_PARAM_STREAM_SOURCE_CONN_POINT = 25, /* Destination connection point for the selected stream */ CONTROL_PARAM_STREAM_DEST_CONN_POINT = 26, /* Number of audio channels in the selected stream */ CONTROL_PARAM_STREAMS_CHANNELS = 27, /*Enable control for the selected stream */ CONTROL_PARAM_STREAM_CONTROL = 28, /* Connection Point Control */ /* Select connection point with the given ID */ CONTROL_PARAM_CONN_POINT_ID = 29, /* Connection point sample rate */ CONTROL_PARAM_CONN_POINT_SAMPLE_RATE = 30, /* Node Control */ /* Select HDA node with the given ID */ CONTROL_PARAM_NODE_ID = 31 }; /* * Dsp Io Status codes */ enum hda_vendor_status_dspio { /* Success */ VENDOR_STATUS_DSPIO_OK = 0x00, /* Busy, unable to accept new command, the host must retry */ VENDOR_STATUS_DSPIO_BUSY = 0x01, /* SCP command queue is full */ VENDOR_STATUS_DSPIO_SCP_COMMAND_QUEUE_FULL = 0x02, /* SCP response queue is empty */ VENDOR_STATUS_DSPIO_SCP_RESPONSE_QUEUE_EMPTY = 0x03 }; /* * Chip Io Status codes */ enum hda_vendor_status_chipio { /* Success */ VENDOR_STATUS_CHIPIO_OK = 0x00, /* Busy, unable to accept new command, the host must retry */ VENDOR_STATUS_CHIPIO_BUSY = 0x01 }; /* * CA0132 sample rate */ enum ca0132_sample_rate { SR_6_000 = 0x00, SR_8_000 = 0x01, SR_9_600 = 0x02, SR_11_025 = 0x03, SR_16_000 = 0x04, SR_22_050 = 0x05, SR_24_000 = 0x06, SR_32_000 = 0x07, SR_44_100 = 0x08, SR_48_000 = 0x09, SR_88_200 = 0x0A, SR_96_000 = 0x0B, SR_144_000 = 0x0C, SR_176_400 = 0x0D, SR_192_000 = 0x0E, SR_384_000 = 0x0F, SR_COUNT = 0x10, SR_RATE_UNKNOWN = 0x1F }; enum dsp_download_state { DSP_DOWNLOAD_FAILED = -1, DSP_DOWNLOAD_INIT = 0, DSP_DOWNLOADING = 1, DSP_DOWNLOADED = 2 }; /* retrieve parameters from hda format */ #define get_hdafmt_chs(fmt) (fmt & 0xf) #define get_hdafmt_bits(fmt) ((fmt >> 4) & 0x7) #define get_hdafmt_rate(fmt) ((fmt >> 8) & 0x7f) #define get_hdafmt_type(fmt) ((fmt >> 15) & 0x1) /* * CA0132 specific */ struct ca0132_spec { struct snd_kcontrol_new *mixers[5]; unsigned int num_mixers; const struct hda_verb *base_init_verbs; const struct hda_verb *base_exit_verbs; const struct hda_verb *init_verbs[5]; unsigned int num_init_verbs; /* exclude base init verbs */ struct auto_pin_cfg autocfg; /* Nodes configurations */ struct hda_multi_out multiout; hda_nid_t out_pins[AUTO_CFG_MAX_OUTS]; hda_nid_t dacs[AUTO_CFG_MAX_OUTS]; unsigned int num_outputs; hda_nid_t input_pins[AUTO_PIN_LAST]; hda_nid_t adcs[AUTO_PIN_LAST]; hda_nid_t dig_out; hda_nid_t dig_in; unsigned int num_inputs; hda_nid_t shared_mic_nid; hda_nid_t shared_out_nid; struct hda_pcm pcm_rec[5]; /* PCM information */ /* chip access */ struct mutex chipio_mutex; /* chip access mutex */ u32 curr_chip_addx; /* DSP download related */ enum dsp_download_state dsp_state; unsigned int dsp_stream_id; unsigned int wait_scp; unsigned int wait_scp_header; unsigned int wait_num_data; unsigned int scp_resp_header; unsigned int scp_resp_data[4]; unsigned int scp_resp_count; /* mixer and effects related */ unsigned char dmic_ctl; int cur_out_type; int cur_mic_type; long vnode_lvol[VNODES_COUNT]; long vnode_rvol[VNODES_COUNT]; long vnode_lswitch[VNODES_COUNT]; long vnode_rswitch[VNODES_COUNT]; long effects_switch[EFFECTS_COUNT]; long voicefx_val; long cur_mic_boost; struct hda_codec *codec; struct delayed_work unsol_hp_work; #ifdef ENABLE_TUNING_CONTROLS long cur_ctl_vals[TUNING_CTLS_COUNT]; #endif }; /* * CA0132 codec access */ unsigned int codec_send_command(struct hda_codec *codec, hda_nid_t nid, unsigned int verb, unsigned int parm, unsigned int *res) { unsigned int response; response = snd_hda_codec_read(codec, nid, 0, verb, parm); *res = response; return ((response == -1) ? -1 : 0); } static int codec_set_converter_format(struct hda_codec *codec, hda_nid_t nid, unsigned short converter_format, unsigned int *res) { return codec_send_command(codec, nid, VENDOR_CHIPIO_STREAM_FORMAT, converter_format & 0xffff, res); } static int codec_set_converter_stream_channel(struct hda_codec *codec, hda_nid_t nid, unsigned char stream, unsigned char channel, unsigned int *res) { unsigned char converter_stream_channel = 0; converter_stream_channel = (stream << 4) | (channel & 0x0f); return codec_send_command(codec, nid, AC_VERB_SET_CHANNEL_STREAMID, converter_stream_channel, res); } /* Chip access helper function */ static int chipio_send(struct hda_codec *codec, unsigned int reg, unsigned int data) { unsigned int res; unsigned long timeout = jiffies + msecs_to_jiffies(1000); /* send bits of data specified by reg */ do { res = snd_hda_codec_read(codec, WIDGET_CHIP_CTRL, 0, reg, data); if (res == VENDOR_STATUS_CHIPIO_OK) return 0; msleep(20); } while (time_before(jiffies, timeout)); return -EIO; } /* * Write chip address through the vendor widget -- NOT protected by the Mutex! */ static int chipio_write_address(struct hda_codec *codec, unsigned int chip_addx) { struct ca0132_spec *spec = codec->spec; int res; if (spec->curr_chip_addx == chip_addx) return 0; /* send low 16 bits of the address */ res = chipio_send(codec, VENDOR_CHIPIO_ADDRESS_LOW, chip_addx & 0xffff); if (res != -EIO) { /* send high 16 bits of the address */ res = chipio_send(codec, VENDOR_CHIPIO_ADDRESS_HIGH, chip_addx >> 16); } spec->curr_chip_addx = (res < 0) ? ~0UL : chip_addx; return res; } /* * Write data through the vendor widget -- NOT protected by the Mutex! */ static int chipio_write_data(struct hda_codec *codec, unsigned int data) { struct ca0132_spec *spec = codec->spec; int res; /* send low 16 bits of the data */ res = chipio_send(codec, VENDOR_CHIPIO_DATA_LOW, data & 0xffff); if (res != -EIO) { /* send high 16 bits of the data */ res = chipio_send(codec, VENDOR_CHIPIO_DATA_HIGH, data >> 16); } /*If no error encountered, automatically increment the address as per chip behaviour*/ spec->curr_chip_addx = (res != -EIO) ? (spec->curr_chip_addx + 4) : ~0UL; return res; } /* * Write multiple data through the vendor widget -- NOT protected by the Mutex! */ static int chipio_write_data_multiple(struct hda_codec *codec, const u32 *data, unsigned int count) { int status = 0; if (data == NULL) { snd_printdd(KERN_ERR "chipio_write_data null ptr\n"); return -EINVAL; } while ((count-- != 0) && (status == 0)) status = chipio_write_data(codec, *data++); return status; } /* * Read data through the vendor widget -- NOT protected by the Mutex! */ static int chipio_read_data(struct hda_codec *codec, unsigned int *data) { struct ca0132_spec *spec = codec->spec; int res; /* post read */ res = chipio_send(codec, VENDOR_CHIPIO_HIC_POST_READ, 0); if (res != -EIO) { /* read status */ res = chipio_send(codec, VENDOR_CHIPIO_STATUS, 0); } if (res != -EIO) { /* read data */ *data = snd_hda_codec_read(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_HIC_READ_DATA, 0); } /*If no error encountered, automatically increment the address as per chip behaviour*/ spec->curr_chip_addx = (res != -EIO) ? (spec->curr_chip_addx + 4) : ~0UL; return res; } /* * Write given value to the given address through the chip I/O widget. * protected by the Mutex */ static int chipio_write(struct hda_codec *codec, unsigned int chip_addx, const unsigned int data) { struct ca0132_spec *spec = codec->spec; int err; mutex_lock(&spec->chipio_mutex); /* write the address, and if successful proceed to write data */ err = chipio_write_address(codec, chip_addx); if (err < 0) goto exit; err = chipio_write_data(codec, data); if (err < 0) goto exit; exit: mutex_unlock(&spec->chipio_mutex); return err; } /* * Write multiple values to the given address through the chip I/O widget. * protected by the Mutex */ static int chipio_write_multiple(struct hda_codec *codec, u32 chip_addx, const u32 *data, unsigned int count) { struct ca0132_spec *spec = codec->spec; int status; mutex_lock(&spec->chipio_mutex); status = chipio_write_address(codec, chip_addx); if (status < 0) goto error; status = chipio_write_data_multiple(codec, data, count); error: mutex_unlock(&spec->chipio_mutex); return status; } /* * Read the given address through the chip I/O widget * protected by the Mutex */ static int chipio_read(struct hda_codec *codec, unsigned int chip_addx, unsigned int *data) { struct ca0132_spec *spec = codec->spec; int err; mutex_lock(&spec->chipio_mutex); /* write the address, and if successful proceed to write data */ err = chipio_write_address(codec, chip_addx); if (err < 0) goto exit; err = chipio_read_data(codec, data); if (err < 0) goto exit; exit: mutex_unlock(&spec->chipio_mutex); return err; } /* * Set chip control flags through the chip I/O widget. */ static void chipio_set_control_flag(struct hda_codec *codec, enum control_flag_id flag_id, bool flag_state) { unsigned int val; unsigned int flag_bit; flag_bit = (flag_state ? 1 : 0); val = (flag_bit << 7) | (flag_id); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_FLAG_SET, val); } /* * Set chip parameters through the chip I/O widget. */ static void chipio_set_control_param(struct hda_codec *codec, enum control_param_id param_id, int param_val) { struct ca0132_spec *spec = codec->spec; int val; if ((param_id < 32) && (param_val < 8)) { val = (param_val << 5) | (param_id); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_PARAM_SET, val); } else { mutex_lock(&spec->chipio_mutex); if (chipio_send(codec, VENDOR_CHIPIO_STATUS, 0) == 0) { snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_PARAM_EX_ID_SET, param_id); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_PARAM_EX_VALUE_SET, param_val); } mutex_unlock(&spec->chipio_mutex); } } /* * Set sampling rate of the connection point. */ static void chipio_set_conn_rate(struct hda_codec *codec, int connid, enum ca0132_sample_rate rate) { chipio_set_control_param(codec, CONTROL_PARAM_CONN_POINT_ID, connid); chipio_set_control_param(codec, CONTROL_PARAM_CONN_POINT_SAMPLE_RATE, rate); } /* * Enable clocks. */ static void chipio_enable_clocks(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; mutex_lock(&spec->chipio_mutex); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_8051_ADDRESS_LOW, 0); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_PLL_PMU_WRITE, 0xff); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_8051_ADDRESS_LOW, 5); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_PLL_PMU_WRITE, 0x0b); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_8051_ADDRESS_LOW, 6); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_PLL_PMU_WRITE, 0xff); mutex_unlock(&spec->chipio_mutex); } /* * CA0132 DSP IO stuffs */ static int dspio_send(struct hda_codec *codec, unsigned int reg, unsigned int data) { int res; unsigned long timeout = jiffies + msecs_to_jiffies(1000); /* send bits of data specified by reg to dsp */ do { res = snd_hda_codec_read(codec, WIDGET_DSP_CTRL, 0, reg, data); if ((res >= 0) && (res != VENDOR_STATUS_DSPIO_BUSY)) return res; msleep(20); } while (time_before(jiffies, timeout)); return -EIO; } /* * Wait for DSP to be ready for commands */ static void dspio_write_wait(struct hda_codec *codec) { int status; unsigned long timeout = jiffies + msecs_to_jiffies(1000); do { status = snd_hda_codec_read(codec, WIDGET_DSP_CTRL, 0, VENDOR_DSPIO_STATUS, 0); if ((status == VENDOR_STATUS_DSPIO_OK) || (status == VENDOR_STATUS_DSPIO_SCP_RESPONSE_QUEUE_EMPTY)) break; msleep(1); } while (time_before(jiffies, timeout)); } /* * Write SCP data to DSP */ static int dspio_write(struct hda_codec *codec, unsigned int scp_data) { struct ca0132_spec *spec = codec->spec; int status; dspio_write_wait(codec); mutex_lock(&spec->chipio_mutex); status = dspio_send(codec, VENDOR_DSPIO_SCP_WRITE_DATA_LOW, scp_data & 0xffff); if (status < 0) goto error; status = dspio_send(codec, VENDOR_DSPIO_SCP_WRITE_DATA_HIGH, scp_data >> 16); if (status < 0) goto error; /* OK, now check if the write itself has executed*/ status = snd_hda_codec_read(codec, WIDGET_DSP_CTRL, 0, VENDOR_DSPIO_STATUS, 0); error: mutex_unlock(&spec->chipio_mutex); return (status == VENDOR_STATUS_DSPIO_SCP_COMMAND_QUEUE_FULL) ? -EIO : 0; } /* * Write multiple SCP data to DSP */ static int dspio_write_multiple(struct hda_codec *codec, unsigned int *buffer, unsigned int size) { int status = 0; unsigned int count; if ((buffer == NULL)) return -EINVAL; count = 0; while (count < size) { status = dspio_write(codec, *buffer++); if (status != 0) break; count++; } return status; } static int dspio_read(struct hda_codec *codec, unsigned int *data) { int status; status = dspio_send(codec, VENDOR_DSPIO_SCP_POST_READ_DATA, 0); if (status == -EIO) return status; status = dspio_send(codec, VENDOR_DSPIO_STATUS, 0); if (status == -EIO || status == VENDOR_STATUS_DSPIO_SCP_RESPONSE_QUEUE_EMPTY) return -EIO; *data = snd_hda_codec_read(codec, WIDGET_DSP_CTRL, 0, VENDOR_DSPIO_SCP_READ_DATA, 0); return 0; } static int dspio_read_multiple(struct hda_codec *codec, unsigned int *buffer, unsigned int *buf_size, unsigned int size_count) { int status = 0; unsigned int size = *buf_size; unsigned int count; unsigned int skip_count; unsigned int dummy; if ((buffer == NULL)) return -1; count = 0; while (count < size && count < size_count) { status = dspio_read(codec, buffer++); if (status != 0) break; count++; } skip_count = count; if (status == 0) { while (skip_count < size) { status = dspio_read(codec, &dummy); if (status != 0) break; skip_count++; } } *buf_size = count; return status; } /* * Construct the SCP header using corresponding fields */ static inline unsigned int make_scp_header(unsigned int target_id, unsigned int source_id, unsigned int get_flag, unsigned int req, unsigned int device_flag, unsigned int resp_flag, unsigned int error_flag, unsigned int data_size) { unsigned int header = 0; header = (data_size & 0x1f) << 27; header |= (error_flag & 0x01) << 26; header |= (resp_flag & 0x01) << 25; header |= (device_flag & 0x01) << 24; header |= (req & 0x7f) << 17; header |= (get_flag & 0x01) << 16; header |= (source_id & 0xff) << 8; header |= target_id & 0xff; return header; } /* * Extract corresponding fields from SCP header */ static inline void extract_scp_header(unsigned int header, unsigned int *target_id, unsigned int *source_id, unsigned int *get_flag, unsigned int *req, unsigned int *device_flag, unsigned int *resp_flag, unsigned int *error_flag, unsigned int *data_size) { if (data_size) *data_size = (header >> 27) & 0x1f; if (error_flag) *error_flag = (header >> 26) & 0x01; if (resp_flag) *resp_flag = (header >> 25) & 0x01; if (device_flag) *device_flag = (header >> 24) & 0x01; if (req) *req = (header >> 17) & 0x7f; if (get_flag) *get_flag = (header >> 16) & 0x01; if (source_id) *source_id = (header >> 8) & 0xff; if (target_id) *target_id = header & 0xff; } #define SCP_MAX_DATA_WORDS (16) /* Structure to contain any SCP message */ struct scp_msg { unsigned int hdr; unsigned int data[SCP_MAX_DATA_WORDS]; }; static void dspio_clear_response_queue(struct hda_codec *codec) { unsigned int dummy = 0; int status = -1; /* clear all from the response queue */ do { status = dspio_read(codec, &dummy); } while (status == 0); } static int dspio_get_response_data(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; unsigned int data = 0; unsigned int count; if (dspio_read(codec, &data) < 0) return -EIO; if ((data & 0x00ffffff) == spec->wait_scp_header) { spec->scp_resp_header = data; spec->scp_resp_count = data >> 27; count = spec->wait_num_data; dspio_read_multiple(codec, spec->scp_resp_data, &spec->scp_resp_count, count); return 0; } return -EIO; } /* * Send SCP message to DSP */ static int dspio_send_scp_message(struct hda_codec *codec, unsigned char *send_buf, unsigned int send_buf_size, unsigned char *return_buf, unsigned int return_buf_size, unsigned int *bytes_returned) { struct ca0132_spec *spec = codec->spec; int status = -1; unsigned int scp_send_size = 0; unsigned int total_size; bool waiting_for_resp = false; unsigned int header; struct scp_msg *ret_msg; unsigned int resp_src_id, resp_target_id; unsigned int data_size, src_id, target_id, get_flag, device_flag; if (bytes_returned) *bytes_returned = 0; /* get scp header from buffer */ header = *((unsigned int *)send_buf); extract_scp_header(header, &target_id, &src_id, &get_flag, NULL, &device_flag, NULL, NULL, &data_size); scp_send_size = data_size + 1; total_size = (scp_send_size * 4); if (send_buf_size < total_size) return -EINVAL; if (get_flag || device_flag) { if (!return_buf || return_buf_size < 4 || !bytes_returned) return -EINVAL; spec->wait_scp_header = *((unsigned int *)send_buf); /* swap source id with target id */ resp_target_id = src_id; resp_src_id = target_id; spec->wait_scp_header &= 0xffff0000; spec->wait_scp_header |= (resp_src_id << 8) | (resp_target_id); spec->wait_num_data = return_buf_size/sizeof(unsigned int) - 1; spec->wait_scp = 1; waiting_for_resp = true; } status = dspio_write_multiple(codec, (unsigned int *)send_buf, scp_send_size); if (status < 0) { spec->wait_scp = 0; return status; } if (waiting_for_resp) { unsigned long timeout = jiffies + msecs_to_jiffies(1000); memset(return_buf, 0, return_buf_size); do { msleep(20); } while (spec->wait_scp && time_before(jiffies, timeout)); waiting_for_resp = false; if (!spec->wait_scp) { ret_msg = (struct scp_msg *)return_buf; memcpy(&ret_msg->hdr, &spec->scp_resp_header, 4); memcpy(&ret_msg->data, spec->scp_resp_data, spec->wait_num_data); *bytes_returned = (spec->scp_resp_count + 1) * 4; status = 0; } else { status = -EIO; } spec->wait_scp = 0; } return status; } /** * Prepare and send the SCP message to DSP * @codec: the HDA codec * @mod_id: ID of the DSP module to send the command * @req: ID of request to send to the DSP module * @dir: SET or GET * @data: pointer to the data to send with the request, request specific * @len: length of the data, in bytes * @reply: point to the buffer to hold data returned for a reply * @reply_len: length of the reply buffer returned from GET * * Returns zero or a negative error code. */ static int dspio_scp(struct hda_codec *codec, int mod_id, int req, int dir, void *data, unsigned int len, void *reply, unsigned int *reply_len) { int status = 0; struct scp_msg scp_send, scp_reply; unsigned int ret_bytes, send_size, ret_size; unsigned int send_get_flag, reply_resp_flag, reply_error_flag; unsigned int reply_data_size; memset(&scp_send, 0, sizeof(scp_send)); memset(&scp_reply, 0, sizeof(scp_reply)); if ((len != 0 && data == NULL) || (len > SCP_MAX_DATA_WORDS)) return -EINVAL; if (dir == SCP_GET && reply == NULL) { snd_printdd(KERN_ERR "dspio_scp get but has no buffer\n"); return -EINVAL; } if (reply != NULL && (reply_len == NULL || (*reply_len == 0))) { snd_printdd(KERN_ERR "dspio_scp bad resp buf len parms\n"); return -EINVAL; } scp_send.hdr = make_scp_header(mod_id, 0x20, (dir == SCP_GET), req, 0, 0, 0, len/sizeof(unsigned int)); if (data != NULL && len > 0) { len = min((unsigned int)(sizeof(scp_send.data)), len); memcpy(scp_send.data, data, len); } ret_bytes = 0; send_size = sizeof(unsigned int) + len; status = dspio_send_scp_message(codec, (unsigned char *)&scp_send, send_size, (unsigned char *)&scp_reply, sizeof(scp_reply), &ret_bytes); if (status < 0) { snd_printdd(KERN_ERR "dspio_scp: send scp msg failed\n"); return status; } /* extract send and reply headers members */ extract_scp_header(scp_send.hdr, NULL, NULL, &send_get_flag, NULL, NULL, NULL, NULL, NULL); extract_scp_header(scp_reply.hdr, NULL, NULL, NULL, NULL, NULL, &reply_resp_flag, &reply_error_flag, &reply_data_size); if (!send_get_flag) return 0; if (reply_resp_flag && !reply_error_flag) { ret_size = (ret_bytes - sizeof(scp_reply.hdr)) / sizeof(unsigned int); if (*reply_len < ret_size*sizeof(unsigned int)) { snd_printdd(KERN_ERR "reply too long for buf\n"); return -EINVAL; } else if (ret_size != reply_data_size) { snd_printdd(KERN_ERR "RetLen and HdrLen .NE.\n"); return -EINVAL; } else { *reply_len = ret_size*sizeof(unsigned int); memcpy(reply, scp_reply.data, *reply_len); } } else { snd_printdd(KERN_ERR "reply ill-formed or errflag set\n"); return -EIO; } return status; } /* * Set DSP parameters */ static int dspio_set_param(struct hda_codec *codec, int mod_id, int req, void *data, unsigned int len) { return dspio_scp(codec, mod_id, req, SCP_SET, data, len, NULL, NULL); } static int dspio_set_uint_param(struct hda_codec *codec, int mod_id, int req, unsigned int data) { return dspio_set_param(codec, mod_id, req, &data, sizeof(unsigned int)); } /* * Allocate a DSP DMA channel via an SCP message */ static int dspio_alloc_dma_chan(struct hda_codec *codec, unsigned int *dma_chan) { int status = 0; unsigned int size = sizeof(dma_chan); snd_printdd(KERN_INFO " dspio_alloc_dma_chan() -- begin\n"); status = dspio_scp(codec, MASTERCONTROL, MASTERCONTROL_ALLOC_DMA_CHAN, SCP_GET, NULL, 0, dma_chan, &size); if (status < 0) { snd_printdd(KERN_INFO "dspio_alloc_dma_chan: SCP Failed\n"); return status; } if ((*dma_chan + 1) == 0) { snd_printdd(KERN_INFO "no free dma channels to allocate\n"); return -EBUSY; } snd_printdd("dspio_alloc_dma_chan: chan=%d\n", *dma_chan); snd_printdd(KERN_INFO " dspio_alloc_dma_chan() -- complete\n"); return status; } /* * Free a DSP DMA via an SCP message */ static int dspio_free_dma_chan(struct hda_codec *codec, unsigned int dma_chan) { int status = 0; unsigned int dummy = 0; snd_printdd(KERN_INFO " dspio_free_dma_chan() -- begin\n"); snd_printdd("dspio_free_dma_chan: chan=%d\n", dma_chan); status = dspio_scp(codec, MASTERCONTROL, MASTERCONTROL_ALLOC_DMA_CHAN, SCP_SET, &dma_chan, sizeof(dma_chan), NULL, &dummy); if (status < 0) { snd_printdd(KERN_INFO "dspio_free_dma_chan: SCP Failed\n"); return status; } snd_printdd(KERN_INFO " dspio_free_dma_chan() -- complete\n"); return status; } /* * (Re)start the DSP */ static int dsp_set_run_state(struct hda_codec *codec) { unsigned int dbg_ctrl_reg; unsigned int halt_state; int err; err = chipio_read(codec, DSP_DBGCNTL_INST_OFFSET, &dbg_ctrl_reg); if (err < 0) return err; halt_state = (dbg_ctrl_reg & DSP_DBGCNTL_STATE_MASK) >> DSP_DBGCNTL_STATE_LOBIT; if (halt_state != 0) { dbg_ctrl_reg &= ~((halt_state << DSP_DBGCNTL_SS_LOBIT) & DSP_DBGCNTL_SS_MASK); err = chipio_write(codec, DSP_DBGCNTL_INST_OFFSET, dbg_ctrl_reg); if (err < 0) return err; dbg_ctrl_reg |= (halt_state << DSP_DBGCNTL_EXEC_LOBIT) & DSP_DBGCNTL_EXEC_MASK; err = chipio_write(codec, DSP_DBGCNTL_INST_OFFSET, dbg_ctrl_reg); if (err < 0) return err; } return 0; } /* * Reset the DSP */ static int dsp_reset(struct hda_codec *codec) { unsigned int res; int retry = 20; snd_printdd("dsp_reset\n"); do { res = dspio_send(codec, VENDOR_DSPIO_DSP_INIT, 0); retry--; } while (res == -EIO && retry); if (!retry) { snd_printdd("dsp_reset timeout\n"); return -EIO; } return 0; } /* * Convert chip address to DSP address */ static unsigned int dsp_chip_to_dsp_addx(unsigned int chip_addx, bool *code, bool *yram) { *code = *yram = false; if (UC_RANGE(chip_addx, 1)) { *code = true; return UC_OFF(chip_addx); } else if (X_RANGE_ALL(chip_addx, 1)) { return X_OFF(chip_addx); } else if (Y_RANGE_ALL(chip_addx, 1)) { *yram = true; return Y_OFF(chip_addx); } return INVALID_CHIP_ADDRESS; } /* * Check if the DSP DMA is active */ static bool dsp_is_dma_active(struct hda_codec *codec, unsigned int dma_chan) { unsigned int dma_chnlstart_reg; chipio_read(codec, DSPDMAC_CHNLSTART_INST_OFFSET, &dma_chnlstart_reg); return ((dma_chnlstart_reg & (1 << (DSPDMAC_CHNLSTART_EN_LOBIT + dma_chan))) != 0); } static int dsp_dma_setup_common(struct hda_codec *codec, unsigned int chip_addx, unsigned int dma_chan, unsigned int port_map_mask, bool ovly) { int status = 0; unsigned int chnl_prop; unsigned int dsp_addx; unsigned int active; bool code, yram; snd_printdd(KERN_INFO "-- dsp_dma_setup_common() -- Begin ---------\n"); if (dma_chan >= DSPDMAC_DMA_CFG_CHANNEL_COUNT) { snd_printdd(KERN_ERR "dma chan num invalid\n"); return -EINVAL; } if (dsp_is_dma_active(codec, dma_chan)) { snd_printdd(KERN_ERR "dma already active\n"); return -EBUSY; } dsp_addx = dsp_chip_to_dsp_addx(chip_addx, &code, &yram); if (dsp_addx == INVALID_CHIP_ADDRESS) { snd_printdd(KERN_ERR "invalid chip addr\n"); return -ENXIO; } chnl_prop = DSPDMAC_CHNLPROP_AC_MASK; active = 0; snd_printdd(KERN_INFO " dsp_dma_setup_common() start reg pgm\n"); if (ovly) { status = chipio_read(codec, DSPDMAC_CHNLPROP_INST_OFFSET, &chnl_prop); if (status < 0) { snd_printdd(KERN_ERR "read CHNLPROP Reg fail\n"); return status; } snd_printdd(KERN_INFO "dsp_dma_setup_common() Read CHNLPROP\n"); } if (!code) chnl_prop &= ~(1 << (DSPDMAC_CHNLPROP_MSPCE_LOBIT + dma_chan)); else chnl_prop |= (1 << (DSPDMAC_CHNLPROP_MSPCE_LOBIT + dma_chan)); chnl_prop &= ~(1 << (DSPDMAC_CHNLPROP_DCON_LOBIT + dma_chan)); status = chipio_write(codec, DSPDMAC_CHNLPROP_INST_OFFSET, chnl_prop); if (status < 0) { snd_printdd(KERN_ERR "write CHNLPROP Reg fail\n"); return status; } snd_printdd(KERN_INFO " dsp_dma_setup_common() Write