/* * Copyright (c) 2024 Project CHIP Authors * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "AppTask.h" #include "AppConfig.h" #include "AppEvent.h" #include "FabricTableDelegate.h" #include "LEDUtil.h" #include #include #include #include #include #include #include #include #include #if CONFIG_CHIP_OTA_REQUESTOR #include "OTAUtil.h" #endif #ifdef CONFIG_CHIP_CRYPTO_PSA #include #ifdef CONFIG_CHIP_MIGRATE_OPERATIONAL_KEYS_TO_ITS #include "MigrationManager.h" #endif #endif #include #include #include LOG_MODULE_DECLARE(app, CONFIG_CHIP_APP_LOG_LEVEL); using namespace ::chip; using namespace ::chip::app; using namespace ::chip::Credentials; using namespace ::chip::DeviceLayer; namespace { constexpr uint32_t kFactoryResetTriggerTimeout = 3000; constexpr uint32_t kFactoryResetCancelWindowTimeout = 3000; constexpr size_t kAppEventQueueSize = 10; constexpr EndpointId kIdentifyEndpointId = 1; // NOTE! This key is for test/certification only and should not be available in production devices! // If CONFIG_CHIP_FACTORY_DATA is enabled, this value is read from the factory data. uint8_t sTestEventTriggerEnableKey[TestEventTriggerDelegate::kEnableKeyLength] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }; K_MSGQ_DEFINE(sAppEventQueue, sizeof(AppEvent), kAppEventQueueSize, alignof(AppEvent)); k_timer sFunctionTimer; chip::DeviceLayer::DeviceInfoProviderImpl gExampleDeviceInfoProvider; Identify sIdentify = { kIdentifyEndpointId, AppTask::IdentifyStartHandler, AppTask::IdentifyStopHandler, Clusters::Identify::IdentifyTypeEnum::kVisibleIndicator }; LEDWidget sStatusLED; LEDWidget sIdentifyLED; FactoryResetLEDsWrapper<2> sFactoryResetLEDs{ { FACTORY_RESET_SIGNAL_LED, FACTORY_RESET_SIGNAL_LED1 } }; bool sIsNetworkProvisioned = false; bool sIsNetworkEnabled = false; bool sHaveBLEConnections = false; #ifdef CONFIG_CHIP_CRYPTO_PSA chip::Crypto::PSAOperationalKeystore sPSAOperationalKeystore{}; #endif #ifdef CONFIG_CHIP_ICD_DSLS_SUPPORT bool sIsSitModeRequested = false; #endif } // namespace namespace LedConsts { constexpr uint32_t kBlinkRate_ms{ 500 }; constexpr uint32_t kIdentifyBlinkRate_ms{ 500 }; namespace StatusLed { namespace Unprovisioned { constexpr uint32_t kOn_ms{ 100 }; constexpr uint32_t kOff_ms{ kOn_ms }; } // namespace Unprovisioned namespace Provisioned { constexpr uint32_t kOn_ms{ 50 }; constexpr uint32_t kOff_ms{ 950 }; } // namespace Provisioned } // namespace StatusLed } // namespace LedConsts CHIP_ERROR AppTask::Init() { // Initialize CHIP stack LOG_INF("Init CHIP stack"); CHIP_ERROR err = chip::Platform::MemoryInit(); if (err != CHIP_NO_ERROR) { LOG_ERR("Platform::MemoryInit() failed"); return err; } err = PlatformMgr().InitChipStack(); if (err != CHIP_NO_ERROR) { LOG_ERR("PlatformMgr().InitChipStack() failed"); return err; } #if defined(CONFIG_NET_L2_OPENTHREAD) err = ThreadStackMgr().InitThreadStack(); if (err != CHIP_NO_ERROR) { LOG_ERR("ThreadStackMgr().InitThreadStack() failed"); return err; } #ifdef CONFIG_OPENTHREAD_MTD_SED err = ConnectivityMgr().SetThreadDeviceType(ConnectivityManager::kThreadDeviceType_SleepyEndDevice); #else err = ConnectivityMgr().SetThreadDeviceType(ConnectivityManager::kThreadDeviceType_MinimalEndDevice); #endif if (err != CHIP_NO_ERROR) { LOG_ERR("ConnectivityMgr().SetThreadDeviceType() failed"); return err; } #else return CHIP_ERROR_INTERNAL; #endif // CONFIG_NET_L2_OPENTHREAD // Initialize LEDs LEDWidget::InitGpio(); LEDWidget::SetStateUpdateCallback(LEDStateUpdateHandler); sStatusLED.Init(SYSTEM_STATE_LED); sIdentifyLED.Init(IDENTIFY_STATE_LED); sIdentifyLED.Set(false); UpdateStatusLED(); // Initialize buttons auto ret = dk_buttons_init(ButtonEventHandler); if (ret) { LOG_ERR("dk_buttons_init() failed"); return chip::System::MapErrorZephyr(ret); } // Initialize timer user data