/* * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include "cipher.h" #include "common.h" #include "core.h" #include "regs-v5.h" #include "sha.h" #define QCE_SECTOR_SIZE 512 static inline u32 qce_read(struct qce_device *qce, u32 offset) { return readl(qce->base + offset); } static inline void qce_write(struct qce_device *qce, u32 offset, u32 val) { writel(val, qce->base + offset); } static inline void qce_write_array(struct qce_device *qce, u32 offset, const u32 *val, unsigned int len) { int i; for (i = 0; i < len; i++) qce_write(qce, offset + i * sizeof(u32), val[i]); } static inline void qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len) { int i; for (i = 0; i < len; i++) qce_write(qce, offset + i * sizeof(u32), 0); } static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size) { u32 cfg = 0; if (IS_AES(flags)) { if (aes_key_size == AES_KEYSIZE_128) cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT; else if (aes_key_size == AES_KEYSIZE_256) cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT; } if (IS_AES(flags)) cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT; else if (IS_DES(flags) || IS_3DES(flags)) cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT; if (IS_DES(flags)) cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT; if (IS_3DES(flags)) cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT; switch (flags & QCE_MODE_MASK) { case QCE_MODE_ECB: cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT; break; case QCE_MODE_CBC: cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT; break; case QCE_MODE_CTR: cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT; break; case QCE_MODE_XTS: cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT; break; case QCE_MODE_CCM: cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT; cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT; break; default: return ~0; } return cfg; } static u32 qce_auth_cfg(unsigned long flags, u32 key_size) { u32 cfg = 0; if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags))) cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT; else cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT; if (IS_CCM(flags) || IS_CMAC(flags)) { if (key_size == AES_KEYSIZE_128) cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT; else if (key_size == AES_KEYSIZE_256) cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT; } if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT; else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT; else if (IS_CMAC(flags)) cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT; if (IS_SHA1(flags) || IS_SHA256(flags)) cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT; else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) || IS_CBC(flags) || IS_CTR(flags)) cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT; else if (IS_AES(flags) && IS_CCM(flags)) cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT; else if (IS_AES(flags) && IS_CMAC(flags)) cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT; if (IS_SHA(flags) || IS_SHA_HMAC(flags)) cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT; if (IS_CCM(flags)) cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT; if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) || IS_CMAC(flags)) cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT); return cfg; } static u32 qce_config_reg(struct qce_device *qce, int little) { u32 beats = (qce->burst_size >> 3) - 1; u32 pipe_pair = qce->pipe_pair_id; u32 config; config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK; config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) | BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT); config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK; config &= ~HIGH_SPD_EN_N_SHIFT; if (little) config |= BIT(LITTLE_ENDIAN_MODE_SHIFT); return config; } void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len) { __be32 *d = dst; const u8 *s = src; unsigned int n; n = len / sizeof(u32); for (; n > 0; n--) { *d = cpu_to_be32p((const __u32 *) s); s += sizeof(__u32); d++; } } static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize) { u8 swap[QCE_AES_IV_LENGTH]; u32 i, j; if (ivsize > QCE_AES_IV_LENGTH) return; memset(swap, 0, QCE_AES_IV_LENGTH); for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1; i < QCE_AES_IV_LENGTH; i++, j--) swap[i] = src[j]; qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH); } static void qce_xtskey(struct qce_device *qce, const u8 *enckey, unsigned int enckeylen, unsigned int cryptlen) { u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0}; unsigned int xtsklen = enckeylen / (2 * sizeof(u32)); unsigned int xtsdusize; qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2, enckeylen / 2); qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen); /* xts du size 512B */ xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen); qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize); } static void qce_setup_config(struct qce_device *qce) { u32 config; /* get big endianness */ config = qce_config_reg(qce, 0); /* clear status */ qce_write(qce, REG_STATUS, 0); qce_write(qce, REG_CONFIG, config); } static inline void qce_crypto_go(struct qce_device *qce) { qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT)); } static int qce_setup_regs_ahash(struct crypto_async_request *async_req, u32 totallen, u32 offset) { struct ahash_request *req = ahash_request_cast(async_req); struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm); struct qce_sha_reqctx *rctx = ahash_request_ctx(req); struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm); struct qce_device *qce = tmpl->qce; unsigned int digestsize = crypto_ahash_digestsize(ahash); unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm); __be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0}; __be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0}; u32 auth_cfg = 0, config; unsigned int iv_words; /* if not the last, the size has to be on the block boundary */ if (!rctx->last_blk && req->nbytes % blocksize) return -EINVAL; qce_setup_config(qce); if (IS_CMAC(rctx->flags)) { qce_write(qce, REG_AUTH_SEG_CFG, 0); qce_write(qce, REG_ENCR_SEG_CFG, 0); qce_write(qce, REG_ENCR_SEG_SIZE, 0); qce_clear_array(qce, REG_AUTH_IV0, 16); qce_clear_array(qce, REG_AUTH_KEY0, 16); qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen); } if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) { u32 authkey_words = rctx->authklen / sizeof(u32); qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen); qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey, authkey_words); } if (IS_CMAC(rctx->flags)) goto go_proc; if (rctx->first_blk) memcpy(auth, rctx->digest, digestsize); else qce_cpu_to_be32p_array(auth, rctx->digest, digestsize); iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8; qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words); if (rctx->first_blk) qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); else qce_write_array(qce, REG_AUTH_BYTECNT0, (u32 *)rctx->byte_count, 2); auth_cfg = qce_auth_cfg(rctx->flags, 0); if (rctx->last_blk) auth_cfg |= BIT(AUTH_LAST_SHIFT); else auth_cfg &= ~BIT(AUTH_LAST_SHIFT); if (rctx->first_blk) auth_cfg |= BIT(AUTH_FIRST_SHIFT); else auth_cfg &= ~BIT(AUTH_FIRST_SHIFT); go_proc: qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes); qce_write(qce, REG_AUTH_SEG_START, 0); qce_write(qce, REG_ENCR_SEG_CFG, 0); qce_write(qce, REG_SEG_SIZE, req->nbytes); /* get little endianness */ config = qce_config_reg(qce, 1); qce_write(qce, REG_CONFIG, config); qce_crypto_go(qce); return 0; } static int qce_setup_regs_ablkcipher(struct crypto_async_request *async_req, u32 totallen, u32 offset) { struct ablkcipher_request *req = ablkcipher_request_cast(async_req); struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req); struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm); struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm); struct qce_device *qce = tmpl->qce; __be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0}; __be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0}; unsigned int enckey_words, enciv_words; unsigned int keylen; u32 encr_cfg = 0, auth_cfg = 0, config; unsigned int ivsize = rctx->ivsize; unsigned long flags = rctx->flags; qce_setup_config(qce); if (IS_XTS(flags)) keylen = ctx->enc_keylen / 2; else keylen = ctx->enc_keylen; qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen); enckey_words = keylen / sizeof(u32); qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); encr_cfg = qce_encr_cfg(flags, keylen); if (IS_DES(flags)) { enciv_words = 2; enckey_words = 2; } else if (IS_3DES(flags)) { enciv_words = 2; enckey_words = 6; } else if (IS_AES(flags)) { if (IS_XTS(flags)) qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen, rctx->cryptlen); enciv_words = 4; } else { return -EINVAL; } qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words); if (!IS_ECB(flags)) { if (IS_XTS(flags)) qce_xts_swapiv(enciv, rctx->iv, ivsize); else qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize); qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words); } if (IS_ENCRYPT(flags)) encr_cfg |= BIT(ENCODE_SHIFT); qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg); qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen); qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff); if (IS_CTR(flags)) { qce_write(qce, REG_CNTR_MASK, ~0); qce_write(qce, REG_CNTR_MASK0, ~0); qce_write(qce, REG_CNTR_MASK1, ~0); qce_write(qce, REG_CNTR_MASK2, ~0); } qce_write(qce, REG_SEG_SIZE, totallen); /* get little endianness */ config = qce_config_reg(qce, 1); qce_write(qce, REG_CONFIG, config); qce_crypto_go(qce); return 0; } int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen, u32 offset) { switch (type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: return qce_setup_regs_ablkcipher(async_req, totallen, offset); case CRYPTO_ALG_TYPE_AHASH: return qce_setup_regs_ahash(async_req, totallen, offset); default: return -EINVAL; } } #define STATUS_ERRORS \ (BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT)) int qce_check_status(struct qce_device *qce, u32 *status) { int ret = 0; *status = qce_read(qce, REG_STATUS); /* * Don't use result dump status. The operation may not be complete. * Instead, use the status we just read from device. In case, we need to * use result_status from result dump the result_status needs to be byte * swapped, since we set the device to little endian. */ if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT))) ret = -ENXIO; return ret; } void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step) { u32 val; val = qce_read(qce, REG_VERSION); *major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT; *minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT; *step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT; }