CHNLPROP\n"); if (ovly) { status = chipio_read(codec, DSPDMAC_ACTIVE_INST_OFFSET, &active); if (status < 0) { snd_printdd(KERN_ERR "read ACTIVE Reg fail\n"); return status; } snd_printdd(KERN_INFO "dsp_dma_setup_common() Read ACTIVE\n"); } active &= (~(1 << (DSPDMAC_ACTIVE_AAR_LOBIT + dma_chan))) & DSPDMAC_ACTIVE_AAR_MASK; status = chipio_write(codec, DSPDMAC_ACTIVE_INST_OFFSET, active); if (status < 0) { snd_printdd(KERN_ERR "write ACTIVE Reg fail\n"); return status; } snd_printdd(KERN_INFO " dsp_dma_setup_common() Write ACTIVE\n"); status = chipio_write(codec, DSPDMAC_AUDCHSEL_INST_OFFSET(dma_chan), port_map_mask); if (status < 0) { snd_printdd(KERN_ERR "write AUDCHSEL Reg fail\n"); return status; } snd_printdd(KERN_INFO " dsp_dma_setup_common() Write AUDCHSEL\n"); status = chipio_write(codec, DSPDMAC_IRQCNT_INST_OFFSET(dma_chan), DSPDMAC_IRQCNT_BICNT_MASK | DSPDMAC_IRQCNT_CICNT_MASK); if (status < 0) { snd_printdd(KERN_ERR "write IRQCNT Reg fail\n"); return status; } snd_printdd(KERN_INFO " dsp_dma_setup_common() Write IRQCNT\n"); snd_printdd( "ChipA=0x%x,DspA=0x%x,dmaCh=%u, " "CHSEL=0x%x,CHPROP=0x%x,Active=0x%x\n", chip_addx, dsp_addx, dma_chan, port_map_mask, chnl_prop, active); snd_printdd(KERN_INFO "-- dsp_dma_setup_common() -- Complete ------\n"); return 0; } /* * Setup the DSP DMA per-transfer-specific registers */ static int dsp_dma_setup(struct hda_codec *codec, unsigned int chip_addx, unsigned int count, unsigned int dma_chan) { int status = 0; bool code, yram; unsigned int dsp_addx; unsigned int addr_field; unsigned int incr_field; unsigned int base_cnt; unsigned int cur_cnt; unsigned int dma_cfg = 0; unsigned int adr_ofs = 0; unsigned int xfr_cnt = 0; const unsigned int max_dma_count = 1 << (DSPDMAC_XFRCNT_BCNT_HIBIT - DSPDMAC_XFRCNT_BCNT_LOBIT + 1); snd_printdd(KERN_INFO "-- dsp_dma_setup() -- Begin ---------\n"); if (count > max_dma_count) { snd_printdd(KERN_ERR "count too big\n"); return -EINVAL; } dsp_addx = dsp_chip_to_dsp_addx(chip_addx, &code, &yram); if (dsp_addx == INVALID_CHIP_ADDRESS) { snd_printdd(KERN_ERR "invalid chip addr\n"); return -ENXIO; } snd_printdd(KERN_INFO " dsp_dma_setup() start reg pgm\n"); addr_field = dsp_addx << DSPDMAC_DMACFG_DBADR_LOBIT; incr_field = 0; if (!code) { addr_field <<= 1; if (yram) addr_field |= (1 << DSPDMAC_DMACFG_DBADR_LOBIT); incr_field = (1 << DSPDMAC_DMACFG_AINCR_LOBIT); } dma_cfg = addr_field + incr_field; status = chipio_write(codec, DSPDMAC_DMACFG_INST_OFFSET(dma_chan), dma_cfg); if (status < 0) { snd_printdd(KERN_ERR "write DMACFG Reg fail\n"); return status; } snd_printdd(KERN_INFO " dsp_dma_setup() Write DMACFG\n"); adr_ofs = (count - 1) << (DSPDMAC_DSPADROFS_BOFS_LOBIT + (code ? 0 : 1)); status = chipio_write(codec, DSPDMAC_DSPADROFS_INST_OFFSET(dma_chan), adr_ofs); if (status < 0) { snd_printdd(KERN_ERR "write DSPADROFS Reg fail\n"); return status; } snd_printdd(KERN_INFO " dsp_dma_setup() Write DSPADROFS\n"); base_cnt = (count - 1) << DSPDMAC_XFRCNT_BCNT_LOBIT; cur_cnt = (count - 1) << DSPDMAC_XFRCNT_CCNT_LOBIT; xfr_cnt = base_cnt | cur_cnt; status = chipio_write(codec, DSPDMAC_XFRCNT_INST_OFFSET(dma_chan), xfr_cnt); if (status < 0) { snd_printdd(KERN_ERR "write XFRCNT Reg fail\n"); return status; } snd_printdd(KERN_INFO " dsp_dma_setup() Write XFRCNT\n"); snd_printdd( "ChipA=0x%x, cnt=0x%x, DMACFG=0x%x, " "ADROFS=0x%x, XFRCNT=0x%x\n", chip_addx, count, dma_cfg, adr_ofs, xfr_cnt); snd_printdd(KERN_INFO "-- dsp_dma_setup() -- Complete ---------\n"); return 0; } /* * Start the DSP DMA */ static int dsp_dma_start(struct hda_codec *codec, unsigned int dma_chan, bool ovly) { unsigned int reg = 0; int status = 0; snd_printdd(KERN_INFO "-- dsp_dma_start() -- Begin ---------\n"); if (ovly) { status = chipio_read(codec, DSPDMAC_CHNLSTART_INST_OFFSET, ®); if (status < 0) { snd_printdd(KERN_ERR "read CHNLSTART reg fail\n"); return status; } snd_printdd(KERN_INFO "-- dsp_dma_start() Read CHNLSTART\n"); reg &= ~(DSPDMAC_CHNLSTART_EN_MASK | DSPDMAC_CHNLSTART_DIS_MASK); } status = chipio_write(codec, DSPDMAC_CHNLSTART_INST_OFFSET, reg | (1 << (dma_chan + DSPDMAC_CHNLSTART_EN_LOBIT))); if (status < 0) { snd_printdd(KERN_ERR "write CHNLSTART reg fail\n"); return status; } snd_printdd(KERN_INFO "-- dsp_dma_start() -- Complete ---------\n"); return status; } /* * Stop the DSP DMA */ static int dsp_dma_stop(struct hda_codec *codec, unsigned int dma_chan, bool ovly) { unsigned int reg = 0; int status = 0; snd_printdd(KERN_INFO "-- dsp_dma_stop() -- Begin ---------\n"); if (ovly) { status = chipio_read(codec, DSPDMAC_CHNLSTART_INST_OFFSET, ®); if (status < 0) { snd_printdd(KERN_ERR "read CHNLSTART reg fail\n"); return status; } snd_printdd(KERN_INFO "-- dsp_dma_stop() Read CHNLSTART\n"); reg &= ~(DSPDMAC_CHNLSTART_EN_MASK | DSPDMAC_CHNLSTART_DIS_MASK); } status = chipio_write(codec, DSPDMAC_CHNLSTART_INST_OFFSET, reg | (1 << (dma_chan + DSPDMAC_CHNLSTART_DIS_LOBIT))); if (status < 0) { snd_printdd(KERN_ERR "write CHNLSTART reg fail\n"); return status; } snd_printdd(KERN_INFO "-- dsp_dma_stop() -- Complete ---------\n"); return status; } /** * Allocate router ports * * @codec: the HDA codec * @num_chans: number of channels in the stream * @ports_per_channel: number of ports per channel * @start_device: start device * @port_map: pointer to the port list to hold the allocated ports * * Returns zero or a negative error code. */ static int dsp_allocate_router_ports(struct hda_codec *codec, unsigned int num_chans, unsigned int ports_per_channel, unsigned int start_device, unsigned int *port_map) { int status = 0; int res; u8 val; status = chipio_send(codec, VENDOR_CHIPIO_STATUS, 0); if (status < 0) return status; val = start_device << 6; val |= (ports_per_channel - 1) << 4; val |= num_chans - 1; snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_PORT_ALLOC_CONFIG_SET, val); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_PORT_ALLOC_SET, MEM_CONNID_DSP); status = chipio_send(codec, VENDOR_CHIPIO_STATUS, 0); if (status < 0) return status; res = snd_hda_codec_read(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_PORT_ALLOC_GET, 0); *port_map = res; return (res < 0) ? res : 0; } /* * Free router ports */ static int dsp_free_router_ports(struct hda_codec *codec) { int status = 0; status = chipio_send(codec, VENDOR_CHIPIO_STATUS, 0); if (status < 0) return status; snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_PORT_FREE_SET, MEM_CONNID_DSP); status = chipio_send(codec, VENDOR_CHIPIO_STATUS, 0); return status; } /* * Allocate DSP ports for the download stream */ static int dsp_allocate_ports(struct hda_codec *codec, unsigned int num_chans, unsigned int rate_multi, unsigned int *port_map) { int status; snd_printdd(KERN_INFO " dsp_allocate_ports() -- begin\n"); if ((rate_multi != 1) && (rate_multi != 2) && (rate_multi != 4)) { snd_printdd(KERN_ERR "bad rate multiple\n"); return -EINVAL; } status = dsp_allocate_router_ports(codec, num_chans, rate_multi, 0, port_map); snd_printdd(KERN_INFO " dsp_allocate_ports() -- complete\n"); return status; } static int dsp_allocate_ports_format(struct hda_codec *codec, const unsigned short fmt, unsigned int *port_map) { int status; unsigned int num_chans; unsigned int sample_rate_div = ((get_hdafmt_rate(fmt) >> 0) & 3) + 1; unsigned int sample_rate_mul = ((get_hdafmt_rate(fmt) >> 3) & 3) + 1; unsigned int rate_multi = sample_rate_mul / sample_rate_div; if ((rate_multi != 1) && (rate_multi != 2) && (rate_multi != 4)) { snd_printdd(KERN_ERR "bad rate multiple\n"); return -EINVAL; } num_chans = get_hdafmt_chs(fmt) + 1; status = dsp_allocate_ports(codec, num_chans, rate_multi, port_map); return status; } /* * free DSP ports */ static int dsp_free_ports(struct hda_codec *codec) { int status; snd_printdd(KERN_INFO " dsp_free_ports() -- begin\n"); status = dsp_free_router_ports(codec); if (status < 0) { snd_printdd(KERN_ERR "free router ports fail\n"); return status; } snd_printdd(KERN_INFO " dsp_free_ports() -- complete\n"); return status; } /* * HDA DMA engine stuffs for DSP code download */ struct dma_engine { struct hda_codec *codec; unsigned short m_converter_format; struct snd_dma_buffer *dmab; unsigned int buf_size; }; enum dma_state { DMA_STATE_STOP = 0, DMA_STATE_RUN = 1 }; static int dma_convert_to_hda_format( unsigned int sample_rate, unsigned short channels, unsigned short *hda_format) { unsigned int format_val; format_val = snd_hda_calc_stream_format( sample_rate, channels, SNDRV_PCM_FORMAT_S32_LE, 32, 0); if (hda_format) *hda_format = (unsigned short)format_val; return 0; } /* * Reset DMA for DSP download */ static int dma_reset(struct dma_engine *dma) { struct hda_codec *codec = dma->codec; struct ca0132_spec *spec = codec->spec; int status; if (dma->dmab->area) snd_hda_codec_load_dsp_cleanup(codec, dma->dmab); status = snd_hda_codec_load_dsp_prepare(codec, dma->m_converter_format, dma->buf_size, dma->dmab); if (status < 0) return status; spec->dsp_stream_id = status; return 0; } static int dma_set_state(struct dma_engine *dma, enum dma_state state) { bool cmd; snd_printdd("dma_set_state state=%d\n", state); switch (state) { case DMA_STATE_STOP: cmd = false; break; case DMA_STATE_RUN: cmd = true; break; default: return 0; } snd_hda_codec_load_dsp_trigger(dma->codec, cmd); return 0; } static unsigned int dma_get_buffer_size(struct dma_engine *dma) { return dma->dmab->bytes; } static unsigned char *dma_get_buffer_addr(struct dma_engine *dma) { return dma->dmab->area; } static int dma_xfer(struct dma_engine *dma, const unsigned int *data, unsigned int count) { memcpy(dma->dmab->area, data, count); return 0; } static void dma_get_converter_format( struct dma_engine *dma, unsigned short *format) { if (format) *format = dma->m_converter_format; } static unsigned int dma_get_stream_id(struct dma_engine *dma) { struct ca0132_spec *spec = dma->codec->spec; return spec->dsp_stream_id; } struct dsp_image_seg { u32 magic; u32 chip_addr; u32 count; u32 data[0]; }; static const u32 g_magic_value = 0x4c46584d; static const u32 g_chip_addr_magic_value = 0xFFFFFF01; static bool is_valid(const struct dsp_image_seg *p) { return p->magic == g_magic_value; } static bool is_hci_prog_list_seg(const struct dsp_image_seg *p) { return g_chip_addr_magic_value == p->chip_addr; } static bool is_last(const struct dsp_image_seg *p) { return p->count == 0; } static size_t dsp_sizeof(const struct dsp_image_seg *p) { return sizeof(*p) + p->count*sizeof(u32); } static const struct dsp_image_seg *get_next_seg_ptr( const struct dsp_image_seg *p) { return (struct dsp_image_seg *)((unsigned char *)(p) + dsp_sizeof(p)); } /* * CA0132 chip DSP transfer stuffs. For DSP download. */ #define INVALID_DMA_CHANNEL (~0U) /* * Program a list of address/data pairs via the ChipIO widget. * The segment data is in the format of successive pairs of words. * These are repeated as indicated by the segment's count field. */ static int dspxfr_hci_write(struct hda_codec *codec, const struct dsp_image_seg *fls) { int status; const u32 *data; unsigned int count; if (fls == NULL || fls->chip_addr != g_chip_addr_magic_value) { snd_printdd(KERN_ERR "hci_write invalid params\n"); return -EINVAL; } count = fls->count; data = (u32 *)(fls->data); while (count >= 2) { status = chipio_write(codec, data[0], data[1]); if (status < 0) { snd_printdd(KERN_ERR "hci_write chipio failed\n"); return status; } count -= 2; data += 2; } return 0; } /** * Write a block of data into DSP code or data RAM using pre-allocated * DMA engine. * * @codec: the HDA codec * @fls: pointer to a fast load image * @reloc: Relocation address for loading single-segment overlays, or 0 for * no relocation * @dma_engine: pointer to DMA engine to be used for DSP download * @dma_chan: The number of DMA channels used for DSP download * @port_map_mask: port mapping * @ovly: TRUE if overlay format is required * * Returns zero or a negative error code. */ static int dspxfr_one_seg(struct hda_codec *codec, const struct dsp_image_seg *fls, unsigned int reloc, struct dma_engine *dma_engine, unsigned int dma_chan, unsigned int port_map_mask, bool ovly) { int status = 0; bool comm_dma_setup_done = false; const unsigned int *data; unsigned int chip_addx; unsigned int words_to_write; unsigned int buffer_size_words; unsigned char *buffer_addx; unsigned short hda_format; unsigned int sample_rate_div; unsigned int sample_rate_mul; unsigned int num_chans; unsigned int hda_frame_size_words; unsigned int remainder_words; const u32 *data_remainder; u32 chip_addx_remainder; unsigned int run_size_words; const struct dsp_image_seg *hci_write = NULL; unsigned long timeout; bool dma_active; if (fls == NULL) return -EINVAL; if (is_hci_prog_list_seg(fls)) { hci_write = fls; fls = get_next_seg_ptr(fls); } if (hci_write && (!fls || is_last(fls))) { snd_printdd("hci_write\n"); return dspxfr_hci_write(codec, hci_write); } if (fls == NULL || dma_engine == NULL || port_map_mask == 0) { snd_printdd("Invalid Params\n"); return -EINVAL; } data = fls->data; chip_addx = fls->chip_addr, words_to_write = fls->count; if (!words_to_write) return hci_write ? dspxfr_hci_write(codec, hci_write) : 0; if (reloc) chip_addx = (chip_addx & (0xFFFF0000 << 2)) + (reloc << 2); if (!UC_RANGE(chip_addx, words_to_write) && !X_RANGE_ALL(chip_addx, words_to_write) && !Y_RANGE_ALL(chip_addx, words_to_write)) { snd_printdd("Invalid chip_addx Params\n"); return -EINVAL; } buffer_size_words = (unsigned int)dma_get_buffer_size(dma_engine) / sizeof(u32); buffer_addx = dma_get_buffer_addr(dma_engine); if (buffer_addx == NULL) { snd_printdd(KERN_ERR "dma_engine buffer NULL\n"); return -EINVAL; } dma_get_converter_format(dma_engine, &hda_format); sample_rate_div = ((get_hdafmt_rate(hda_format) >> 0) & 3) + 1; sample_rate_mul = ((get_hdafmt_rate(hda_format) >> 3) & 3) + 1; num_chans = get_hdafmt_chs(hda_format) + 1; hda_frame_size_words = ((sample_rate_div == 0) ? 