k_timer_init(&sFunctionTimer, &AppTask::FunctionTimerTimeoutCallback, nullptr); k_timer_user_data_set(&sFunctionTimer, this); #ifdef CONFIG_CHIP_OTA_REQUESTOR /* OTA image confirmation must be done before the factory data init. */ OtaConfirmNewImage(); #endif // Initialize CHIP server #if CONFIG_CHIP_FACTORY_DATA ReturnErrorOnFailure(mFactoryDataProvider.Init()); SetDeviceInstanceInfoProvider(&mFactoryDataProvider); SetDeviceAttestationCredentialsProvider(&mFactoryDataProvider); SetCommissionableDataProvider(&mFactoryDataProvider); // Read EnableKey from the factory data. MutableByteSpan enableKey(sTestEventTriggerEnableKey); err = mFactoryDataProvider.GetEnableKey(enableKey); if (err != CHIP_NO_ERROR) { LOG_ERR("mFactoryDataProvider.GetEnableKey() failed. Could not delegate a test event trigger"); memset(sTestEventTriggerEnableKey, 0, sizeof(sTestEventTriggerEnableKey)); } #else SetDeviceInstanceInfoProvider(&DeviceInstanceInfoProviderMgrImpl()); SetDeviceAttestationCredentialsProvider(Examples::GetExampleDACProvider()); #endif static CommonCaseDeviceServerInitParams initParams; static SimpleTestEventTriggerDelegate sTestEventTriggerDelegate{}; static OTATestEventTriggerHandler sOtaTestEventTriggerHandler{}; VerifyOrDie(sTestEventTriggerDelegate.Init(ByteSpan(sTestEventTriggerEnableKey)) == CHIP_NO_ERROR); VerifyOrDie(sTestEventTriggerDelegate.AddHandler(&sOtaTestEventTriggerHandler) == CHIP_NO_ERROR); #ifdef CONFIG_CHIP_CRYPTO_PSA initParams.operationalKeystore = &sPSAOperationalKeystore; #endif (void) initParams.InitializeStaticResourcesBeforeServerInit(); initParams.testEventTriggerDelegate = &sTestEventTriggerDelegate; ReturnErrorOnFailure(chip::Server::GetInstance().Init(initParams)); AppFabricTableDelegate::Init(); #ifdef CONFIG_CHIP_MIGRATE_OPERATIONAL_KEYS_TO_ITS err = MoveOperationalKeysFromKvsToIts(sLocalInitData.mServerInitParams->persistentStorageDelegate, sLocalInitData.mServerInitParams->operationalKeystore); if (err != CHIP_NO_ERROR) { LOG_ERR("MoveOperationalKeysFromKvsToIts() failed"); return err; } #endif gExampleDeviceInfoProvider.SetStorageDelegate(&Server::GetInstance().GetPersistentStorage()); chip::DeviceLayer::SetDeviceInfoProvider(&gExampleDeviceInfoProvider); ConfigurationMgr().LogDeviceConfig(); PrintOnboardingCodes(chip::RendezvousInformationFlag(chip::RendezvousInformationFlag::kBLE)); // Add CHIP event handler and start CHIP thread. // Note that all the initialization code should happen prior to this point to avoid data races // between the main and the CHIP threads PlatformMgr().AddEventHandler(ChipEventHandler, 0); err = PlatformMgr().StartEventLoopTask(); if (err != CHIP_NO_ERROR) { LOG_ERR("PlatformMgr().StartEventLoopTask() failed"); } return err; } CHIP_ERROR AppTask::StartApp() { ReturnErrorOnFailure(Init()); AppEvent event{}; while (true) { k_msgq_get(&sAppEventQueue, &event, K_FOREVER); DispatchEvent(event); } return CHIP_NO_ERROR; } void AppTask::IdentifyStartHandler(Identify *) { AppEvent event; event.Type = AppEventType::IdentifyStart; event.Handler = [](const AppEvent &) { sIdentifyLED.Blink(LedConsts::kIdentifyBlinkRate_ms); }; PostEvent(event); } void AppTask::IdentifyStopHandler(Identify *) { AppEvent event; event.Type = AppEventType::IdentifyStop; event.Handler = [](const AppEvent &) { sIdentifyLED.Set(false); }; PostEvent(event); } void AppTask::ButtonEventHandler(uint32_t buttonState, uint32_t hasChanged) { AppEvent button_event; button_event.Type = AppEventType::Button; if (BLE_ADVERTISEMENT_START_BUTTON_MASK & buttonState & hasChanged) { button_event.ButtonEvent.PinNo = BLE_ADVERTISEMENT_START_BUTTON; button_event.ButtonEvent.Action = static_cast(AppEventType::ButtonPushed); button_event.Handler = StartBLEAdvertisementHandler; PostEvent(button_event); } if (FUNCTION_BUTTON_MASK & hasChanged) { button_event.ButtonEvent.PinNo = FUNCTION_BUTTON; button_event.ButtonEvent.Action = static_cast((FUNCTION_BUTTON_MASK & buttonState) ? AppEventType::ButtonPushed : AppEventType::ButtonReleased); button_event.Handler = FunctionHandler; PostEvent(button_event); } #ifdef CONFIG_CHIP_ICD_DSLS_SUPPORT if (ICD_DSLS_BUTTON_MASK & buttonState & hasChanged) { button_event.ButtonEvent.PinNo = ICD_DSLS_BUTTON; button_event.ButtonEvent.Action = static_cast(AppEventType::ButtonPushed); button_event.Handler = IcdDslsEventHandler; PostEvent(button_event); } #endif if (ICD_UAT_BUTTON_MASK & hasChanged) { button_event.ButtonEvent.PinNo = ICD_UAT_BUTTON; button_event.ButtonEvent.Action = static_cast(AppEventType::ButtonPushed); button_event.Handler = IcdUatEventHandler; PostEvent(button_event); } } #ifdef CONFIG_CHIP_ICD_DSLS_SUPPORT void AppTask::IcdDslsEventHandler(const AppEvent &) { if (sIsSitModeRequested) { PlatformMgr().ScheduleWork([](intptr_t arg) { chip::app::ICDNotifier::GetInstance().NotifySITModeRequestWithdrawal(); }, 0); sIsSitModeRequested = false; } else { PlatformMgr().ScheduleWork([](intptr_t arg) { chip::app::ICDNotifier::GetInstance().NotifySITModeRequestNotification(); }, 0); sIsSitModeRequested = true; } } #endif void AppTask::IcdUatEventHandler(const AppEvent &) { // Temporarily claim network activity, until we implement a "user trigger" reason for ICD wakeups. PlatformMgr().ScheduleWork([](intptr_t) { ICDNotifier::GetInstance().NotifyNetworkActivityNotification(); }); } void AppTask::FunctionTimerTimeoutCallback(k_timer * timer) { if (!timer) { return; } AppEvent event; event.Type = AppEventType::Timer; event.TimerEvent.Context = k_timer_user_data_get(timer); event.Handler = FunctionTimerEventHandler; PostEvent(event); } void AppTask::FunctionTimerEventHandler(const AppEvent & event) { if (event.Type != AppEventType::Timer || !Instance().mFunctionTimerActive) { return; } // If we reached here, the button was held past kFactoryResetTriggerTimeout, initiate factory reset if (Instance().mFunction == FunctionEvent::SoftwareUpdate) { LOG_INF("Factory Reset Triggered. Release button within %ums to cancel.", kFactoryResetTriggerTimeout); // Start timer for kFactoryResetCancelWindowTimeout to allow user to cancel, if required. Instance().StartTimer(kFactoryResetCancelWindowTimeout); Instance().mFunction = FunctionEvent::FactoryReset; // Turn off all LEDs before starting blink to make sure blink is coordinated. sStatusLED.Set(false); sFactoryResetLEDs.Set(false); sStatusLED.Blink(LedConsts::kBlinkRate_ms); sFactoryResetLEDs.Blink(LedConsts::kBlinkRate_ms); } else if (Instance().mFunction == FunctionEvent::FactoryReset) { // Actually trigger Factory Reset Instance().mFunction = FunctionEvent::NoneSelected; chip::Server::GetInstance().ScheduleFactoryReset(); } else if (Instance().mFunction == FunctionEvent::AdvertisingStart) { // The button was held past kAdvertisingTriggerTimeout, start BLE advertisement if we have 2 buttons UI StartBLEAdvertisementHandler(event); } } void AppTask::FunctionHandler(const AppEvent & event) { if (event.ButtonEvent.PinNo != FUNCTION_BUTTON) return; // To trigger software update: press the FUNCTION_BUTTON button briefly (< FACTORY_RESET_TRIGGER_TIMEOUT) // To initiate factory reset: press the FUNCTION_BUTTON for FACTORY_RESET_TRIGGER_TIMEOUT + FACTORY_RESET_CANCEL_WINDOW_TIMEOUT // All LEDs start blinking after FACTORY_RESET_TRIGGER_TIMEOUT to signal factory reset has been initiated. // To cancel factory reset: release the FUNCTION_BUTTON once all LEDs start blinking within the // FACTORY_RESET_CANCEL_WINDOW_TIMEOUT if (event.ButtonEvent.Action == static_cast(AppEventType::ButtonPushed)) { if (!Instance().mFunctionTimerActive && Instance().mFunction == FunctionEvent::NoneSelected) { Instance().StartTimer(kFactoryResetTriggerTimeout); Instance().mFunction = FunctionEvent::SoftwareUpdate; } } else { // If the button was released before factory reset got initiated, trigger a software update. if (Instance().mFunctionTimerActive && Instance().mFunction == FunctionEvent::SoftwareUpdate) { Instance().CancelTimer(); Instance().mFunction = FunctionEvent::NoneSelected; } else if (Instance().mFunctionTimerActive && Instance().mFunction == FunctionEvent::FactoryReset) { sFactoryResetLEDs.Set(false); UpdateStatusLED(); Instance().CancelTimer(); Instance().mFunction = FunctionEvent::NoneSelected; LOG_INF("Factory Reset has been Canceled"); } } } void AppTask::StartBLEAdvertisementHandler(const AppEvent &) { if (Server::GetInstance().GetFabricTable().FabricCount() != 0) { LOG_INF("Matter service BLE advertising not started - device is already commissioned"); return; } if (ConnectivityMgr().IsBLEAdvertisingEnabled()) { LOG_INF("BLE advertising is already enabled"); return; } if (Server::GetInstance().GetCommissioningWindowManager().OpenBasicCommissioningWindow() != CHIP_NO_ERROR) { LOG_ERR("OpenBasicCommissioningWindow() failed"); } } void AppTask::UpdateLedStateEventHandler(const AppEvent & event) { if (event.Type == AppEventType::UpdateLedState) { event.UpdateLedStateEvent.LedWidget->UpdateState(); } } void AppTask::LEDStateUpdateHandler(LEDWidget & ledWidget) { AppEvent event; event.Type = AppEventType::UpdateLedState; event.Handler = UpdateLedStateEventHandler; event.UpdateLedStateEvent.LedWidget = &ledWidget; PostEvent(event); } void AppTask::UpdateStatusLED() { #ifdef CONFIG_STATE_LEDS // Update the status LED. // // If IPv6 network and service provisioned, keep the LED On constantly. // // If the system has BLE connection(s) until the stage above, THEN blink the LED at an even // rate of 100ms. // // Otherwise, blink the LED for a very short time. if (sIsNetworkProvisioned && sIsNetworkEnabled) { sStatusLED.Set(true); } else if (sHaveBLEConnections) { sStatusLED.Blink(LedConsts::StatusLed::Unprovisioned::kOn_ms, LedConsts::StatusLed::Unprovisioned::kOff_ms); } else { sStatusLED.Blink(LedConsts::StatusLed::Provisioned::kOn_ms, LedConsts::StatusLed::Provisioned::kOff_ms); } #endif } void AppTask::ChipEventHandler(const ChipDeviceEvent * event, intptr_t /* arg */) { switch (event->Type) { case DeviceEventType::kCHIPoBLEAdvertisingChange: #ifdef CONFIG_CHIP_NFC_COMMISSIONING if (event->CHIPoBLEAdvertisingChange.Result == kActivity_Started) { if (NFCMgr().IsTagEmulationStarted()) { LOG_INF("NFC Tag emulation is already started"); } else { ShareQRCodeOverNFC(chip::RendezvousInformationFlags(chip::RendezvousInformationFlag::kBLE)); } } else if (event->CHIPoBLEAdvertisingChange.Result == kActivity_Stopped) { NFCMgr().StopTagEmulation(); } #endif sHaveBLEConnections = ConnectivityMgr().NumBLEConnections() != 0; UpdateStatusLED(); break; #if defined(CONFIG_NET_L2_OPENTHREAD) case DeviceEventType::kDnssdInitialized: #if CONFIG_CHIP_OTA_REQUESTOR InitBasicOTARequestor(); #endif // CONFIG_CHIP_OTA_REQUESTOR break; case DeviceEventType::kThreadStateChange: sIsNetworkProvisioned = ConnectivityMgr().IsThreadProvisioned(); sIsNetworkEnabled = ConnectivityMgr().IsThreadEnabled(); UpdateStatusLED(); break; #endif // CONFIG_NET_L2_OPENTHREAD default: break; } } void AppTask::CancelTimer() { k_timer_stop(&sFunctionTimer); Instance().mFunctionTimerActive = false; } void AppTask::StartTimer(uint32_t aTimeoutInMs) { k_timer_start(&sFunctionTimer, K_MSEC(aTimeoutInMs), K_NO_WAIT); Instance().mFunctionTimerActive = true; } void AppTask::PostEvent(const AppEvent & event) { if (k_msgq_put(&sAppEventQueue, &event, K_NO_WAIT) != 0) { LOG_INF("Failed to post event to app task event queue"); } } void AppTask::DispatchEvent(const AppEvent & event) { if (event.Handler) { event.Handler(event); } else { LOG_INF("Event received with no handler. Dropping event."); } }