0 : (num_chans * sample_rate_mul / sample_rate_div)); if (hda_frame_size_words == 0) { snd_printdd(KERN_ERR "frmsz zero\n"); return -EINVAL; } buffer_size_words = min(buffer_size_words, (unsigned int)(UC_RANGE(chip_addx, 1) ? 65536 : 32768)); buffer_size_words -= buffer_size_words % hda_frame_size_words; snd_printdd( "chpadr=0x%08x frmsz=%u nchan=%u " "rate_mul=%u div=%u bufsz=%u\n", chip_addx, hda_frame_size_words, num_chans, sample_rate_mul, sample_rate_div, buffer_size_words); if (buffer_size_words < hda_frame_size_words) { snd_printdd(KERN_ERR "dspxfr_one_seg:failed\n"); return -EINVAL; } remainder_words = words_to_write % hda_frame_size_words; data_remainder = data; chip_addx_remainder = chip_addx; data += remainder_words; chip_addx += remainder_words*sizeof(u32); words_to_write -= remainder_words; while (words_to_write != 0) { run_size_words = min(buffer_size_words, words_to_write); snd_printdd("dspxfr (seg loop)cnt=%u rs=%u remainder=%u\n", words_to_write, run_size_words, remainder_words); dma_xfer(dma_engine, data, run_size_words*sizeof(u32)); if (!comm_dma_setup_done) { status = dsp_dma_stop(codec, dma_chan, ovly); if (status < 0) return status; status = dsp_dma_setup_common(codec, chip_addx, dma_chan, port_map_mask, ovly); if (status < 0) return status; comm_dma_setup_done = true; } status = dsp_dma_setup(codec, chip_addx, run_size_words, dma_chan); if (status < 0) return status; status = dsp_dma_start(codec, dma_chan, ovly); if (status < 0) return status; if (!dsp_is_dma_active(codec, dma_chan)) { snd_printdd(KERN_ERR "dspxfr:DMA did not start\n"); return -EIO; } status = dma_set_state(dma_engine, DMA_STATE_RUN); if (status < 0) return status; if (remainder_words != 0) { status = chipio_write_multiple(codec, chip_addx_remainder, data_remainder, remainder_words); if (status < 0) return status; remainder_words = 0; } if (hci_write) { status = dspxfr_hci_write(codec, hci_write); if (status < 0) return status; hci_write = NULL; } timeout = jiffies + msecs_to_jiffies(2000); do { dma_active = dsp_is_dma_active(codec, dma_chan); if (!dma_active) break; msleep(20); } while (time_before(jiffies, timeout)); if (dma_active) break; snd_printdd(KERN_INFO "+++++ DMA complete\n"); dma_set_state(dma_engine, DMA_STATE_STOP); status = dma_reset(dma_engine); if (status < 0) return status; data += run_size_words; chip_addx += run_size_words*sizeof(u32); words_to_write -= run_size_words; } if (remainder_words != 0) { status = chipio_write_multiple(codec, chip_addx_remainder, data_remainder, remainder_words); } return status; } /** * Write the entire DSP image of a DSP code/data overlay to DSP memories * * @codec: the HDA codec * @fls_data: pointer to a fast load image * @reloc: Relocation address for loading single-segment overlays, or 0 for * no relocation * @sample_rate: sampling rate of the stream used for DSP download * @number_channels: channels of the stream used for DSP download * @ovly: TRUE if overlay format is required * * Returns zero or a negative error code. */ static int dspxfr_image(struct hda_codec *codec, const struct dsp_image_seg *fls_data, unsigned int reloc, unsigned int sample_rate, unsigned short channels, bool ovly) { struct ca0132_spec *spec = codec->spec; int status; unsigned short hda_format = 0; unsigned int response; unsigned char stream_id = 0; struct dma_engine *dma_engine; unsigned int dma_chan; unsigned int port_map_mask; if (fls_data == NULL) return -EINVAL; dma_engine = kzalloc(sizeof(*dma_engine), GFP_KERNEL); if (!dma_engine) return -ENOMEM; dma_engine->dmab = kzalloc(sizeof(*dma_engine->dmab), GFP_KERNEL); if (!dma_engine->dmab) { kfree(dma_engine); return -ENOMEM; } dma_engine->codec = codec; dma_convert_to_hda_format(sample_rate, channels, &hda_format); dma_engine->m_converter_format = hda_format; dma_engine->buf_size = (ovly ? DSP_DMA_WRITE_BUFLEN_OVLY : DSP_DMA_WRITE_BUFLEN_INIT) * 2; dma_chan = ovly ? INVALID_DMA_CHANNEL : 0; status = codec_set_converter_format(codec, WIDGET_CHIP_CTRL, hda_format, &response); if (status < 0) { snd_printdd(KERN_ERR "set converter format fail\n"); goto exit; } status = snd_hda_codec_load_dsp_prepare(codec, dma_engine->m_converter_format, dma_engine->buf_size, dma_engine->dmab); if (status < 0) goto exit; spec->dsp_stream_id = status; if (ovly) { status = dspio_alloc_dma_chan(codec, &dma_chan); if (status < 0) { snd_printdd(KERN_ERR "alloc dmachan fail\n"); dma_chan = INVALID_DMA_CHANNEL; goto exit; } } port_map_mask = 0; status = dsp_allocate_ports_format(codec, hda_format, &port_map_mask); if (status < 0) { snd_printdd(KERN_ERR "alloc ports fail\n"); goto exit; } stream_id = dma_get_stream_id(dma_engine); status = codec_set_converter_stream_channel(codec, WIDGET_CHIP_CTRL, stream_id, 0, &response); if (status < 0) { snd_printdd(KERN_ERR "set stream chan fail\n"); goto exit; } while ((fls_data != NULL) && !is_last(fls_data)) { if (!is_valid(fls_data)) { snd_printdd(KERN_ERR "FLS check fail\n"); status = -EINVAL; goto exit; } status = dspxfr_one_seg(codec, fls_data, reloc, dma_engine, dma_chan, port_map_mask, ovly); if (status < 0) break; if (is_hci_prog_list_seg(fls_data)) fls_data = get_next_seg_ptr(fls_data); if ((fls_data != NULL) && !is_last(fls_data)) fls_data = get_next_seg_ptr(fls_data); } if (port_map_mask != 0) status = dsp_free_ports(codec); if (status < 0) goto exit; status = codec_set_converter_stream_channel(codec, WIDGET_CHIP_CTRL, 0, 0, &response); exit: if (ovly && (dma_chan != INVALID_DMA_CHANNEL)) dspio_free_dma_chan(codec, dma_chan); if (dma_engine->dmab->area) snd_hda_codec_load_dsp_cleanup(codec, dma_engine->dmab); kfree(dma_engine->dmab); kfree(dma_engine); return status; } /* * CA0132 DSP download stuffs. */ static void dspload_post_setup(struct hda_codec *codec) { snd_printdd(KERN_INFO "---- dspload_post_setup ------\n"); /*set DSP speaker to 2.0 configuration*/ chipio_write(codec, XRAM_XRAM_INST_OFFSET(0x18), 0x08080080); chipio_write(codec, XRAM_XRAM_INST_OFFSET(0x19), 0x3f800000); /*update write pointer*/ chipio_write(codec, XRAM_XRAM_INST_OFFSET(0x29), 0x00000002); } /** * Download DSP from a DSP Image Fast Load structure. This structure is a * linear, non-constant sized element array of structures, each of which * contain the count of the data to be loaded, the data itself, and the * corresponding starting chip address of the starting data location. * * @codec: the HDA codec * @fls: pointer to a fast load image * @ovly: TRUE if overlay format is required * @reloc: Relocation address for loading single-segment overlays, or 0 for * no relocation * @autostart: TRUE if DSP starts after loading; ignored if ovly is TRUE * @router_chans: number of audio router channels to be allocated (0 means use * internal defaults; max is 32) * * Returns zero or a negative error code. */ static int dspload_image(struct hda_codec *codec, const struct dsp_image_seg *fls, bool ovly, unsigned int reloc, bool autostart, int router_chans) { int status = 0; unsigned int sample_rate; unsigned short channels; snd_printdd(KERN_INFO "---- dspload_image begin ------\n"); if (router_chans == 0) { if (!ovly) router_chans = DMA_TRANSFER_FRAME_SIZE_NWORDS; else router_chans = DMA_OVERLAY_FRAME_SIZE_NWORDS; } sample_rate = 48000; channels = (unsigned short)router_chans; while (channels > 16) { sample_rate *= 2; channels /= 2; } do { snd_printdd(KERN_INFO "Ready to program DMA\n"); if (!ovly) status = dsp_reset(codec); if (status < 0) break; snd_printdd(KERN_INFO "dsp_reset() complete\n"); status = dspxfr_image(codec, fls, reloc, sample_rate, channels, ovly); if (status < 0) break; snd_printdd(KERN_INFO "dspxfr_image() complete\n"); if (autostart && !ovly) { dspload_post_setup(codec); status = dsp_set_run_state(codec); } snd_printdd(KERN_INFO "LOAD FINISHED\n"); } while (0); return status; } #ifdef CONFIG_SND_HDA_CODEC_CA0132_DSP static bool dspload_is_loaded(struct hda_codec *codec) { unsigned int data = 0; int status = 0; status = chipio_read(codec, 0x40004, &data); if ((status < 0) || (data != 1)) return false; return true; } #else #define dspload_is_loaded(codec) false #endif static bool dspload_wait_loaded(struct hda_codec *codec) { unsigned long timeout = jiffies + msecs_to_jiffies(2000); do { if (dspload_is_loaded(codec)) { pr_info("ca0132 DOWNLOAD OK :-) DSP IS RUNNING.\n"); return true; } msleep(20); } while (time_before(jiffies, timeout)); pr_err("ca0132 DOWNLOAD FAILED!!! DSP IS NOT RUNNING.\n"); return false; } /* * PCM callbacks */ static int ca0132_playback_pcm_prepare(struct hda_pcm_stream *hinfo, struct hda_codec *codec, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { struct ca0132_spec *spec = codec->spec; snd_hda_codec_setup_stream(codec, spec->dacs[0], stream_tag, 0, format); return 0; } static int ca0132_playback_pcm_cleanup(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct ca0132_spec *spec = codec->spec; if (spec->dsp_state == DSP_DOWNLOADING) return 0; /*If Playback effects are on, allow stream some time to flush *effects tail*/ if (spec->effects_switch[PLAY_ENHANCEMENT - EFFECT_START_NID]) msleep(50); snd_hda_codec_cleanup_stream(codec, spec->dacs[0]); return 0; } static unsigned int ca0132_playback_pcm_delay(struct hda_pcm_stream *info, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct ca0132_spec *spec = codec->spec; unsigned int latency = DSP_PLAYBACK_INIT_LATENCY; struct snd_pcm_runtime *runtime = substream->runtime; if (spec->dsp_state != DSP_DOWNLOADED) return 0; /* Add latency if playback enhancement and either effect is enabled. */ if (spec->effects_switch[PLAY_ENHANCEMENT - EFFECT_START_NID]) { if ((spec->effects_switch[SURROUND - EFFECT_START_NID]) || (spec->effects_switch[DIALOG_PLUS - EFFECT_START_NID])) latency += DSP_PLAY_ENHANCEMENT_LATENCY; } /* Applying Speaker EQ adds latency as well. */ if (spec->cur_out_type == SPEAKER_OUT) latency += DSP_SPEAKER_OUT_LATENCY; return (latency * runtime->rate) / 1000; } /* * Digital out */ static int ca0132_dig_playback_pcm_open(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct ca0132_spec *spec = codec->spec; return snd_hda_multi_out_dig_open(codec, &spec->multiout); } static int ca0132_dig_playback_pcm_prepare(struct hda_pcm_stream *hinfo, struct hda_codec *codec, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { struct ca0132_spec *spec = codec->spec; return snd_hda_multi_out_dig_prepare(codec, &spec->multiout, stream_tag, format, substream); } static int ca0132_dig_playback_pcm_cleanup(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct ca0132_spec *spec = codec->spec; return snd_hda_multi_out_dig_cleanup(codec, &spec->multiout); } static int ca0132_dig_playback_pcm_close(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct ca0132_spec *spec = codec->spec; return snd_hda_multi_out_dig_close(codec, &spec->multiout); } /* * Analog capture */ static int ca0132_capture_pcm_prepare(struct hda_pcm_stream *hinfo, struct hda_codec *codec, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format); return 0; } static int ca0132_capture_pcm_cleanup(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct ca0132_spec *spec = codec->spec; if (spec->dsp_state == DSP_DOWNLOADING) return 0; snd_hda_codec_cleanup_stream(codec, hinfo->nid); return 0; } static unsigned int ca0132_capture_pcm_delay(struct hda_pcm_stream *info, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct ca0132_spec *spec = codec->spec; unsigned int latency = DSP_CAPTURE_INIT_LATENCY; struct snd_pcm_runtime *runtime = substream->runtime; if (spec->dsp_state != DSP_DOWNLOADED) return 0; if (spec->effects_switch[CRYSTAL_VOICE - EFFECT_START_NID]) latency += DSP_CRYSTAL_VOICE_LATENCY; return (latency * runtime->rate) / 1000; } /* * Controls stuffs. */ /* * Mixer controls helpers. */ #define CA0132_CODEC_VOL_MONO(xname, nid, channel, dir) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .name = xname, \ .subdevice = HDA_SUBDEV_AMP_FLAG, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, \ .info = ca0132_volume_info, \ .get = ca0132_volume_get, \ .put = ca0132_volume_put, \ .tlv = { .c = ca0132_volume_tlv }, \ .private_value = HDA_COMPOSE_AMP_VAL(nid, channel, 0, dir) } #define CA0132_CODEC_MUTE_MONO(xname, nid, channel, dir) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .name = xname, \ .subdevice = HDA_SUBDEV_AMP_FLAG, \ .info = snd_hda_mixer_amp_switch_info, \ .get = ca0132_switch_get, \ .put = ca0132_switch_put, \ .private_value = HDA_COMPOSE_AMP_VAL(nid, channel, 0, dir) } /* stereo */ #define CA0132_CODEC_VOL(xname, nid, dir) \ CA0132_CODEC_VOL_MONO(xname, nid, 3, dir) #define CA0132_CODEC_MUTE(xname, nid, dir) \ CA0132_CODEC_MUTE_MONO(xname, nid, 3, dir) /* The followings are for tuning of products */ #ifdef ENABLE_TUNING_CONTROLS static unsigned int voice_focus_vals_lookup[] = { 0x41A00000, 0x41A80000, 0x41B00000, 0x41B80000, 0x41C00000, 0x41C80000, 0x41D00000, 0x41D80000, 0x41E00000, 0x41E80000, 0x41F00000, 0x41F80000, 0x42000000, 0x42040000, 0x42080000, 0x420C0000, 0x42100000, 0x42140000, 0x42180000, 0x421C0000, 0x42200000, 0x42240000, 0x42280000, 0x422C0000, 0x42300000, 0x42340000, 0x42380000, 0x423C0000, 0x42400000, 0x42440000, 0x42480000, 0x424C0000, 0x42500000, 0x42540000, 0x42580000, 0x425C0000, 0x42600000, 0x42640000, 0x42680000, 0x426C0000, 0x42700000, 0x42740000, 0x42780000, 0x427C0000, 0x42800000, 0x42820000, 0x42840000, 0x42860000, 0x42880000, 0x428A0000, 0x428C0000, 0x428E0000, 0x42900000, 0x42920000, 0x42940000, 0x42960000, 0x42980000, 0x429A0000, 0x429C0000, 0x429E0000, 0x42A00000, 0x42A20000, 0x42A40000, 0x42A60000, 0x42A80000, 0x42AA0000, 0x42AC0000, 0x42AE0000, 0x42B00000, 0x42B20000, 0x42B40000, 0x42B60000, 0x42B80000, 0x42BA0000, 0x42BC0000, 0x42BE0000, 0x42C00000, 0x42C20000, 0x42C40000, 0x42C60000, 0x42C80000, 0x42CA0000, 0x42CC0000, 0x42CE0000, 0x42D00000, 0x42D20000, 0x42D40000, 0x42D60000, 0x42D80000, 0x42DA0000, 0x42DC0000, 0x42DE0000, 0x42E00000, 0x42E20000, 0x42E40000, 0x42E60000, 0x42E80000, 0x42EA0000, 0x42EC0000, 0x42EE0000, 0x42F00000, 0x42F20000, 0x42F40000, 0x42F60000, 0x42F80000, 0x42FA0000, 0x42FC0000, 0x42FE0000, 0x43000000, 0x43010000, 0x43020000, 0x43030000, 0x43040000, 0x43050000, 0x43060000, 0x43070000, 0x43080000, 0x43090000, 0x430A0000, 0x430B0000, 0x430C0000, 0x430D0000, 0x430E0000, 0x430F0000, 0x43100000, 0x43110000, 0x43120000, 0x43130000, 0x43140000, 0x43150000, 0x43160000, 0x43170000, 0x43180000, 0x43190000, 0x431A0000, 0x431B0000, 0x431C0000, 0x431D0000, 0x431E0000, 0x431F0000, 0x43200000, 0x43210000, 0x43220000, 0x43230000, 0x43240000, 0x43250000, 0x43260000, 0x43270000, 0x43280000, 0x43290000, 0x432A0000, 0x432B0000, 0x432C0000, 0x432D0000, 0x432E0000, 0x432F0000, 0x43300000, 0x43310000, 0x43320000, 0x43330000, 0x43340000 }; static unsigned int mic_svm_vals_lookup[] = { 0x00000000, 0x3C23D70A, 0x3CA3D70A, 0x3CF5C28F, 0x3D23D70A, 0x3D4CCCCD, 0x3D75C28F, 0x3D8F5C29, 0x3DA3D70A, 0x3DB851EC, 0x3DCCCCCD, 0x3DE147AE, 0x3DF5C28F, 0x3E051EB8, 0x3E0F5C29, 0x3E19999A, 0x3E23D70A, 0x3E2E147B, 0x3E3851EC, 0x3E428F5C, 0x3E4CCCCD, 0x3E570A3D, 0x3E6147AE, 0x3E6B851F, 0x3E75C28F, 0x3E800000, 0x3E851EB8, 0x3E8A3D71, 0x3E8F5C29, 0x3E947AE1, 0x3E99999A, 0x3E9EB852, 0x3EA3D70A, 0x3EA8F5C3, 0x3EAE147B, 0x3EB33333, 0x3EB851EC, 0x3EBD70A4, 0x3EC28F5C, 0x3EC7AE14, 0x3ECCCCCD, 0x3ED1EB85, 0x3ED70A3D, 0x3EDC28F6, 0x3EE147AE, 0x3EE66666, 0x3EEB851F, 0x3EF0A3D7, 0x3EF5C28F, 0x3EFAE148, 0x3F000000, 0x3F028F5C, 0x3F051EB8, 0x3F07AE14, 0x3F0A3D71, 0x3F0CCCCD, 0x3F0F5C29, 0x3F11EB85, 0x3F147AE1, 0x3F170A3D, 0x3F19999A, 0x3F1C28F6, 0x3F1EB852, 0x3F2147AE, 0x3F23D70A, 0x3F266666, 0x3F28F5C3, 0x3F2B851F, 0x3F2E147B, 0x3F30A3D7, 0x3F333333, 0x3F35C28F, 0x3F3851EC, 0x3F3AE148, 0x3F3D70A4, 0x3F400000, 0x3F428F5C, 0x3F451EB8, 0x3F47AE14, 0x3F4A3D71, 0x3F4CCCCD, 0x3F4F5C29, 0x3F51EB85, 0x3F547AE1, 0x3F570A3D, 0x3F59999A, 0x3F5C28F6, 0x3F5EB852, 0x3F6147AE, 0x3F63D70A, 0x3F666666, 0x3F68F5C3, 0x3F6B851F, 0x3F6E147B, 0x3F70A3D7, 0x3F733333, 0x3F75C28F, 0x3F7851EC, 0x3F7AE148, 0x3F7D70A4, 0x3F800000 }; static unsigned int equalizer_vals_lookup[] = { 0xC1C00000, 0xC1B80000, 0xC1B00000, 0xC1A80000, 0xC1A00000, 0xC1980000, 0xC1900000, 0xC1880000, 0xC1800000, 0xC1700000, 0xC1600000, 0xC1500000, 0xC1400000, 0xC1300000, 0xC1200000, 0xC1100000, 0xC1000000, 0xC0E00000, 0xC0C00000, 0xC0A00000, 0xC0800000, 0xC0400000, 0xC0000000, 0xBF800000, 0x00000000, 0x3F800000, 0x40000000, 0x40400000, 0x40800000, 0x40A00000, 0x40C00000, 0x40E00000, 0x41000000, 0x41100000, 0x41200000, 0x41300000, 0x41400000, 0x41500000, 0x41600000, 0x41700000, 0x41800000, 0x41880000, 0x41900000, 0x41980000, 0x41A00000, 0x41A80000, 0x41B00000, 0x41B80000, 0x41C00000 }; static int tuning_ctl_set(struct hda_codec *codec, hda_nid_t nid, unsigned int *lookup, int idx) { int i = 0; for (i = 0; i < TUNING_CTLS_COUNT; i++) if (nid == ca0132_tuning_ctls[i].nid) break; snd_hda_power_up(codec); dspio_set_param(codec, ca0132_tuning_ctls[i].mid, ca0132_tuning_ctls[i].req, &(lookup[idx]), sizeof(unsigned int)); snd_hda_power_down(codec); return 1; } static int tuning_ctl_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); long *valp = ucontrol->value.integer.value; int idx = nid - TUNING_CTL_START_NID; *valp = spec->cur_ctl_vals[idx]; return 0; } static int voice_focus_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int chs = get_amp_channels(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = chs == 3 ? 2 : 1; uinfo->value.integer.min = 20; uinfo->value.integer.max = 180; uinfo->value.integer.step = 1; return 0; } static int voice_focus_ctl_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); long *valp = ucontrol->value.integer.value; int idx; idx = nid - TUNING_CTL_START_NID; /* any change? */ if (spec->cur_ctl_vals[idx] == *valp) return 0; spec->cur_ctl_vals[idx] = *valp; idx = *valp - 20; tuning_ctl_set(codec, nid, voice_focus_vals_lookup, idx); return 1; } static int mic_svm_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int chs = get_amp_channels(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = chs == 3 ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 100; uinfo->value.integer.step = 1; return 0; } static int mic_svm_ctl_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); long *valp = ucontrol->value.integer.value; int idx; idx = nid - TUNING_CTL_START_NID; /* any change? */ if (spec->cur_ctl_vals[idx] == *valp) return 0; spec->cur_ctl_vals[idx] = *valp; idx = *valp; tuning_ctl_set(codec, nid, mic_svm_vals_lookup, idx); return 0; } static int equalizer_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int chs = get_amp_channels(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = chs == 3 ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 48; uinfo->value.integer.step = 1; return 0; } static int equalizer_ctl_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); long *valp = ucontrol->value.integer.value; int idx; idx = nid - TUNING_CTL_START_NID; /* any change? */ if (spec->cur_ctl_vals[idx] == *valp) return 0; spec->cur_ctl_vals[idx] = *valp; idx = *valp; tuning_ctl_set(codec, nid, equalizer_vals_lookup, idx); return 1; } static const DECLARE_TLV_DB_SCALE(voice_focus_db_scale, 2000, 100, 0); static const DECLARE_TLV_DB_SCALE(eq_db_scale, -2400, 100, 0); static int add_tuning_control(struct hda_codec *codec, hda_nid_t pnid, hda_nid_t nid, const char *name, int dir) { char namestr[44]; int type = dir ? HDA_INPUT : HDA_OUTPUT; struct snd_kcontrol_new knew = HDA_CODEC_VOLUME_MONO(namestr, nid, 1, 0, type); knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ; knew.tlv.c = 0; knew.tlv.p = 0; switch (pnid) { case VOICE_FOCUS: knew.info = voice_focus_ctl_info; knew.get = tuning_ctl_get; knew.put = voice_focus_ctl_put; knew.tlv.p = voice_focus_db_scale; break; case MIC_SVM: knew.info = mic_svm_ctl_info; knew.get = tuning_ctl_get; knew.put = mic_svm_ctl_put; break; case EQUALIZER: knew.info = equalizer_ctl_info; knew.get = tuning_ctl_get; knew.put = equalizer_ctl_put; knew.tlv.p = eq_db_scale; break; default: return 0; } knew.private_value = HDA_COMPOSE_AMP_VAL(nid, 1, 0, type); sprintf(namestr, "%s %s Volume", name, dirstr[dir]); return snd_hda_ctl_add(codec, nid, snd_ctl_new1(&knew, codec)); } static int add_tuning_ctls(struct hda_codec *codec) { int i; int err; for (i = 0; i < TUNING_CTLS_COUNT; i++) { err = add_tuning_control(codec, ca0132_tuning_ctls[i].parent_nid, ca0132_tuning_ctls[i].nid, ca0132_tuning_ctls[i].name, ca0132_tuning_ctls[i].direct); if (err < 0) return err; } return 0; } static void ca0132_init_tuning_defaults(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; int i; /* Wedge Angle defaults to 30. 10 below is 30 - 20. 20 is min. */ spec->cur_ctl_vals[WEDGE_ANGLE - TUNING_CTL_START_NID] = 10; /* SVM level defaults to 0.74. */ spec->cur_ctl_vals[SVM_LEVEL - TUNING_CTL_START_NID] = 74; /* EQ defaults to 0dB. */ for (i = 2; i < TUNING_CTLS_COUNT; i++) spec->cur_ctl_vals[i] = 24; } #endif /*ENABLE_TUNING_CONTROLS*/ /* * Select the active output. * If autodetect is enabled, output will be selected based on jack detection. * If jack inserted, headphone will be selected, else built-in speakers * If autodetect is disabled, output will be selected based on selection. */ static int ca0132_select_out(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; unsigned int pin_ctl; int jack_present; int auto_jack; unsigned int tmp; int err; snd_printdd(KERN_INFO "ca0132_select_out\n"); snd_hda_power_up(codec); auto_jack = spec->vnode_lswitch[VNID_HP_ASEL - VNODE_START_NID]; if (auto_jack) jack_present = snd_hda_jack_detect(codec, spec->out_pins[1]); else jack_present = spec->vnode_lswitch[VNID_HP_SEL - VNODE_START_NID]; if (jack_present) spec->cur_out_type = HEADPHONE_OUT; else spec->cur_out_type = SPEAKER_OUT; if (spec->cur_out_type == SPEAKER_OUT) { snd_printdd(KERN_INFO "ca0132_select_out speaker\n"); /*speaker out config*/ tmp = FLOAT_ONE; err = dspio_set_uint_param(codec, 0x80, 0x04, tmp); if (err < 0) goto exit; /*enable speaker EQ*/ tmp = FLOAT_ONE; err = dspio_set_uint_param(codec, 0x8f, 0x00, tmp); if (err < 0) goto exit; /* Setup EAPD */ snd_hda_codec_write(codec, spec->out_pins[1], 0, VENDOR_CHIPIO_EAPD_SEL_SET, 0x02); snd_hda_codec_write(codec, spec->out_pins[0], 0, AC_VERB_SET_EAPD_BTLENABLE, 0x00); snd_hda_codec_write(codec, spec->out_pins[0], 0, VENDOR_CHIPIO_EAPD_SEL_SET, 0x00); snd_hda_codec_write(codec, spec->out_pins[0], 0, AC_VERB_SET_EAPD_BTLENABLE, 0x02); /* disable headphone node */ pin_ctl = snd_hda_codec_read(codec, spec->out_pins[1], 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0); snd_hda_set_pin_ctl(codec, spec->out_pins[1], pin_ctl & ~PIN_HP); /* enable speaker node */ pin_ctl = snd_hda_codec_read(codec, spec->out_pins[0], 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0); snd_hda_set_pin_ctl(codec, spec->out_pins[0], pin_ctl | PIN_OUT); } else { snd_printdd(KERN_INFO "ca0132_select_out hp\n"); /*headphone out config*/ tmp = FLOAT_ZERO; err = dspio_set_uint_param(codec, 0x80, 0x04, tmp); if (err < 0) goto exit; /*disable speaker EQ*/ tmp = FLOAT_ZERO; err = dspio_set_uint_param(codec, 0x8f, 0x00, tmp); if (err < 0) goto exit; /* Setup EAPD */ snd_hda_codec_write(codec, spec->out_pins[0], 0, VENDOR_CHIPIO_EAPD_SEL_SET, 0x00); snd_hda_codec_write(codec, spec->out_pins[0], 0, AC_VERB_SET_EAPD_BTLENABLE, 0x00); snd_hda_codec_write(codec, spec->out_pins[1], 0, VENDOR_CHIPIO_EAPD_SEL_SET, 0x02); snd_hda_codec_write(codec, spec->out_pins[0], 0, AC_VERB_SET_EAPD_BTLENABLE, 0x02); /* disable speaker*/ pin_ctl = snd_hda_codec_read(codec, spec->out_pins[0], 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0); snd_hda_set_pin_ctl(codec, spec->out_pins[0], pin_ctl & ~PIN_HP); /* enable headphone*/ pin_ctl = snd_hda_codec_read(codec, spec->out_pins[1], 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0); snd_hda_set_pin_ctl(codec, spec->out_pins[1], pin_ctl | PIN_HP); } exit: snd_hda_power_down(codec); return err < 0 ? err : 0; } static void ca0132_unsol_hp_delayed(struct work_struct *work) { struct ca0132_spec *spec = container_of( to_delayed_work(work), struct ca0132_spec, unsol_hp_work); ca0132_select_out(spec->codec); snd_hda_jack_report_sync(spec->codec); } static void ca0132_set_dmic(struct hda_codec *codec, int enable); static int ca0132_mic_boost_set(struct hda_codec *codec, long val); static int ca0132_effects_set(struct hda_codec *codec, hda_nid_t nid, long val); /* * Select the active VIP source */ static int ca0132_set_vipsource(struct hda_codec *codec, int val) { struct ca0132_spec *spec = codec->spec; unsigned int tmp; if (spec->dsp_state != DSP_DOWNLOADED) return 0; /* if CrystalVoice if off, vipsource should be 0 */ if (!spec->effects_switch[CRYSTAL_VOICE - EFFECT_START_NID] || (val == 0)) { chipio_set_control_param(codec, CONTROL_PARAM_VIP_SOURCE, 0); chipio_set_conn_rate(codec, MEM_CONNID_MICIN1, SR_96_000); chipio_set_conn_rate(codec, MEM_CONNID_MICOUT1, SR_96_000); if (spec->cur_mic_type == DIGITAL_MIC) tmp = FLOAT_TWO; else tmp = FLOAT_ONE; dspio_set_uint_param(codec, 0x80, 0x00, tmp); tmp = FLOAT_ZERO; dspio_set_uint_param(codec, 0x80, 0x05, tmp); } else { chipio_set_conn_rate(codec, MEM_CONNID_MICIN1, SR_16_000); chipio_set_conn_rate(codec, MEM_CONNID_MICOUT1, SR_16_000); if (spec->cur_mic_type == DIGITAL_MIC) tmp = FLOAT_TWO; else tmp = FLOAT_ONE; dspio_set_uint_param(codec, 0x80, 0x00, tmp); tmp = FLOAT_ONE; dspio_set_uint_param(codec, 0x80, 0x05, tmp); msleep(20); chipio_set_control_param(codec, CONTROL_PARAM_VIP_SOURCE, val); } return 1; } /* * Select the active microphone. * If autodetect is enabled, mic will be selected based on jack detection. * If jack inserted, ext.mic will be selected, else built-in mic * If autodetect is disabled, mic will be selected based on selection. */ static int ca0132_select_mic(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; int jack_present; int auto_jack; snd_printdd(KERN_INFO "ca0132_select_mic\n"); snd_hda_power_up(codec); auto_jack = spec->vnode_lswitch[VNID_AMIC1_ASEL - VNODE_START_NID]; if (auto_jack) jack_present = snd_hda_jack_detect(codec, spec->input_pins[0]); else jack_present = spec->vnode_lswitch[VNID_AMIC1_SEL - VNODE_START_NID]; if (jack_present) spec->cur_mic_type = LINE_MIC_IN; else spec->cur_mic_type = DIGITAL_MIC; if (spec->cur_mic_type == DIGITAL_MIC) { /* enable digital Mic */ chipio_set_conn_rate(codec, MEM_CONNID_DMIC, SR_32_000); ca0132_set_dmic(codec, 1); ca0132_mic_boost_set(codec, 0); /* set voice focus */ ca0132_effects_set(codec, VOICE_FOCUS, spec->effects_switch [VOICE_FOCUS - EFFECT_START_NID]); } else { /* disable digital Mic */ chipio_set_conn_rate(codec, MEM_CONNID_DMIC, SR_96_000); ca0132_set_dmic(codec, 0); ca0132_mic_boost_set(codec, spec->cur_mic_boost); /* disable voice focus */ ca0132_effects_set(codec, VOICE_FOCUS, 0); } snd_hda_power_down(codec); return 0; } /* * Check if VNODE settings take effect immediately. */ static bool ca0132_is_vnode_effective(struct hda_codec *codec, hda_nid_t vnid, hda_nid_t *shared_nid) { struct ca0132_spec *spec = codec->spec; hda_nid_t nid; switch (vnid) { case VNID_SPK: nid = spec->shared_out_nid; break; case VNID_MIC: nid = spec->shared_mic_nid; break; default: return false; } if (shared_nid) *shared_nid = nid; return true; } /* * The following functions are control change helpers. * They return 0 if no changed. Return 1 if changed. */ static int ca0132_voicefx_set(struct hda_codec *codec, int enable) { struct ca0132_spec *spec = codec->spec; unsigned int tmp; /* based on CrystalVoice state to enable VoiceFX. */ if (enable) { tmp = spec->effects_switch[CRYSTAL_VOICE - EFFECT_START_NID] ? FLOAT_ONE : FLOAT_ZERO; } else { tmp = FLOAT_ZERO; } dspio_set_uint_param(codec, ca0132_voicefx.mid, ca0132_voicefx.reqs[0], tmp); return 1; } /* * Set the effects parameters */ static int ca0132_effects_set(struct hda_codec *codec, hda_nid_t nid, long val) { struct ca0132_spec *spec = codec->spec; unsigned int on; int num_fx = OUT_EFFECTS_COUNT + IN_EFFECTS_COUNT; int err = 0; int idx = nid - EFFECT_START_NID; if ((idx < 0) || (idx >= num_fx)) return 0; /* no changed */ /* for out effect, qualify with PE */ if ((nid >= OUT_EFFECT_START_NID) && (nid < OUT_EFFECT_END_NID)) { /* if PE if off, turn off out effects. */ if (!spec->effects_switch[PLAY_ENHANCEMENT - EFFECT_START_NID]) val = 0; } /* for in effect, qualify with CrystalVoice */ if ((nid >= IN_EFFECT_START_NID) && (nid < IN_EFFECT_END_NID)) { /* if CrystalVoice if off, turn off in effects. */ if (!spec->effects_switch[CRYSTAL_VOICE - EFFECT_START_NID]) val = 0; /* Voice Focus applies to 2-ch Mic, Digital Mic */ if ((nid == VOICE_FOCUS) && (spec->cur_mic_type != DIGITAL_MIC)) val = 0; } snd_printdd(KERN_INFO "ca0132_effect_set: nid=0x%x, val=%ld\n", nid, val); on = (val == 0) ? FLOAT_ZERO : FLOAT_ONE; err = dspio_set_uint_param(codec, ca0132_effects[idx].mid, ca0132_effects[idx].reqs[0], on); if (err < 0) return 0; /* no changed */ return 1; } /* * Turn on/off Playback Enhancements */ static int ca0132_pe_switch_set(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; hda_nid_t nid; int i, ret = 0; snd_printdd(KERN_INFO "ca0132_pe_switch_set: val=%ld\n", spec->effects_switch[PLAY_ENHANCEMENT - EFFECT_START_NID]); i = OUT_EFFECT_START_NID - EFFECT_START_NID; nid = OUT_EFFECT_START_NID; /* PE affects all out effects */ for (; nid < OUT_EFFECT_END_NID; nid++, i++) ret |= ca0132_effects_set(codec, nid, spec->effects_switch[i]); return ret; } /* Check if Mic1 is streaming, if so, stop streaming */ static int stop_mic1(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; unsigned int oldval = snd_hda_codec_read(codec, spec->adcs[0], 0, AC_VERB_GET_CONV, 0); if (oldval != 0) snd_hda_codec_write(codec, spec->adcs[0], 0, AC_VERB_SET_CHANNEL_STREAMID, 0); return oldval; } /* Resume Mic1 streaming if it was stopped. */ static void resume_mic1(struct hda_codec *codec, unsigned int oldval) { struct ca0132_spec *spec = codec->spec; /* Restore the previous stream and channel */ if (oldval != 0) snd_hda_codec_write(codec, spec->adcs[0], 0, AC_VERB_SET_CHANNEL_STREAMID, oldval); } /* * Turn on/off CrystalVoice */ static int ca0132_cvoice_switch_set(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; hda_nid_t nid; int i, ret = 0; unsigned int oldval; snd_printdd(KERN_INFO "ca0132_cvoice_switch_set: val=%ld\n", spec->effects_switch[CRYSTAL_VOICE - EFFECT_START_NID]); i = IN_EFFECT_START_NID - EFFECT_START_NID; nid = IN_EFFECT_START_NID; /* CrystalVoice affects all in effects */ for (; nid < IN_EFFECT_END_NID; nid++, i++) ret |= ca0132_effects_set(codec, nid, spec->effects_switch[i]); /* including VoiceFX */ ret |= ca0132_voicefx_set(codec, (spec->voicefx_val ? 1 : 0)); /* set correct vipsource */ oldval = stop_mic1(codec); ret |= ca0132_set_vipsource(codec, 1); resume_mic1(codec, oldval); return ret; } static int ca0132_mic_boost_set(struct hda_codec *codec, long val) { struct ca0132_spec *spec = codec->spec; int ret = 0; if (val) /* on */ ret = snd_hda_codec_amp_update(codec, spec->input_pins[0], 0, HDA_INPUT, 0, HDA_AMP_VOLMASK, 3); else /* off */ ret = snd_hda_codec_amp_update(codec, spec->input_pins[0], 0, HDA_INPUT, 0, HDA_AMP_VOLMASK, 0); return ret; } static int ca0132_vnode_switch_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); hda_nid_t shared_nid = 0; bool effective; int ret = 0; struct ca0132_spec *spec = codec->spec; int auto_jack; if (nid == VNID_HP_SEL) { auto_jack = spec->vnode_lswitch[VNID_HP_ASEL - VNODE_START_NID]; if (!auto_jack) ca0132_select_out(codec); return 1; } if (nid == VNID_AMIC1_SEL) { auto_jack = spec->vnode_lswitch[VNID_AMIC1_ASEL - VNODE_START_NID]; if (!auto_jack) ca0132_select_mic(codec); return 1; } if (nid == VNID_HP_ASEL) { ca0132_select_out(codec); return 1; } if (nid == VNID_AMIC1_ASEL) { ca0132_select_mic(codec); return 1; } /* if effective conditions, then update hw immediately. */ effective = ca0132_is_vnode_effective(codec, nid, &shared_nid); if (effective) { int dir = get_amp_direction(kcontrol); int ch = get_amp_channels(kcontrol); unsigned long pval; mutex_lock(&codec->control_mutex); pval = kcontrol->private_value; kcontrol->private_value = HDA_COMPOSE_AMP_VAL(shared_nid, ch, 0, dir); ret = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol); kcontrol->private_value = pval; mutex_unlock(&codec->control_mutex); } return ret; } /* End of control change helpers. */ static int ca0132_voicefx_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { unsigned int items = sizeof(ca0132_voicefx_presets) / sizeof(struct ct_voicefx_preset); uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = items; if (uinfo->value.enumerated.item >= items) uinfo->value.enumerated.item = items - 1; strcpy(uinfo->value.enumerated.name, ca0132_voicefx_presets[uinfo->value.enumerated.item].name); return 0; } static int ca0132_voicefx_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; ucontrol->value.enumerated.item[0] = spec->voicefx_val; return 0; } static int ca0132_voicefx_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; int i, err = 0; int sel = ucontrol->value.enumerated.item[0]; unsigned int items = sizeof(ca0132_voicefx_presets) / sizeof(struct ct_voicefx_preset); if (sel >= items) return 0; snd_printdd(KERN_INFO "ca0132_voicefx_put: sel=%d, preset=%s\n", sel, ca0132_voicefx_presets[sel].name); /* * Idx 0 is default. * Default needs to qualify with CrystalVoice state. */ for (i = 0; i < VOICEFX_MAX_PARAM_COUNT; i++) { err = dspio_set_uint_param(codec, ca0132_voicefx.mid, ca0132_voicefx.reqs[i], ca0132_voicefx_presets[sel].vals[i]); if (err < 0) break; } if (err >= 0) { spec->voicefx_val = sel; /* enable voice fx */ ca0132_voicefx_set(codec, (sel ? 1 : 0)); } return 1; } static int ca0132_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); int ch = get_amp_channels(kcontrol); long *valp = ucontrol->value.integer.value; /* vnode */ if ((nid >= VNODE_START_NID) && (nid < VNODE_END_NID)) { if (ch & 1) { *valp = spec->vnode_lswitch[nid - VNODE_START_NID]; valp++; } if (ch & 2) { *valp = spec->vnode_rswitch[nid - VNODE_START_NID]; valp++; } return 0; } /* effects, include PE and CrystalVoice */ if ((nid >= EFFECT_START_NID) && (nid < EFFECT_END_NID)) { *valp = spec->effects_switch[nid - EFFECT_START_NID]; return 0; } /* mic boost */ if (nid == spec->input_pins[0]) { *valp = spec->cur_mic_boost; return 0; } return 0; } static int ca0132_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); int ch = get_amp_channels(kcontrol); long *valp = ucontrol->value.integer.value; int changed = 1; snd_printdd(KERN_INFO "ca0132_switch_put: nid=0x%x, val=%ld\n", nid, *valp); snd_hda_power_up(codec); /* vnode */ if ((nid >= VNODE_START_NID) && (nid < VNODE_END_NID)) { if (ch & 1) { spec->vnode_lswitch[nid - VNODE_START_NID] = *valp; valp++; } if (ch & 2) { spec->vnode_rswitch[nid - VNODE_START_NID] = *valp; valp++; } changed = ca0132_vnode_switch_set(kcontrol, ucontrol); goto exit; } /* PE */ if (nid == PLAY_ENHANCEMENT) { spec->effects_switch[nid - EFFECT_START_NID] = *valp; changed = ca0132_pe_switch_set(codec); goto exit; } /* CrystalVoice */ if (nid == CRYSTAL_VOICE) { spec->effects_switch[nid - EFFECT_START_NID] = *valp; changed = ca0132_cvoice_switch_set(codec); goto exit; } /* out and in effects */ if (((nid >= OUT_EFFECT_START_NID) && (nid < OUT_EFFECT_END_NID)) || ((nid >= IN_EFFECT_START_NID) && (nid < IN_EFFECT_END_NID))) { spec->effects_switch[nid - EFFECT_START_NID] = *valp; changed = ca0132_effects_set(codec, nid, *valp); goto exit; } /* mic boost */ if (nid == spec->input_pins[0]) { spec->cur_mic_boost = *valp; /* Mic boost does not apply to Digital Mic */ if (spec->cur_mic_type != DIGITAL_MIC) changed = ca0132_mic_boost_set(codec, *valp); goto exit; } exit: snd_hda_power_down(codec); return changed; } /* * Volume related */ static int ca0132_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); int ch = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); unsigned long pval; int err; switch (nid) { case VNID_SPK: /* follow shared_out info */ nid = spec->shared_out_nid; mutex_lock(&codec->control_mutex); pval = kcontrol->private_value; kcontrol->private_value = HDA_COMPOSE_AMP_VAL(nid, ch, 0, dir); err = snd_hda_mixer_amp_volume_info(kcontrol, uinfo); kcontrol->private_value = pval; mutex_unlock(&codec->control_mutex); break; case VNID_MIC: /* follow shared_mic info */ nid = spec->shared_mic_nid; mutex_lock(&codec->control_mutex); pval = kcontrol->private_value; kcontrol->private_value = HDA_COMPOSE_AMP_VAL(nid, ch, 0, dir); err = snd_hda_mixer_amp_volume_info(kcontrol, uinfo); kcontrol->private_value = pval; mutex_unlock(&codec->control_mutex); break; default: err = snd_hda_mixer_amp_volume_info(kcontrol, uinfo); } return err; } static int ca0132_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); int ch = get_amp_channels(kcontrol); long *valp = ucontrol->value.integer.value; /* store the left and right volume */ if (ch & 1) { *valp = spec->vnode_lvol[nid - VNODE_START_NID]; valp++; } if (ch & 2) { *valp = spec->vnode_rvol[nid - VNODE_START_NID]; valp++; } return 0; } static int ca0132_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); int ch = get_amp_channels(kcontrol); long *valp = ucontrol->value.integer.value; hda_nid_t shared_nid = 0; bool effective; int changed = 1; /* store the left and right volume */ if (ch & 1) { spec->vnode_lvol[nid - VNODE_START_NID] = *valp; valp++; } if (ch & 2) { spec->vnode_rvol[nid - VNODE_START_NID] = *valp; valp++; } /* if effective conditions, then update hw immediately. */ effective = ca0132_is_vnode_effective(codec, nid, &shared_nid); if (effective) { int dir = get_amp_direction(kcontrol); unsigned long pval; snd_hda_power_up(codec); mutex_lock(&codec->control_mutex); pval = kcontrol->private_value; kcontrol->private_value = HDA_COMPOSE_AMP_VAL(shared_nid, ch, 0, dir); changed = snd_hda_mixer_amp_volume_put(kcontrol, ucontrol); kcontrol->private_value = pval; mutex_unlock(&codec->control_mutex); snd_hda_power_down(codec); } return changed; } static int ca0132_volume_tlv(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *tlv) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct ca0132_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); int ch = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); unsigned long pval; int err; switch (nid) { case VNID_SPK: /* follow shared_out tlv */ nid = spec->shared_out_nid; mutex_lock(&codec->control_mutex); pval = kcontrol->private_value; kcontrol->private_value = HDA_COMPOSE_AMP_VAL(nid, ch, 0, dir); err = snd_hda_mixer_amp_tlv(kcontrol, op_flag, size, tlv); kcontrol->private_value = pval; mutex_unlock(&codec->control_mutex); break; case VNID_MIC: /* follow shared_mic tlv */ nid = spec->shared_mic_nid; mutex_lock(&codec->control_mutex); pval = kcontrol->private_value; kcontrol->private_value = HDA_COMPOSE_AMP_VAL(nid, ch, 0, dir); err = snd_hda_mixer_amp_tlv(kcontrol, op_flag, size, tlv); kcontrol->private_value = pval; mutex_unlock(&codec->control_mutex); break; default: err = snd_hda_mixer_amp_tlv(kcontrol, op_flag, size, tlv); } return err; } static int add_fx_switch(struct hda_codec *codec, hda_nid_t nid, const char *pfx, int dir) { char namestr[44]; int type = dir ? HDA_INPUT : HDA_OUTPUT; struct snd_kcontrol_new knew = CA0132_CODEC_MUTE_MONO(namestr, nid, 1, type); sprintf(namestr, "%s %s Switch", pfx, dirstr[dir]); return snd_hda_ctl_add(codec, nid, snd_ctl_new1(&knew, codec)); } static int add_voicefx(struct hda_codec *codec) { struct snd_kcontrol_new knew = HDA_CODEC_MUTE_MONO(ca0132_voicefx.name, VOICEFX, 1, 0, HDA_INPUT); knew.info = ca0132_voicefx_info; knew.get = ca0132_voicefx_get; knew.put = ca0132_voicefx_put; return snd_hda_ctl_add(codec, VOICEFX, snd_ctl_new1(&knew, codec)); } /* * When changing Node IDs for Mixer Controls below, make sure to update * Node IDs in ca0132_config() as well. */ static struct snd_kcontrol_new ca0132_mixer[] = { CA0132_CODEC_VOL("Master Playback Volume", VNID_SPK, HDA_OUTPUT), CA0132_CODEC_MUTE("Master Playback Switch", VNID_SPK, HDA_OUTPUT), CA0132_CODEC_VOL("Capture Volume", VNID_MIC, HDA_INPUT), CA0132_CODEC_MUTE("Capture Switch", VNID_MIC, HDA_INPUT), HDA_CODEC_VOLUME("Analog-Mic2 Capture Volume", 0x08, 0, HDA_INPUT), HDA_CODEC_MUTE("Analog-Mic2 Capture Switch", 0x08, 0, HDA_INPUT), HDA_CODEC_VOLUME("What U Hear Capture Volume", 0x0a, 0, HDA_INPUT), HDA_CODEC_MUTE("What U Hear Capture Switch", 0x0a, 0, HDA_INPUT), CA0132_CODEC_MUTE_MONO("Mic1-Boost (30dB) Capture Switch", 0x12, 1, HDA_INPUT), CA0132_CODEC_MUTE_MONO("HP/Speaker Playback Switch", VNID_HP_SEL, 1, HDA_OUTPUT), CA0132_CODEC_MUTE_MONO("AMic1/DMic Capture Switch", VNID_AMIC1_SEL, 1, HDA_INPUT), CA0132_CODEC_MUTE_MONO("HP/Speaker Auto Detect Playback Switch", VNID_HP_ASEL, 1, HDA_OUTPUT), CA0132_CODEC_MUTE_MONO("AMic1/DMic Auto Detect Capture Switch", VNID_AMIC1_ASEL, 1, HDA_INPUT), { } /* end */ }; static int ca0132_build_controls(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; int i, num_fx; int err = 0; /* Add Mixer controls */ for (i = 0; i < spec->num_mixers; i++) { err = snd_hda_add_new_ctls(codec, spec->mixers[i]); if (err < 0) return err; } /* Add in and out effects controls. * VoiceFX, PE and CrystalVoice are added separately. */ num_fx = OUT_EFFECTS_COUNT + IN_EFFECTS_COUNT; for (i = 0; i < num_fx; i++) { err = add_fx_switch(codec, ca0132_effects[i].nid, ca0132_effects[i].name, ca0132_effects[i].direct); if (err < 0) return err; } err = add_fx_switch(codec, PLAY_ENHANCEMENT, "PlayEnhancement", 0); if (err < 0) return err; err = add_fx_switch(codec, CRYSTAL_VOICE, "CrystalVoice", 1); if (err < 0) return err; add_voicefx(codec); #ifdef ENABLE_TUNING_CONTROLS add_tuning_ctls(codec); #endif err = snd_hda_jack_add_kctls(codec, &spec->autocfg); if (err < 0) return err; if (spec->dig_out) { err = snd_hda_create_spdif_out_ctls(codec, spec->dig_out, spec->dig_out); if (err < 0) return err; err = snd_hda_create_spdif_share_sw(codec, &spec->multiout); if (err < 0) return err; /* spec->multiout.share_spdif = 1; */ } if (spec->dig_in) { err = snd_hda_create_spdif_in_ctls(codec, spec->dig_in); if (err < 0) return err; } return 0; } /* * PCM */ static struct hda_pcm_stream ca0132_pcm_analog_playback = { .substreams = 1, .channels_min = 2, .channels_max = 6, .ops = { .prepare = ca0132_playback_pcm_prepare, .cleanup = ca0132_playback_pcm_cleanup, .get_delay = ca0132_playback_pcm_delay, }, }; static struct hda_pcm_stream ca0132_pcm_analog_capture = { .substreams = 1, .channels_min = 2, .channels_max = 2, .ops = { .prepare = ca0132_capture_pcm_prepare, .cleanup = ca0132_capture_pcm_cleanup, .get_delay = ca0132_capture_pcm_delay, }, }; static struct hda_pcm_stream ca0132_pcm_digital_playback = { .substreams = 1, .channels_min = 2, .channels_max = 2, .ops = { .open = ca0132_dig_playback_pcm_open, .close = ca0132_dig_playback_pcm_close, .prepare = ca0132_dig_playback_pcm_prepare, .cleanup = ca0132_dig_playback_pcm_cleanup }, }; static struct hda_pcm_stream ca0132_pcm_digital_capture = { .substreams = 1, .channels_min = 2, .channels_max = 2, }; static int ca0132_build_pcms(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; struct hda_pcm *info = spec->pcm_rec; codec->pcm_info = info; codec->num_pcms = 0; info->name = "CA0132 Analog"; info->stream[SNDRV_PCM_STREAM_PLAYBACK] = ca0132_pcm_analog_playback; info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = spec->dacs[0]; info->stream[SNDRV_PCM_STREAM_PLAYBACK].channels_max = spec->multiout.max_channels; info->stream[SNDRV_PCM_STREAM_CAPTURE] = ca0132_pcm_analog_capture; info->stream[SNDRV_PCM_STREAM_CAPTURE].substreams = 1; info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->adcs[0]; codec->num_pcms++; info++; info->name = "CA0132 Analog Mic-In2"; info->stream[SNDRV_PCM_STREAM_CAPTURE] = ca0132_pcm_analog_capture; info->stream[SNDRV_PCM_STREAM_CAPTURE].substreams = 1; info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->adcs[1]; codec->num_pcms++; info++; info->name = "CA0132 What U Hear"; info->stream[SNDRV_PCM_STREAM_CAPTURE] = ca0132_pcm_analog_capture; info->stream[SNDRV_PCM_STREAM_CAPTURE].substreams = 1; info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->adcs[2]; codec->num_pcms++; if (!spec->dig_out && !spec->dig_in) return 0; info++; info->name = "CA0132 Digital"; info->pcm_type = HDA_PCM_TYPE_SPDIF; if (spec->dig_out) { info->stream[SNDRV_PCM_STREAM_PLAYBACK] = ca0132_pcm_digital_playback; info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = spec->dig_out; } if (spec->dig_in) { info->stream[SNDRV_PCM_STREAM_CAPTURE] = ca0132_pcm_digital_capture; info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->dig_in; } codec->num_pcms++; return 0; } static void init_output(struct hda_codec *codec, hda_nid_t pin, hda_nid_t dac) { if (pin) { snd_hda_set_pin_ctl(codec, pin, PIN_HP); if (get_wcaps(codec, pin) & AC_WCAP_OUT_AMP) snd_hda_codec_write(codec, pin, 0, AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_UNMUTE); } if (dac && (get_wcaps(codec, dac) & AC_WCAP_OUT_AMP)) snd_hda_codec_write(codec, dac, 0, AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_ZERO); } static void init_input(struct hda_codec *codec, hda_nid_t pin, hda_nid_t adc) { if (pin) { snd_hda_set_pin_ctl(codec, pin, PIN_VREF80); if (get_wcaps(codec, pin) & AC_WCAP_IN_AMP) snd_hda_codec_write(codec, pin, 0, AC_VERB_SET_AMP_GAIN_MUTE, AMP_IN_UNMUTE(0)); } if (adc && (get_wcaps(codec, adc) & AC_WCAP_IN_AMP)) { snd_hda_codec_write(codec, adc, 0, AC_VERB_SET_AMP_GAIN_MUTE, AMP_IN_UNMUTE(0)); /* init to 0 dB and unmute. */ snd_hda_codec_amp_stereo(codec, adc, HDA_INPUT, 0, HDA_AMP_VOLMASK, 0x5a); snd_hda_codec_amp_stereo(codec, adc, HDA_INPUT, 0, HDA_AMP_MUTE, 0); } } static void ca0132_init_unsol(struct hda_codec *codec) { snd_hda_jack_detect_enable(codec, UNSOL_TAG_HP, UNSOL_TAG_HP); snd_hda_jack_detect_enable(codec, UNSOL_TAG_AMIC1, UNSOL_TAG_AMIC1); } static void refresh_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir) { unsigned int caps; caps = snd_hda_param_read(codec, nid, dir == HDA_OUTPUT ? AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP); snd_hda_override_amp_caps(codec, nid, dir, caps); } /* * Switch between Digital built-in mic and analog mic. */ static void ca0132_set_dmic(struct hda_codec *codec, int enable) { struct ca0132_spec *spec = codec->spec; unsigned int tmp; u8 val; unsigned int oldval; snd_printdd(KERN_INFO "ca0132_set_dmic: enable=%d\n", enable); oldval = stop_mic1(codec); ca0132_set_vipsource(codec, 0); if (enable) { /* set DMic input as 2-ch */ tmp = FLOAT_TWO; dspio_set_uint_param(codec, 0x80, 0x00, tmp); val = spec->dmic_ctl; val |= 0x80; snd_hda_codec_write(codec, spec->input_pins[0], 0, VENDOR_CHIPIO_DMIC_CTL_SET, val); if (!(spec->dmic_ctl & 0x20)) chipio_set_control_flag(codec, CONTROL_FLAG_DMIC, 1); } else { /* set AMic input as mono */ tmp = FLOAT_ONE; dspio_set_uint_param(codec, 0x80, 0x00, tmp); val = spec->dmic_ctl; /* clear bit7 and bit5 to disable dmic */ val &= 0x5f; snd_hda_codec_write(codec, spec->input_pins[0], 0, VENDOR_CHIPIO_DMIC_CTL_SET, val); if (!(spec->dmic_ctl & 0x20)) chipio_set_control_flag(codec, CONTROL_FLAG_DMIC, 0); } ca0132_set_vipsource(codec, 1); resume_mic1(codec, oldval); } /* * Initialization for Digital Mic. */ static void ca0132_init_dmic(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; u8 val; /* Setup Digital Mic here, but don't enable. * Enable based on jack detect. */ /* MCLK uses MPIO1, set to enable. * Bit 2-0: MPIO select * Bit 3: set to disable * Bit 7-4: reserved */ val = 0x01; snd_hda_codec_write(codec, spec->input_pins[0], 0, VENDOR_CHIPIO_DMIC_MCLK_SET, val); /* Data1 uses MPIO3. Data2 not use * Bit 2-0: Data1 MPIO select * Bit 3: set disable Data1 * Bit 6-4: Data2 MPIO select * Bit 7: set disable Data2 */ val = 0x83; snd_hda_codec_write(codec, spec->input_pins[0], 0, VENDOR_CHIPIO_DMIC_PIN_SET, val); /* Use Ch-0 and Ch-1. Rate is 48K, mode 1. Disable DMic first. * Bit 3-0: Channel mask * Bit 4: set for 48KHz, clear for 32KHz * Bit 5: mode * Bit 6: set to select Data2, clear for Data1 * Bit 7: set to enable DMic, clear for AMic */ val = 0x23; /* keep a copy of dmic ctl val for enable/disable dmic purpuse */ spec->dmic_ctl = val; snd_hda_codec_write(codec, spec->input_pins[0], 0, VENDOR_CHIPIO_DMIC_CTL_SET, val); } /* * Initialization for Analog Mic 2 */ static void ca0132_init_analog_mic2(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; mutex_lock(&spec->chipio_mutex); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_8051_ADDRESS_LOW, 0x20); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_8051_ADDRESS_HIGH, 0x19); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_8051_DATA_WRITE, 0x00); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_8051_ADDRESS_LOW, 0x2D); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_8051_ADDRESS_HIGH, 0x19); snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0, VENDOR_CHIPIO_8051_DATA_WRITE, 0x00); mutex_unlock(&spec->chipio_mutex); } static void ca0132_refresh_widget_caps(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; int i; hda_nid_t nid; snd_printdd(KERN_INFO "ca0132_refresh_widget_caps.\n"); nid = codec->start_nid; for (i = 0; i < codec->num_nodes; i++, nid++) codec->wcaps[i] = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP); for (i = 0; i < spec->multiout.num_dacs; i++) refresh_amp_caps(codec, spec->dacs[i], HDA_OUTPUT); for (i = 0; i < spec->num_outputs; i++) refresh_amp_caps(codec, spec->out_pins[i], HDA_OUTPUT); for (i = 0; i < spec->num_inputs; i++) { refresh_amp_caps(codec, spec->adcs[i], HDA_INPUT); refresh_amp_caps(codec, spec->input_pins[i], HDA_INPUT); } } /* * Setup default parameters for DSP */ static void ca0132_setup_defaults(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; unsigned int tmp; int num_fx; int idx, i; if (spec->dsp_state != DSP_DOWNLOADED) return; /* out, in effects + voicefx */ num_fx = OUT_EFFECTS_COUNT + IN_EFFECTS_COUNT + 1; for (idx = 0; idx < num_fx; idx++) { for (i = 0; i <= ca0132_effects[idx].params; i++) { dspio_set_uint_param(codec, ca0132_effects[idx].mid, ca0132_effects[idx].reqs[i], ca0132_effects[idx].def_vals[i]); } } /*remove DSP headroom*/ tmp = FLOAT_ZERO; dspio_set_uint_param(codec, 0x96, 0x3C, tmp); /*set speaker EQ bypass attenuation*/ dspio_set_uint_param(codec, 0x8f, 0x01, tmp); /* set AMic1 and AMic2 as mono mic */ tmp = FLOAT_ONE; dspio_set_uint_param(codec, 0x80, 0x00, tmp); dspio_set_uint_param(codec, 0x80, 0x01, tmp); /* set AMic1 as CrystalVoice input */ tmp = FLOAT_ONE; dspio_set_uint_param(codec, 0x80, 0x05, tmp); /* set WUH source */ tmp = FLOAT_TWO; dspio_set_uint_param(codec, 0x31, 0x00, tmp); } /* * Initialization of flags in chip */ static void ca0132_init_flags(struct hda_codec *codec) { chipio_set_control_flag(codec, CONTROL_FLAG_IDLE_ENABLE, 0); chipio_set_control_flag(codec, CONTROL_FLAG_PORT_A_COMMON_MODE, 0); chipio_set_control_flag(codec, CONTROL_FLAG_PORT_D_COMMON_MODE, 0); chipio_set_control_flag(codec, CONTROL_FLAG_PORT_A_10KOHM_LOAD, 0); chipio_set_control_flag(codec, CONTROL_FLAG_PORT_D_10KOHM_LOAD, 0); chipio_set_control_flag(codec, CONTROL_FLAG_ADC_C_HIGH_PASS, 1); } /* * Initialization of parameters in chip */ static void ca0132_init_params(struct hda_codec *codec) { chipio_set_control_param(codec, CONTROL_PARAM_PORTA_160OHM_GAIN, 6); chipio_set_control_param(codec, CONTROL_PARAM_PORTD_160OHM_GAIN, 6); } static void ca0132_set_dsp_msr(struct hda_codec *codec, bool is96k) { chipio_set_control_flag(codec, CONTROL_FLAG_DSP_96KHZ, is96k); chipio_set_control_flag(codec, CONTROL_FLAG_DAC_96KHZ, is96k); chipio_set_control_flag(codec, CONTROL_FLAG_SRC_RATE_96KHZ, is96k); chipio_set_control_flag(codec, CONTROL_FLAG_SRC_CLOCK_196MHZ, is96k); chipio_set_control_flag(codec, CONTROL_FLAG_ADC_B_96KHZ, is96k); chipio_set_control_flag(codec, CONTROL_FLAG_ADC_C_96KHZ, is96k); chipio_set_conn_rate(codec, MEM_CONNID_MICIN1, SR_96_000); chipio_set_conn_rate(codec, MEM_CONNID_MICOUT1, SR_96_000); chipio_set_conn_rate(codec, MEM_CONNID_WUH, SR_48_000); } static bool ca0132_download_dsp_images(struct hda_codec *codec) { bool dsp_loaded = false; const struct dsp_image_seg *dsp_os_image; const struct firmware *fw_entry; if (request_firmware(&fw_entry, EFX_FILE, codec->bus->card->dev) != 0) return false; dsp_os_image = (struct dsp_image_seg *)(fw_entry->data); if (dspload_image(codec, dsp_os_image, 0, 0, true, 0)) { pr_err("ca0132 dspload_image failed.\n"); goto exit_download; } dsp_loaded = dspload_wait_loaded(codec); exit_download: release_firmware(fw_entry); return dsp_loaded; } static void ca0132_download_dsp(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; #ifndef CONFIG_SND_HDA_CODEC_CA0132_DSP return; /* NOP */ #endif if (spec->dsp_state == DSP_DOWNLOAD_FAILED) return; /* don't retry failures */ chipio_enable_clocks(codec); spec->dsp_state = DSP_DOWNLOADING; if (!ca0132_download_dsp_images(codec)) spec->dsp_state = DSP_DOWNLOAD_FAILED; else spec->dsp_state = DSP_DOWNLOADED; if (spec->dsp_state == DSP_DOWNLOADED) ca0132_set_dsp_msr(codec, true); } static void ca0132_process_dsp_response(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; snd_printdd(KERN_INFO "ca0132_process_dsp_response\n"); if (spec->wait_scp) { if (dspio_get_response_data(codec) >= 0) spec->wait_scp = 0; } dspio_clear_response_queue(codec); } static void ca0132_unsol_event(struct hda_codec *codec, unsigned int res) { struct ca0132_spec *spec = codec->spec; if (((res >> AC_UNSOL_RES_TAG_SHIFT) & 0x3f) == UNSOL_TAG_DSP) { ca0132_process_dsp_response(codec); } else { res = snd_hda_jack_get_action(codec, (res >> AC_UNSOL_RES_TAG_SHIFT) & 0x3f); snd_printdd(KERN_INFO "snd_hda_jack_get_action: 0x%x\n", res); switch (res) { case UNSOL_TAG_HP: /* Delay enabling the HP amp, to let the mic-detection * state machine run. */ cancel_delayed_work_sync(&spec->unsol_hp_work); queue_delayed_work(codec->bus->workq, &spec->unsol_hp_work, msecs_to_jiffies(500)); break; case UNSOL_TAG_AMIC1: ca0132_select_mic(codec); snd_hda_jack_report_sync(codec); break; default: break; } } } /* * Verbs tables. */ /* Sends before DSP download. */ static struct hda_verb ca0132_base_init_verbs[] = { /*enable ct extension*/ {0x15, VENDOR_CHIPIO_CT_EXTENSIONS_ENABLE, 0x1}, /*enable DSP node unsol, needed for DSP download*/ {0x16, AC_VERB_SET_UNSOLICITED_ENABLE, AC_USRSP_EN | UNSOL_TAG_DSP}, {} }; /* Send at exit. */ static struct hda_verb ca0132_base_exit_verbs[] = { /*set afg to D3*/ {0x01, AC_VERB_SET_POWER_STATE, 0x03}, /*disable ct extension*/ {0x15, VENDOR_CHIPIO_CT_EXTENSIONS_ENABLE, 0}, {} }; /* Other verbs tables. Sends after DSP download. */ static struct hda_verb ca0132_init_verbs0[] = { /* chip init verbs */ {0x15, 0x70D, 0xF0}, {0x15, 0x70E, 0xFE}, {0x15, 0x707, 0x75}, {0x15, 0x707, 0xD3}, {0x15, 0x707, 0x09}, {0x15, 0x707, 0x53}, {0x15, 0x707, 0xD4}, {0x15, 0x707, 0xEF}, {0x15, 0x707, 0x75}, {0x15, 0x707, 0xD3}, {0x15, 0x707, 0x09}, {0x15, 0x707, 0x02}, {0x15, 0x707, 0x37}, {0x15, 0x707, 0x78}, {0x15, 0x53C, 0xCE}, {0x15, 0x575, 0xC9}, {0x15, 0x53D, 0xCE}, {0x15, 0x5B7, 0xC9}, {0x15, 0x70D, 0xE8}, {0x15, 0x70E, 0xFE}, {0x15, 0x707, 0x02}, {0x15, 0x707, 0x68}, {0x15, 0x707, 0x62}, {0x15, 0x53A, 0xCE}, {0x15, 0x546, 0xC9}, {0x15, 0x53B, 0xCE}, {0x15, 0x5E8, 0xC9}, {0x15, 0x717, 0x0D}, {0x15, 0x718, 0x20}, {} }; static struct hda_verb ca0132_init_verbs1[] = { {0x10, AC_VERB_SET_UNSOLICITED_ENABLE, AC_USRSP_EN | UNSOL_TAG_HP}, {0x12, AC_VERB_SET_UNSOLICITED_ENABLE, AC_USRSP_EN | UNSOL_TAG_AMIC1}, /* config EAPD */ {0x0b, 0x78D, 0x00}, /*{0x0b, AC_VERB_SET_EAPD_BTLENABLE, 0x02},*/ /*{0x10, 0x78D, 0x02},*/ /*{0x10, AC_VERB_SET_EAPD_BTLENABLE, 0x02},*/ {} }; static void ca0132_init_chip(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; int num_fx; int i; unsigned int on; mutex_init(&spec->chipio_mutex); spec->cur_out_type = SPEAKER_OUT; spec->cur_mic_type = DIGITAL_MIC; spec->cur_mic_boost = 0; for (i = 0; i < VNODES_COUNT; i++) { spec->vnode_lvol[i] = 0x5a; spec->vnode_rvol[i] = 0x5a; spec->vnode_lswitch[i] = 0; spec->vnode_rswitch[i] = 0; } /* * Default states for effects are in ca0132_effects[]. */ num_fx = OUT_EFFECTS_COUNT + IN_EFFECTS_COUNT; for (i = 0; i < num_fx; i++) { on = (unsigned int)ca0132_effects[i].reqs[0]; spec->effects_switch[i] = on ? 1 : 0; } spec->voicefx_val = 0; spec->effects_switch[PLAY_ENHANCEMENT - EFFECT_START_NID] = 1; spec->effects_switch[CRYSTAL_VOICE - EFFECT_START_NID] = 0; #ifdef ENABLE_TUNING_CONTROLS ca0132_init_tuning_defaults(codec); #endif } static void ca0132_exit_chip(struct hda_codec *codec) { /* put any chip cleanup stuffs here. */ if (dspload_is_loaded(codec)) dsp_reset(codec); } static int ca0132_init(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; int i; if (spec->dsp_state != DSP_DOWNLOAD_FAILED) spec->dsp_state = DSP_DOWNLOAD_INIT; spec->curr_chip_addx = INVALID_CHIP_ADDRESS; snd_hda_power_up(codec); ca0132_init_params(codec); ca0132_init_flags(codec); snd_hda_sequence_write(codec, spec->base_init_verbs); ca0132_download_dsp(codec); ca0132_refresh_widget_caps(codec); ca0132_setup_defaults(codec); ca0132_init_analog_mic2(codec); ca0132_init_dmic(codec); for (i = 0; i < spec->num_outputs; i++) init_output(codec, spec->out_pins[i], spec->dacs[0]); init_output(codec, cfg->dig_out_pins[0], spec->dig_out); for (i = 0; i < spec->num_inputs; i++) init_input(codec, spec->input_pins[i], spec->adcs[i]); init_input(codec, cfg->dig_in_pin, spec->dig_in); for (i = 0; i < spec->num_init_verbs; i++) snd_hda_sequence_write(codec, spec->init_verbs[i]); ca0132_init_unsol(codec); ca0132_select_out(codec); ca0132_select_mic(codec); snd_hda_jack_report_sync(codec); snd_hda_power_down(codec); return 0; } static void ca0132_free(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; cancel_delayed_work_sync(&spec->unsol_hp_work); snd_hda_power_up(codec); snd_hda_sequence_write(codec, spec->base_exit_verbs); ca0132_exit_chip(codec); snd_hda_power_down(codec); kfree(codec->spec); } static struct hda_codec_ops ca0132_patch_ops = { .build_controls = ca0132_build_controls, .build_pcms = ca0132_build_pcms, .init = ca0132_init, .free = ca0132_free, .unsol_event = ca0132_unsol_event, }; static void ca0132_config(struct hda_codec *codec) { struct ca0132_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; spec->dacs[0] = 0x2; spec->dacs[1] = 0x3; spec->dacs[2] = 0x4; spec->multiout.dac_nids = spec->dacs; spec->multiout.num_dacs = 3; spec->multiout.max_channels = 2; spec->num_outputs = 2; spec->out_pins[0] = 0x0b; /* speaker out */ spec->out_pins[1] = 0x10; /* headphone out */ spec->shared_out_nid = 0x2; spec->num_inputs = 3; spec->adcs[0] = 0x7; /* digital mic / analog mic1 */ spec->adcs[1] = 0x8; /* analog mic2 */ spec->adcs[2] = 0xa; /* what u hear */ spec->shared_mic_nid = 0x7; spec->input_pins[0] = 0x12; spec->input_pins[1] = 0x11; spec->input_pins[2] = 0x13; /* SPDIF I/O */ spec->dig_out = 0x05; spec->multiout.dig_out_nid = spec->dig_out; cfg->dig_out_pins[0] = 0x0c; cfg->dig_outs = 1; cfg->dig_out_type[0] = HDA_PCM_TYPE_SPDIF; spec->dig_in = 0x09; cfg->dig_in_pin = 0x0e; cfg->dig_in_type = HDA_PCM_TYPE_SPDIF; } static int patch_ca0132(struct hda_codec *codec) { struct ca0132_spec *spec; int err; snd_printdd("patch_ca0132\n"); spec = kzalloc(sizeof(*spec), GFP_KERNEL); if (!spec) return -ENOMEM; codec->spec = spec; spec->codec = codec; spec->dsp_state = DSP_DOWNLOAD_INIT; spec->num_mixers = 1; spec->mixers[0] = ca0132_mixer; spec->base_init_verbs = ca0132_base_init_verbs; spec->base_exit_verbs = ca0132_base_exit_verbs; spec->init_verbs[0] = ca0132_init_verbs0; spec->init_verbs[1] = ca0132_init_verbs1; spec->num_init_verbs = 2; INIT_DELAYED_WORK(&spec->unsol_hp_work, ca0132_unsol_hp_delayed); ca0132_init_chip(codec); ca0132_config(codec); err = snd_hda_parse_pin_def_config(codec, &spec->autocfg, NULL); if (err < 0) return err; codec->patch_ops = ca0132_patch_ops; codec->pcm_format_first = 1; codec->no_sticky_stream = 1; return 0; } /* * patch entries */ static struct hda_codec_preset snd_hda_preset_ca0132[] = { { .id = 0x11020011, .name = "CA0132", .patch = patch_ca0132 }, {} /* terminator */ }; MODULE_ALIAS("snd-hda-codec-id:11020011"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Creative Sound Core3D codec"); static struct hda_codec_preset_list ca0132_list = { .preset = snd_hda_preset_ca0132, .owner = THIS_MODULE, }; static int __init patch_ca0132_init(void) { return snd_hda_add_codec_preset(&ca0132_list); } static void __exit patch_ca0132_exit(void) { snd_hda_delete_codec_preset(&ca0132_list); } module_init(patch_ca0132_init) module_exit(patch_ca0132_exit)